MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eldm2 Structured version   Visualization version   GIF version

Theorem eldm2 5840
Description: Membership in a domain. Theorem 4 of [Suppes] p. 59. (Contributed by NM, 1-Aug-1994.)
Hypothesis
Ref Expression
eldm.1 𝐴 ∈ V
Assertion
Ref Expression
eldm2 (𝐴 ∈ dom 𝐵 ↔ ∃𝑦𝐴, 𝑦⟩ ∈ 𝐵)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵

Proof of Theorem eldm2
StepHypRef Expression
1 eldm.1 . 2 𝐴 ∈ V
2 eldm2g 5838 . 2 (𝐴 ∈ V → (𝐴 ∈ dom 𝐵 ↔ ∃𝑦𝐴, 𝑦⟩ ∈ 𝐵))
31, 2ax-mp 5 1 (𝐴 ∈ dom 𝐵 ↔ ∃𝑦𝐴, 𝑦⟩ ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wex 1780  wcel 2111  Vcvv 3436  cop 4579  dom cdm 5614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-dm 5624
This theorem is referenced by:  dmss  5841  opeldm  5846  dmin  5850  dmiun  5852  dmuni  5853  dm0  5859  reldm0  5867  dmrnssfld  5912  dmcoss  5913  dmcossOLD  5914  dmcosseq  5916  dmcosseqOLD  5917  dmcosseqOLDOLD  5918  dmres  5960  iss  5983  dmsnopg  6160  funssres  6525  dmfco  6918  fiun  7875  f1iun  7876  frrlem8  8223  frrlem10  8225  axdc3lem2  10342  fnpr2ob  17462  gsum2d2  19886  cnlnssadj  32060  prsdm  33927  eldm3  35805  dfdm5  35817  iss2  38375
  Copyright terms: Public domain W3C validator