MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rncoeq Structured version   Visualization version   GIF version

Theorem rncoeq 6002
Description: Range of a composition. (Contributed by NM, 19-Mar-1998.)
Assertion
Ref Expression
rncoeq (dom 𝐴 = ran 𝐵 → ran (𝐴𝐵) = ran 𝐴)

Proof of Theorem rncoeq
StepHypRef Expression
1 dmcoeq 6001 . 2 (dom 𝐵 = ran 𝐴 → dom (𝐵𝐴) = dom 𝐴)
2 eqcom 2747 . . 3 (dom 𝐴 = ran 𝐵 ↔ ran 𝐵 = dom 𝐴)
3 df-rn 5711 . . . 4 ran 𝐵 = dom 𝐵
4 dfdm4 5920 . . . 4 dom 𝐴 = ran 𝐴
53, 4eqeq12i 2758 . . 3 (ran 𝐵 = dom 𝐴 ↔ dom 𝐵 = ran 𝐴)
62, 5bitri 275 . 2 (dom 𝐴 = ran 𝐵 ↔ dom 𝐵 = ran 𝐴)
7 df-rn 5711 . . . 4 ran (𝐴𝐵) = dom (𝐴𝐵)
8 cnvco 5910 . . . . 5 (𝐴𝐵) = (𝐵𝐴)
98dmeqi 5929 . . . 4 dom (𝐴𝐵) = dom (𝐵𝐴)
107, 9eqtri 2768 . . 3 ran (𝐴𝐵) = dom (𝐵𝐴)
11 df-rn 5711 . . 3 ran 𝐴 = dom 𝐴
1210, 11eqeq12i 2758 . 2 (ran (𝐴𝐵) = ran 𝐴 ↔ dom (𝐵𝐴) = dom 𝐴)
131, 6, 123imtr4i 292 1 (dom 𝐴 = ran 𝐵 → ran (𝐴𝐵) = ran 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  ccnv 5699  dom cdm 5700  ran crn 5701  ccom 5704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711
This theorem is referenced by:  dfdm2  6312  algextdeglem4  33711
  Copyright terms: Public domain W3C validator