MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnin Structured version   Visualization version   GIF version

Theorem rnin 6103
Description: The range of an intersection belongs the intersection of ranges. Theorem 9 of [Suppes] p. 60. (Contributed by NM, 15-Sep-2004.)
Assertion
Ref Expression
rnin ran (𝐴𝐵) ⊆ (ran 𝐴 ∩ ran 𝐵)

Proof of Theorem rnin
StepHypRef Expression
1 cnvin 6101 . . . 4 (𝐴𝐵) = (𝐴𝐵)
21dmeqi 5864 . . 3 dom (𝐴𝐵) = dom (𝐴𝐵)
3 dmin 5871 . . 3 dom (𝐴𝐵) ⊆ (dom 𝐴 ∩ dom 𝐵)
42, 3eqsstri 3982 . 2 dom (𝐴𝐵) ⊆ (dom 𝐴 ∩ dom 𝐵)
5 df-rn 5648 . 2 ran (𝐴𝐵) = dom (𝐴𝐵)
6 df-rn 5648 . . 3 ran 𝐴 = dom 𝐴
7 df-rn 5648 . . 3 ran 𝐵 = dom 𝐵
86, 7ineq12i 4174 . 2 (ran 𝐴 ∩ ran 𝐵) = (dom 𝐴 ∩ dom 𝐵)
94, 5, 83sstr4i 3991 1 ran (𝐴𝐵) ⊆ (ran 𝐴 ∩ ran 𝐵)
Colors of variables: wff setvar class
Syntax hints:  cin 3913  wss 3914  ccnv 5636  dom cdm 5637  ran crn 5638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5260  ax-nul 5267  ax-pr 5388
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-rab 3407  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4287  df-if 4491  df-sn 4591  df-pr 4593  df-op 4597  df-br 5110  df-opab 5172  df-xp 5643  df-rel 5644  df-cnv 5645  df-dm 5647  df-rn 5648
This theorem is referenced by:  inimass  6111  restutop  23612
  Copyright terms: Public domain W3C validator