| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > psssdm2 | Structured version Visualization version GIF version | ||
| Description: Field of a subposet. (Contributed by Mario Carneiro, 9-Sep-2015.) |
| Ref | Expression |
|---|---|
| psssdm.1 | ⊢ 𝑋 = dom 𝑅 |
| Ref | Expression |
|---|---|
| psssdm2 | ⊢ (𝑅 ∈ PosetRel → dom (𝑅 ∩ (𝐴 × 𝐴)) = (𝑋 ∩ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmin 5846 | . . . 4 ⊢ dom (𝑅 ∩ (𝐴 × 𝐴)) ⊆ (dom 𝑅 ∩ dom (𝐴 × 𝐴)) | |
| 2 | psssdm.1 | . . . . . 6 ⊢ 𝑋 = dom 𝑅 | |
| 3 | 2 | eqcomi 2740 | . . . . 5 ⊢ dom 𝑅 = 𝑋 |
| 4 | dmxpid 5865 | . . . . 5 ⊢ dom (𝐴 × 𝐴) = 𝐴 | |
| 5 | 3, 4 | ineq12i 4163 | . . . 4 ⊢ (dom 𝑅 ∩ dom (𝐴 × 𝐴)) = (𝑋 ∩ 𝐴) |
| 6 | 1, 5 | sseqtri 3978 | . . 3 ⊢ dom (𝑅 ∩ (𝐴 × 𝐴)) ⊆ (𝑋 ∩ 𝐴) |
| 7 | 6 | a1i 11 | . 2 ⊢ (𝑅 ∈ PosetRel → dom (𝑅 ∩ (𝐴 × 𝐴)) ⊆ (𝑋 ∩ 𝐴)) |
| 8 | simpr 484 | . . . . 5 ⊢ ((𝑅 ∈ PosetRel ∧ 𝑥 ∈ (𝑋 ∩ 𝐴)) → 𝑥 ∈ (𝑋 ∩ 𝐴)) | |
| 9 | 8 | elin2d 4150 | . . . 4 ⊢ ((𝑅 ∈ PosetRel ∧ 𝑥 ∈ (𝑋 ∩ 𝐴)) → 𝑥 ∈ 𝐴) |
| 10 | elinel1 4146 | . . . . 5 ⊢ (𝑥 ∈ (𝑋 ∩ 𝐴) → 𝑥 ∈ 𝑋) | |
| 11 | 2 | psref 18475 | . . . . 5 ⊢ ((𝑅 ∈ PosetRel ∧ 𝑥 ∈ 𝑋) → 𝑥𝑅𝑥) |
| 12 | 10, 11 | sylan2 593 | . . . 4 ⊢ ((𝑅 ∈ PosetRel ∧ 𝑥 ∈ (𝑋 ∩ 𝐴)) → 𝑥𝑅𝑥) |
| 13 | brinxp2 5689 | . . . 4 ⊢ (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥 ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ 𝑥𝑅𝑥)) | |
| 14 | 9, 9, 12, 13 | syl21anbrc 1345 | . . 3 ⊢ ((𝑅 ∈ PosetRel ∧ 𝑥 ∈ (𝑋 ∩ 𝐴)) → 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥) |
| 15 | vex 3440 | . . . 4 ⊢ 𝑥 ∈ V | |
| 16 | 15, 15 | breldm 5843 | . . 3 ⊢ (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥 → 𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴))) |
| 17 | 14, 16 | syl 17 | . 2 ⊢ ((𝑅 ∈ PosetRel ∧ 𝑥 ∈ (𝑋 ∩ 𝐴)) → 𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴))) |
| 18 | 7, 17 | eqelssd 3951 | 1 ⊢ (𝑅 ∈ PosetRel → dom (𝑅 ∩ (𝐴 × 𝐴)) = (𝑋 ∩ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∩ cin 3896 ⊆ wss 3897 class class class wbr 5086 × cxp 5609 dom cdm 5611 PosetRelcps 18465 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ps 18467 |
| This theorem is referenced by: psssdm 18483 ordtrest 23112 |
| Copyright terms: Public domain | W3C validator |