MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eldm2 Structured version   Visualization version   GIF version

Theorem eldm2 5926
Description: Membership in a domain. Theorem 4 of [Suppes] p. 59. (Contributed by NM, 1-Aug-1994.)
Hypothesis
Ref Expression
eldm.1 𝐴 ∈ V
Assertion
Ref Expression
eldm2 (𝐴 ∈ dom 𝐵 ↔ ∃𝑦𝐴, 𝑦⟩ ∈ 𝐵)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵

Proof of Theorem eldm2
StepHypRef Expression
1 eldm.1 . 2 𝐴 ∈ V
2 eldm2g 5924 . 2 (𝐴 ∈ V → (𝐴 ∈ dom 𝐵 ↔ ∃𝑦𝐴, 𝑦⟩ ∈ 𝐵))
31, 2ax-mp 5 1 (𝐴 ∈ dom 𝐵 ↔ ∃𝑦𝐴, 𝑦⟩ ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wex 1777  wcel 2108  Vcvv 3488  cop 4654  dom cdm 5700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-dm 5710
This theorem is referenced by:  dmss  5927  opeldm  5932  dmin  5936  dmiun  5938  dmuni  5939  dm0  5945  reldm0  5952  dmrnssfld  5996  dmcoss  5997  dmcosseq  5999  dmcosseqOLD  6000  dmres  6041  iss  6064  dmsnopg  6244  relssdmrnOLD  6300  funssres  6622  dmfco  7018  fiun  7983  f1iun  7984  frrlem8  8334  frrlem10  8336  wfrlem12OLD  8376  axdc3lem2  10520  fnpr2ob  17618  gsum2d2  20016  cnlnssadj  32112  prsdm  33860  eldm3  35723  dfdm5  35736  iss2  38300
  Copyright terms: Public domain W3C validator