| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnin | Structured version Visualization version GIF version | ||
| Description: The range of an intersection belongs the intersection of ranges. Theorem 9 of [Suppes] p. 60. (Contributed by NM, 15-Sep-2004.) |
| Ref | Expression |
|---|---|
| rnin | ⊢ ran (𝐴 ∩ 𝐵) ⊆ (ran 𝐴 ∩ ran 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvin 6117 | . . . 4 ⊢ ◡(𝐴 ∩ 𝐵) = (◡𝐴 ∩ ◡𝐵) | |
| 2 | 1 | dmeqi 5868 | . . 3 ⊢ dom ◡(𝐴 ∩ 𝐵) = dom (◡𝐴 ∩ ◡𝐵) |
| 3 | dmin 5875 | . . 3 ⊢ dom (◡𝐴 ∩ ◡𝐵) ⊆ (dom ◡𝐴 ∩ dom ◡𝐵) | |
| 4 | 2, 3 | eqsstri 3993 | . 2 ⊢ dom ◡(𝐴 ∩ 𝐵) ⊆ (dom ◡𝐴 ∩ dom ◡𝐵) |
| 5 | df-rn 5649 | . 2 ⊢ ran (𝐴 ∩ 𝐵) = dom ◡(𝐴 ∩ 𝐵) | |
| 6 | df-rn 5649 | . . 3 ⊢ ran 𝐴 = dom ◡𝐴 | |
| 7 | df-rn 5649 | . . 3 ⊢ ran 𝐵 = dom ◡𝐵 | |
| 8 | 6, 7 | ineq12i 4181 | . 2 ⊢ (ran 𝐴 ∩ ran 𝐵) = (dom ◡𝐴 ∩ dom ◡𝐵) |
| 9 | 4, 5, 8 | 3sstr4i 3998 | 1 ⊢ ran (𝐴 ∩ 𝐵) ⊆ (ran 𝐴 ∩ ran 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ∩ cin 3913 ⊆ wss 3914 ◡ccnv 5637 dom cdm 5638 ran crn 5639 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-cnv 5646 df-dm 5648 df-rn 5649 |
| This theorem is referenced by: inimass 6128 restutop 24125 |
| Copyright terms: Public domain | W3C validator |