| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rncoeq | Structured version Visualization version GIF version | ||
| Description: Range of a composition. (Contributed by NM, 19-Mar-1998.) |
| Ref | Expression |
|---|---|
| rncoeq | ⊢ (dom 𝐴 = ran 𝐵 → ran (𝐴 ∘ 𝐵) = ran 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmcoeq 5915 | . 2 ⊢ (dom ◡𝐵 = ran ◡𝐴 → dom (◡𝐵 ∘ ◡𝐴) = dom ◡𝐴) | |
| 2 | eqcom 2738 | . . 3 ⊢ (dom 𝐴 = ran 𝐵 ↔ ran 𝐵 = dom 𝐴) | |
| 3 | df-rn 5622 | . . . 4 ⊢ ran 𝐵 = dom ◡𝐵 | |
| 4 | dfdm4 5830 | . . . 4 ⊢ dom 𝐴 = ran ◡𝐴 | |
| 5 | 3, 4 | eqeq12i 2749 | . . 3 ⊢ (ran 𝐵 = dom 𝐴 ↔ dom ◡𝐵 = ran ◡𝐴) |
| 6 | 2, 5 | bitri 275 | . 2 ⊢ (dom 𝐴 = ran 𝐵 ↔ dom ◡𝐵 = ran ◡𝐴) |
| 7 | df-rn 5622 | . . . 4 ⊢ ran (𝐴 ∘ 𝐵) = dom ◡(𝐴 ∘ 𝐵) | |
| 8 | cnvco 5820 | . . . . 5 ⊢ ◡(𝐴 ∘ 𝐵) = (◡𝐵 ∘ ◡𝐴) | |
| 9 | 8 | dmeqi 5839 | . . . 4 ⊢ dom ◡(𝐴 ∘ 𝐵) = dom (◡𝐵 ∘ ◡𝐴) |
| 10 | 7, 9 | eqtri 2754 | . . 3 ⊢ ran (𝐴 ∘ 𝐵) = dom (◡𝐵 ∘ ◡𝐴) |
| 11 | df-rn 5622 | . . 3 ⊢ ran 𝐴 = dom ◡𝐴 | |
| 12 | 10, 11 | eqeq12i 2749 | . 2 ⊢ (ran (𝐴 ∘ 𝐵) = ran 𝐴 ↔ dom (◡𝐵 ∘ ◡𝐴) = dom ◡𝐴) |
| 13 | 1, 6, 12 | 3imtr4i 292 | 1 ⊢ (dom 𝐴 = ran 𝐵 → ran (𝐴 ∘ 𝐵) = ran 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ◡ccnv 5610 dom cdm 5611 ran crn 5612 ∘ ccom 5615 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-br 5087 df-opab 5149 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 |
| This theorem is referenced by: dfdm2 6223 esplysply 33584 algextdeglem4 33725 |
| Copyright terms: Public domain | W3C validator |