MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnin Structured version   Visualization version   GIF version

Theorem rnin 6095
Description: The range of an intersection belongs the intersection of ranges. Theorem 9 of [Suppes] p. 60. (Contributed by NM, 15-Sep-2004.)
Assertion
Ref Expression
rnin ran (𝐴𝐵) ⊆ (ran 𝐴 ∩ ran 𝐵)

Proof of Theorem rnin
StepHypRef Expression
1 cnvin 6093 . . . 4 (𝐴𝐵) = (𝐴𝐵)
21dmeqi 5847 . . 3 dom (𝐴𝐵) = dom (𝐴𝐵)
3 dmin 5854 . . 3 dom (𝐴𝐵) ⊆ (dom 𝐴 ∩ dom 𝐵)
42, 3eqsstri 3982 . 2 dom (𝐴𝐵) ⊆ (dom 𝐴 ∩ dom 𝐵)
5 df-rn 5630 . 2 ran (𝐴𝐵) = dom (𝐴𝐵)
6 df-rn 5630 . . 3 ran 𝐴 = dom 𝐴
7 df-rn 5630 . . 3 ran 𝐵 = dom 𝐵
86, 7ineq12i 4169 . 2 (ran 𝐴 ∩ ran 𝐵) = (dom 𝐴 ∩ dom 𝐵)
94, 5, 83sstr4i 3987 1 ran (𝐴𝐵) ⊆ (ran 𝐴 ∩ ran 𝐵)
Colors of variables: wff setvar class
Syntax hints:  cin 3902  wss 3903  ccnv 5618  dom cdm 5619  ran crn 5620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5093  df-opab 5155  df-xp 5625  df-rel 5626  df-cnv 5627  df-dm 5629  df-rn 5630
This theorem is referenced by:  inimass  6104  restutop  24123
  Copyright terms: Public domain W3C validator