Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eldm2 | Structured version Visualization version GIF version |
Description: Membership in a domain. Theorem 4 of [Suppes] p. 59. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
eldm.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
eldm2 | ⊢ (𝐴 ∈ dom 𝐵 ↔ ∃𝑦〈𝐴, 𝑦〉 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldm.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | eldm2g 5808 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ dom 𝐵 ↔ ∃𝑦〈𝐴, 𝑦〉 ∈ 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ dom 𝐵 ↔ ∃𝑦〈𝐴, 𝑦〉 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∃wex 1782 ∈ wcel 2106 Vcvv 3432 〈cop 4567 dom cdm 5589 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-dm 5599 |
This theorem is referenced by: dmss 5811 opeldm 5816 dmin 5820 dmiun 5822 dmuni 5823 dm0 5829 reldm0 5837 dmrnssfld 5879 dmcoss 5880 dmcosseq 5882 dmres 5913 iss 5943 dmsnopg 6116 relssdmrn 6172 funssres 6478 dmfco 6864 fiun 7785 f1iun 7786 frrlem8 8109 frrlem10 8111 wfrlem12OLD 8151 axdc3lem2 10207 fnpr2ob 17269 gsum2d2 19575 cnlnssadj 30442 prsdm 31864 eldm3 33728 dfdm5 33747 iss2 36479 |
Copyright terms: Public domain | W3C validator |