MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rncoeq Structured version   Visualization version   GIF version

Theorem rncoeq 5873
Description: Range of a composition. (Contributed by NM, 19-Mar-1998.)
Assertion
Ref Expression
rncoeq (dom 𝐴 = ran 𝐵 → ran (𝐴𝐵) = ran 𝐴)

Proof of Theorem rncoeq
StepHypRef Expression
1 dmcoeq 5872 . 2 (dom 𝐵 = ran 𝐴 → dom (𝐵𝐴) = dom 𝐴)
2 eqcom 2745 . . 3 (dom 𝐴 = ran 𝐵 ↔ ran 𝐵 = dom 𝐴)
3 df-rn 5591 . . . 4 ran 𝐵 = dom 𝐵
4 dfdm4 5793 . . . 4 dom 𝐴 = ran 𝐴
53, 4eqeq12i 2756 . . 3 (ran 𝐵 = dom 𝐴 ↔ dom 𝐵 = ran 𝐴)
62, 5bitri 274 . 2 (dom 𝐴 = ran 𝐵 ↔ dom 𝐵 = ran 𝐴)
7 df-rn 5591 . . . 4 ran (𝐴𝐵) = dom (𝐴𝐵)
8 cnvco 5783 . . . . 5 (𝐴𝐵) = (𝐵𝐴)
98dmeqi 5802 . . . 4 dom (𝐴𝐵) = dom (𝐵𝐴)
107, 9eqtri 2766 . . 3 ran (𝐴𝐵) = dom (𝐵𝐴)
11 df-rn 5591 . . 3 ran 𝐴 = dom 𝐴
1210, 11eqeq12i 2756 . 2 (ran (𝐴𝐵) = ran 𝐴 ↔ dom (𝐵𝐴) = dom 𝐴)
131, 6, 123imtr4i 291 1 (dom 𝐴 = ran 𝐵 → ran (𝐴𝐵) = ran 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  ccnv 5579  dom cdm 5580  ran crn 5581  ccom 5584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591
This theorem is referenced by:  dfdm2  6173
  Copyright terms: Public domain W3C validator