MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rncoeq Structured version   Visualization version   GIF version

Theorem rncoeq 5946
Description: Range of a composition. (Contributed by NM, 19-Mar-1998.)
Assertion
Ref Expression
rncoeq (dom 𝐴 = ran 𝐵 → ran (𝐴𝐵) = ran 𝐴)

Proof of Theorem rncoeq
StepHypRef Expression
1 dmcoeq 5945 . 2 (dom 𝐵 = ran 𝐴 → dom (𝐵𝐴) = dom 𝐴)
2 eqcom 2737 . . 3 (dom 𝐴 = ran 𝐵 ↔ ran 𝐵 = dom 𝐴)
3 df-rn 5652 . . . 4 ran 𝐵 = dom 𝐵
4 dfdm4 5862 . . . 4 dom 𝐴 = ran 𝐴
53, 4eqeq12i 2748 . . 3 (ran 𝐵 = dom 𝐴 ↔ dom 𝐵 = ran 𝐴)
62, 5bitri 275 . 2 (dom 𝐴 = ran 𝐵 ↔ dom 𝐵 = ran 𝐴)
7 df-rn 5652 . . . 4 ran (𝐴𝐵) = dom (𝐴𝐵)
8 cnvco 5852 . . . . 5 (𝐴𝐵) = (𝐵𝐴)
98dmeqi 5871 . . . 4 dom (𝐴𝐵) = dom (𝐵𝐴)
107, 9eqtri 2753 . . 3 ran (𝐴𝐵) = dom (𝐵𝐴)
11 df-rn 5652 . . 3 ran 𝐴 = dom 𝐴
1210, 11eqeq12i 2748 . 2 (ran (𝐴𝐵) = ran 𝐴 ↔ dom (𝐵𝐴) = dom 𝐴)
131, 6, 123imtr4i 292 1 (dom 𝐴 = ran 𝐵 → ran (𝐴𝐵) = ran 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  ccnv 5640  dom cdm 5641  ran crn 5642  ccom 5645
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652
This theorem is referenced by:  dfdm2  6257  algextdeglem4  33717
  Copyright terms: Public domain W3C validator