Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rnin | Structured version Visualization version GIF version |
Description: The range of an intersection belongs the intersection of ranges. Theorem 9 of [Suppes] p. 60. (Contributed by NM, 15-Sep-2004.) |
Ref | Expression |
---|---|
rnin | ⊢ ran (𝐴 ∩ 𝐵) ⊆ (ran 𝐴 ∩ ran 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvin 6043 | . . . 4 ⊢ ◡(𝐴 ∩ 𝐵) = (◡𝐴 ∩ ◡𝐵) | |
2 | 1 | dmeqi 5808 | . . 3 ⊢ dom ◡(𝐴 ∩ 𝐵) = dom (◡𝐴 ∩ ◡𝐵) |
3 | dmin 5815 | . . 3 ⊢ dom (◡𝐴 ∩ ◡𝐵) ⊆ (dom ◡𝐴 ∩ dom ◡𝐵) | |
4 | 2, 3 | eqsstri 3956 | . 2 ⊢ dom ◡(𝐴 ∩ 𝐵) ⊆ (dom ◡𝐴 ∩ dom ◡𝐵) |
5 | df-rn 5597 | . 2 ⊢ ran (𝐴 ∩ 𝐵) = dom ◡(𝐴 ∩ 𝐵) | |
6 | df-rn 5597 | . . 3 ⊢ ran 𝐴 = dom ◡𝐴 | |
7 | df-rn 5597 | . . 3 ⊢ ran 𝐵 = dom ◡𝐵 | |
8 | 6, 7 | ineq12i 4146 | . 2 ⊢ (ran 𝐴 ∩ ran 𝐵) = (dom ◡𝐴 ∩ dom ◡𝐵) |
9 | 4, 5, 8 | 3sstr4i 3965 | 1 ⊢ ran (𝐴 ∩ 𝐵) ⊆ (ran 𝐴 ∩ ran 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ∩ cin 3887 ⊆ wss 3888 ◡ccnv 5585 dom cdm 5586 ran crn 5587 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3433 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4259 df-if 4462 df-sn 4564 df-pr 4566 df-op 4570 df-br 5076 df-opab 5138 df-xp 5592 df-rel 5593 df-cnv 5594 df-dm 5596 df-rn 5597 |
This theorem is referenced by: inimass 6053 restutop 23378 |
Copyright terms: Public domain | W3C validator |