Proof of Theorem hauseqcn
Step | Hyp | Ref
| Expression |
1 | | hauseqcn.x |
. . 3
⊢ 𝑋 = ∪
𝐽 |
2 | | hauseqcn.f |
. . . . . 6
⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) |
3 | | cntop1 22391 |
. . . . . 6
⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top) |
4 | 2, 3 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝐽 ∈ Top) |
5 | | dmin 5820 |
. . . . . 6
⊢ dom
(𝐹 ∩ 𝐺) ⊆ (dom 𝐹 ∩ dom 𝐺) |
6 | | eqid 2738 |
. . . . . . . . . 10
⊢ ∪ 𝐽 =
∪ 𝐽 |
7 | | eqid 2738 |
. . . . . . . . . 10
⊢ ∪ 𝐾 =
∪ 𝐾 |
8 | 6, 7 | cnf 22397 |
. . . . . . . . 9
⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:∪ 𝐽⟶∪ 𝐾) |
9 | | fdm 6609 |
. . . . . . . . 9
⊢ (𝐹:∪
𝐽⟶∪ 𝐾
→ dom 𝐹 = ∪ 𝐽) |
10 | 2, 8, 9 | 3syl 18 |
. . . . . . . 8
⊢ (𝜑 → dom 𝐹 = ∪ 𝐽) |
11 | | hauseqcn.g |
. . . . . . . . 9
⊢ (𝜑 → 𝐺 ∈ (𝐽 Cn 𝐾)) |
12 | 6, 7 | cnf 22397 |
. . . . . . . . 9
⊢ (𝐺 ∈ (𝐽 Cn 𝐾) → 𝐺:∪ 𝐽⟶∪ 𝐾) |
13 | | fdm 6609 |
. . . . . . . . 9
⊢ (𝐺:∪
𝐽⟶∪ 𝐾
→ dom 𝐺 = ∪ 𝐽) |
14 | 11, 12, 13 | 3syl 18 |
. . . . . . . 8
⊢ (𝜑 → dom 𝐺 = ∪ 𝐽) |
15 | 10, 14 | ineq12d 4147 |
. . . . . . 7
⊢ (𝜑 → (dom 𝐹 ∩ dom 𝐺) = (∪ 𝐽 ∩ ∪ 𝐽)) |
16 | | inidm 4152 |
. . . . . . 7
⊢ (∪ 𝐽
∩ ∪ 𝐽) = ∪ 𝐽 |
17 | 15, 16 | eqtrdi 2794 |
. . . . . 6
⊢ (𝜑 → (dom 𝐹 ∩ dom 𝐺) = ∪ 𝐽) |
18 | 5, 17 | sseqtrid 3973 |
. . . . 5
⊢ (𝜑 → dom (𝐹 ∩ 𝐺) ⊆ ∪ 𝐽) |
19 | | hauseqcn.e |
. . . . . 6
⊢ (𝜑 → (𝐹 ↾ 𝐴) = (𝐺 ↾ 𝐴)) |
20 | | ffn 6600 |
. . . . . . . 8
⊢ (𝐹:∪
𝐽⟶∪ 𝐾
→ 𝐹 Fn ∪ 𝐽) |
21 | 2, 8, 20 | 3syl 18 |
. . . . . . 7
⊢ (𝜑 → 𝐹 Fn ∪ 𝐽) |
22 | | ffn 6600 |
. . . . . . . 8
⊢ (𝐺:∪
𝐽⟶∪ 𝐾
→ 𝐺 Fn ∪ 𝐽) |
23 | 11, 12, 22 | 3syl 18 |
. . . . . . 7
⊢ (𝜑 → 𝐺 Fn ∪ 𝐽) |
24 | | hauseqcn.a |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ⊆ 𝑋) |
25 | 24, 1 | sseqtrdi 3971 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ⊆ ∪ 𝐽) |
26 | | fnreseql 6925 |
. . . . . . 7
⊢ ((𝐹 Fn ∪
𝐽 ∧ 𝐺 Fn ∪ 𝐽 ∧ 𝐴 ⊆ ∪ 𝐽) → ((𝐹 ↾ 𝐴) = (𝐺 ↾ 𝐴) ↔ 𝐴 ⊆ dom (𝐹 ∩ 𝐺))) |
27 | 21, 23, 25, 26 | syl3anc 1370 |
. . . . . 6
⊢ (𝜑 → ((𝐹 ↾ 𝐴) = (𝐺 ↾ 𝐴) ↔ 𝐴 ⊆ dom (𝐹 ∩ 𝐺))) |
28 | 19, 27 | mpbid 231 |
. . . . 5
⊢ (𝜑 → 𝐴 ⊆ dom (𝐹 ∩ 𝐺)) |
29 | 6 | clsss 22205 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ dom (𝐹 ∩ 𝐺) ⊆ ∪ 𝐽 ∧ 𝐴 ⊆ dom (𝐹 ∩ 𝐺)) → ((cls‘𝐽)‘𝐴) ⊆ ((cls‘𝐽)‘dom (𝐹 ∩ 𝐺))) |
30 | 4, 18, 28, 29 | syl3anc 1370 |
. . . 4
⊢ (𝜑 → ((cls‘𝐽)‘𝐴) ⊆ ((cls‘𝐽)‘dom (𝐹 ∩ 𝐺))) |
31 | | hauseqcn.c |
. . . 4
⊢ (𝜑 → ((cls‘𝐽)‘𝐴) = 𝑋) |
32 | | hauseqcn.k |
. . . . . 6
⊢ (𝜑 → 𝐾 ∈ Haus) |
33 | 32, 2, 11 | hauseqlcld 22797 |
. . . . 5
⊢ (𝜑 → dom (𝐹 ∩ 𝐺) ∈ (Clsd‘𝐽)) |
34 | | cldcls 22193 |
. . . . 5
⊢ (dom
(𝐹 ∩ 𝐺) ∈ (Clsd‘𝐽) → ((cls‘𝐽)‘dom (𝐹 ∩ 𝐺)) = dom (𝐹 ∩ 𝐺)) |
35 | 33, 34 | syl 17 |
. . . 4
⊢ (𝜑 → ((cls‘𝐽)‘dom (𝐹 ∩ 𝐺)) = dom (𝐹 ∩ 𝐺)) |
36 | 30, 31, 35 | 3sstr3d 3967 |
. . 3
⊢ (𝜑 → 𝑋 ⊆ dom (𝐹 ∩ 𝐺)) |
37 | 1, 36 | eqsstrrid 3970 |
. 2
⊢ (𝜑 → ∪ 𝐽
⊆ dom (𝐹 ∩ 𝐺)) |
38 | | fneqeql2 6924 |
. . 3
⊢ ((𝐹 Fn ∪
𝐽 ∧ 𝐺 Fn ∪ 𝐽) → (𝐹 = 𝐺 ↔ ∪ 𝐽 ⊆ dom (𝐹 ∩ 𝐺))) |
39 | 21, 23, 38 | syl2anc 584 |
. 2
⊢ (𝜑 → (𝐹 = 𝐺 ↔ ∪ 𝐽 ⊆ dom (𝐹 ∩ 𝐺))) |
40 | 37, 39 | mpbird 256 |
1
⊢ (𝜑 → 𝐹 = 𝐺) |