| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eldm2 | Structured version Visualization version GIF version | ||
| Description: Membership in a domain. Theorem 4 of [Suppes] p. 59. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| eldm.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| eldm2 | ⊢ (𝐴 ∈ dom 𝐵 ↔ ∃𝑦〈𝐴, 𝑦〉 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldm.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | eldm2g 5842 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ dom 𝐵 ↔ ∃𝑦〈𝐴, 𝑦〉 ∈ 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ dom 𝐵 ↔ ∃𝑦〈𝐴, 𝑦〉 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∃wex 1779 ∈ wcel 2109 Vcvv 3436 〈cop 4583 dom cdm 5619 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-dm 5629 |
| This theorem is referenced by: dmss 5845 opeldm 5850 dmin 5854 dmiun 5856 dmuni 5857 dm0 5863 reldm0 5870 dmrnssfld 5915 dmcoss 5916 dmcossOLD 5917 dmcosseq 5919 dmcosseqOLD 5920 dmcosseqOLDOLD 5921 dmres 5963 iss 5986 dmsnopg 6162 funssres 6526 dmfco 6919 fiun 7878 f1iun 7879 frrlem8 8226 frrlem10 8228 axdc3lem2 10345 fnpr2ob 17462 gsum2d2 19853 cnlnssadj 32028 prsdm 33897 eldm3 35754 dfdm5 35766 iss2 38332 |
| Copyright terms: Public domain | W3C validator |