MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rncoeq Structured version   Visualization version   GIF version

Theorem rncoeq 5916
Description: Range of a composition. (Contributed by NM, 19-Mar-1998.)
Assertion
Ref Expression
rncoeq (dom 𝐴 = ran 𝐵 → ran (𝐴𝐵) = ran 𝐴)

Proof of Theorem rncoeq
StepHypRef Expression
1 dmcoeq 5915 . 2 (dom 𝐵 = ran 𝐴 → dom (𝐵𝐴) = dom 𝐴)
2 eqcom 2738 . . 3 (dom 𝐴 = ran 𝐵 ↔ ran 𝐵 = dom 𝐴)
3 df-rn 5622 . . . 4 ran 𝐵 = dom 𝐵
4 dfdm4 5830 . . . 4 dom 𝐴 = ran 𝐴
53, 4eqeq12i 2749 . . 3 (ran 𝐵 = dom 𝐴 ↔ dom 𝐵 = ran 𝐴)
62, 5bitri 275 . 2 (dom 𝐴 = ran 𝐵 ↔ dom 𝐵 = ran 𝐴)
7 df-rn 5622 . . . 4 ran (𝐴𝐵) = dom (𝐴𝐵)
8 cnvco 5820 . . . . 5 (𝐴𝐵) = (𝐵𝐴)
98dmeqi 5839 . . . 4 dom (𝐴𝐵) = dom (𝐵𝐴)
107, 9eqtri 2754 . . 3 ran (𝐴𝐵) = dom (𝐵𝐴)
11 df-rn 5622 . . 3 ran 𝐴 = dom 𝐴
1210, 11eqeq12i 2749 . 2 (ran (𝐴𝐵) = ran 𝐴 ↔ dom (𝐵𝐴) = dom 𝐴)
131, 6, 123imtr4i 292 1 (dom 𝐴 = ran 𝐵 → ran (𝐴𝐵) = ran 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  ccnv 5610  dom cdm 5611  ran crn 5612  ccom 5615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-br 5087  df-opab 5149  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622
This theorem is referenced by:  dfdm2  6223  esplysply  33584  algextdeglem4  33725
  Copyright terms: Public domain W3C validator