![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rncoeq | Structured version Visualization version GIF version |
Description: Range of a composition. (Contributed by NM, 19-Mar-1998.) |
Ref | Expression |
---|---|
rncoeq | ⊢ (dom 𝐴 = ran 𝐵 → ran (𝐴 ∘ 𝐵) = ran 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmcoeq 5992 | . 2 ⊢ (dom ◡𝐵 = ran ◡𝐴 → dom (◡𝐵 ∘ ◡𝐴) = dom ◡𝐴) | |
2 | eqcom 2742 | . . 3 ⊢ (dom 𝐴 = ran 𝐵 ↔ ran 𝐵 = dom 𝐴) | |
3 | df-rn 5700 | . . . 4 ⊢ ran 𝐵 = dom ◡𝐵 | |
4 | dfdm4 5909 | . . . 4 ⊢ dom 𝐴 = ran ◡𝐴 | |
5 | 3, 4 | eqeq12i 2753 | . . 3 ⊢ (ran 𝐵 = dom 𝐴 ↔ dom ◡𝐵 = ran ◡𝐴) |
6 | 2, 5 | bitri 275 | . 2 ⊢ (dom 𝐴 = ran 𝐵 ↔ dom ◡𝐵 = ran ◡𝐴) |
7 | df-rn 5700 | . . . 4 ⊢ ran (𝐴 ∘ 𝐵) = dom ◡(𝐴 ∘ 𝐵) | |
8 | cnvco 5899 | . . . . 5 ⊢ ◡(𝐴 ∘ 𝐵) = (◡𝐵 ∘ ◡𝐴) | |
9 | 8 | dmeqi 5918 | . . . 4 ⊢ dom ◡(𝐴 ∘ 𝐵) = dom (◡𝐵 ∘ ◡𝐴) |
10 | 7, 9 | eqtri 2763 | . . 3 ⊢ ran (𝐴 ∘ 𝐵) = dom (◡𝐵 ∘ ◡𝐴) |
11 | df-rn 5700 | . . 3 ⊢ ran 𝐴 = dom ◡𝐴 | |
12 | 10, 11 | eqeq12i 2753 | . 2 ⊢ (ran (𝐴 ∘ 𝐵) = ran 𝐴 ↔ dom (◡𝐵 ∘ ◡𝐴) = dom ◡𝐴) |
13 | 1, 6, 12 | 3imtr4i 292 | 1 ⊢ (dom 𝐴 = ran 𝐵 → ran (𝐴 ∘ 𝐵) = ran 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ◡ccnv 5688 dom cdm 5689 ran crn 5690 ∘ ccom 5693 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 |
This theorem is referenced by: dfdm2 6303 algextdeglem4 33726 |
Copyright terms: Public domain | W3C validator |