MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rncoeq Structured version   Visualization version   GIF version

Theorem rncoeq 5974
Description: Range of a composition. (Contributed by NM, 19-Mar-1998.)
Assertion
Ref Expression
rncoeq (dom 𝐴 = ran 𝐵 → ran (𝐴𝐵) = ran 𝐴)

Proof of Theorem rncoeq
StepHypRef Expression
1 dmcoeq 5973 . 2 (dom 𝐵 = ran 𝐴 → dom (𝐵𝐴) = dom 𝐴)
2 eqcom 2738 . . 3 (dom 𝐴 = ran 𝐵 ↔ ran 𝐵 = dom 𝐴)
3 df-rn 5687 . . . 4 ran 𝐵 = dom 𝐵
4 dfdm4 5895 . . . 4 dom 𝐴 = ran 𝐴
53, 4eqeq12i 2749 . . 3 (ran 𝐵 = dom 𝐴 ↔ dom 𝐵 = ran 𝐴)
62, 5bitri 275 . 2 (dom 𝐴 = ran 𝐵 ↔ dom 𝐵 = ran 𝐴)
7 df-rn 5687 . . . 4 ran (𝐴𝐵) = dom (𝐴𝐵)
8 cnvco 5885 . . . . 5 (𝐴𝐵) = (𝐵𝐴)
98dmeqi 5904 . . . 4 dom (𝐴𝐵) = dom (𝐵𝐴)
107, 9eqtri 2759 . . 3 ran (𝐴𝐵) = dom (𝐵𝐴)
11 df-rn 5687 . . 3 ran 𝐴 = dom 𝐴
1210, 11eqeq12i 2749 . 2 (ran (𝐴𝐵) = ran 𝐴 ↔ dom (𝐵𝐴) = dom 𝐴)
131, 6, 123imtr4i 292 1 (dom 𝐴 = ran 𝐵 → ran (𝐴𝐵) = ran 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  ccnv 5675  dom cdm 5676  ran crn 5677  ccom 5680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687
This theorem is referenced by:  dfdm2  6280  algextdeglem4  33231
  Copyright terms: Public domain W3C validator