Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hauseqcn Structured version   Visualization version   GIF version

Theorem hauseqcn 33888
Description: In a Hausdorff topology, two continuous functions which agree on a dense set agree everywhere. (Contributed by Thierry Arnoux, 28-Dec-2017.)
Hypotheses
Ref Expression
hauseqcn.x 𝑋 = 𝐽
hauseqcn.k (𝜑𝐾 ∈ Haus)
hauseqcn.f (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
hauseqcn.g (𝜑𝐺 ∈ (𝐽 Cn 𝐾))
hauseqcn.e (𝜑 → (𝐹𝐴) = (𝐺𝐴))
hauseqcn.a (𝜑𝐴𝑋)
hauseqcn.c (𝜑 → ((cls‘𝐽)‘𝐴) = 𝑋)
Assertion
Ref Expression
hauseqcn (𝜑𝐹 = 𝐺)

Proof of Theorem hauseqcn
StepHypRef Expression
1 hauseqcn.x . . 3 𝑋 = 𝐽
2 hauseqcn.f . . . . . 6 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
3 cntop1 23127 . . . . . 6 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)
42, 3syl 17 . . . . 5 (𝜑𝐽 ∈ Top)
5 dmin 5875 . . . . . 6 dom (𝐹𝐺) ⊆ (dom 𝐹 ∩ dom 𝐺)
6 eqid 2729 . . . . . . . . . 10 𝐽 = 𝐽
7 eqid 2729 . . . . . . . . . 10 𝐾 = 𝐾
86, 7cnf 23133 . . . . . . . . 9 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹: 𝐽 𝐾)
9 fdm 6697 . . . . . . . . 9 (𝐹: 𝐽 𝐾 → dom 𝐹 = 𝐽)
102, 8, 93syl 18 . . . . . . . 8 (𝜑 → dom 𝐹 = 𝐽)
11 hauseqcn.g . . . . . . . . 9 (𝜑𝐺 ∈ (𝐽 Cn 𝐾))
126, 7cnf 23133 . . . . . . . . 9 (𝐺 ∈ (𝐽 Cn 𝐾) → 𝐺: 𝐽 𝐾)
13 fdm 6697 . . . . . . . . 9 (𝐺: 𝐽 𝐾 → dom 𝐺 = 𝐽)
1411, 12, 133syl 18 . . . . . . . 8 (𝜑 → dom 𝐺 = 𝐽)
1510, 14ineq12d 4184 . . . . . . 7 (𝜑 → (dom 𝐹 ∩ dom 𝐺) = ( 𝐽 𝐽))
16 inidm 4190 . . . . . . 7 ( 𝐽 𝐽) = 𝐽
1715, 16eqtrdi 2780 . . . . . 6 (𝜑 → (dom 𝐹 ∩ dom 𝐺) = 𝐽)
185, 17sseqtrid 3989 . . . . 5 (𝜑 → dom (𝐹𝐺) ⊆ 𝐽)
19 hauseqcn.e . . . . . 6 (𝜑 → (𝐹𝐴) = (𝐺𝐴))
20 ffn 6688 . . . . . . . 8 (𝐹: 𝐽 𝐾𝐹 Fn 𝐽)
212, 8, 203syl 18 . . . . . . 7 (𝜑𝐹 Fn 𝐽)
22 ffn 6688 . . . . . . . 8 (𝐺: 𝐽 𝐾𝐺 Fn 𝐽)
2311, 12, 223syl 18 . . . . . . 7 (𝜑𝐺 Fn 𝐽)
24 hauseqcn.a . . . . . . . 8 (𝜑𝐴𝑋)
2524, 1sseqtrdi 3987 . . . . . . 7 (𝜑𝐴 𝐽)
26 fnreseql 7020 . . . . . . 7 ((𝐹 Fn 𝐽𝐺 Fn 𝐽𝐴 𝐽) → ((𝐹𝐴) = (𝐺𝐴) ↔ 𝐴 ⊆ dom (𝐹𝐺)))
2721, 23, 25, 26syl3anc 1373 . . . . . 6 (𝜑 → ((𝐹𝐴) = (𝐺𝐴) ↔ 𝐴 ⊆ dom (𝐹𝐺)))
2819, 27mpbid 232 . . . . 5 (𝜑𝐴 ⊆ dom (𝐹𝐺))
296clsss 22941 . . . . 5 ((𝐽 ∈ Top ∧ dom (𝐹𝐺) ⊆ 𝐽𝐴 ⊆ dom (𝐹𝐺)) → ((cls‘𝐽)‘𝐴) ⊆ ((cls‘𝐽)‘dom (𝐹𝐺)))
304, 18, 28, 29syl3anc 1373 . . . 4 (𝜑 → ((cls‘𝐽)‘𝐴) ⊆ ((cls‘𝐽)‘dom (𝐹𝐺)))
31 hauseqcn.c . . . 4 (𝜑 → ((cls‘𝐽)‘𝐴) = 𝑋)
32 hauseqcn.k . . . . . 6 (𝜑𝐾 ∈ Haus)
3332, 2, 11hauseqlcld 23533 . . . . 5 (𝜑 → dom (𝐹𝐺) ∈ (Clsd‘𝐽))
34 cldcls 22929 . . . . 5 (dom (𝐹𝐺) ∈ (Clsd‘𝐽) → ((cls‘𝐽)‘dom (𝐹𝐺)) = dom (𝐹𝐺))
3533, 34syl 17 . . . 4 (𝜑 → ((cls‘𝐽)‘dom (𝐹𝐺)) = dom (𝐹𝐺))
3630, 31, 353sstr3d 4001 . . 3 (𝜑𝑋 ⊆ dom (𝐹𝐺))
371, 36eqsstrrid 3986 . 2 (𝜑 𝐽 ⊆ dom (𝐹𝐺))
38 fneqeql2 7019 . . 3 ((𝐹 Fn 𝐽𝐺 Fn 𝐽) → (𝐹 = 𝐺 𝐽 ⊆ dom (𝐹𝐺)))
3921, 23, 38syl2anc 584 . 2 (𝜑 → (𝐹 = 𝐺 𝐽 ⊆ dom (𝐹𝐺)))
4037, 39mpbird 257 1 (𝜑𝐹 = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  cin 3913  wss 3914   cuni 4871  dom cdm 5638  cres 5640   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387  Topctop 22780  Clsdccld 22903  clsccl 22905   Cn ccn 23111  Hauscha 23195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-map 8801  df-topgen 17406  df-top 22781  df-topon 22798  df-bases 22833  df-cld 22906  df-cls 22908  df-cn 23114  df-haus 23202  df-tx 23449
This theorem is referenced by:  rrhre  34011
  Copyright terms: Public domain W3C validator