MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnin Structured version   Visualization version   GIF version

Theorem rnin 6178
Description: The range of an intersection belongs the intersection of ranges. Theorem 9 of [Suppes] p. 60. (Contributed by NM, 15-Sep-2004.)
Assertion
Ref Expression
rnin ran (𝐴𝐵) ⊆ (ran 𝐴 ∩ ran 𝐵)

Proof of Theorem rnin
StepHypRef Expression
1 cnvin 6176 . . . 4 (𝐴𝐵) = (𝐴𝐵)
21dmeqi 5929 . . 3 dom (𝐴𝐵) = dom (𝐴𝐵)
3 dmin 5936 . . 3 dom (𝐴𝐵) ⊆ (dom 𝐴 ∩ dom 𝐵)
42, 3eqsstri 4043 . 2 dom (𝐴𝐵) ⊆ (dom 𝐴 ∩ dom 𝐵)
5 df-rn 5711 . 2 ran (𝐴𝐵) = dom (𝐴𝐵)
6 df-rn 5711 . . 3 ran 𝐴 = dom 𝐴
7 df-rn 5711 . . 3 ran 𝐵 = dom 𝐵
86, 7ineq12i 4239 . 2 (ran 𝐴 ∩ ran 𝐵) = (dom 𝐴 ∩ dom 𝐵)
94, 5, 83sstr4i 4052 1 ran (𝐴𝐵) ⊆ (ran 𝐴 ∩ ran 𝐵)
Colors of variables: wff setvar class
Syntax hints:  cin 3975  wss 3976  ccnv 5699  dom cdm 5700  ran crn 5701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-cnv 5708  df-dm 5710  df-rn 5711
This theorem is referenced by:  inimass  6186  restutop  24267
  Copyright terms: Public domain W3C validator