| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > psssdm2 | Structured version Visualization version GIF version | ||
| Description: Field of a subposet. (Contributed by Mario Carneiro, 9-Sep-2015.) |
| Ref | Expression |
|---|---|
| psssdm.1 | ⊢ 𝑋 = dom 𝑅 |
| Ref | Expression |
|---|---|
| psssdm2 | ⊢ (𝑅 ∈ PosetRel → dom (𝑅 ∩ (𝐴 × 𝐴)) = (𝑋 ∩ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmin 5891 | . . . 4 ⊢ dom (𝑅 ∩ (𝐴 × 𝐴)) ⊆ (dom 𝑅 ∩ dom (𝐴 × 𝐴)) | |
| 2 | psssdm.1 | . . . . . 6 ⊢ 𝑋 = dom 𝑅 | |
| 3 | 2 | eqcomi 2744 | . . . . 5 ⊢ dom 𝑅 = 𝑋 |
| 4 | dmxpid 5910 | . . . . 5 ⊢ dom (𝐴 × 𝐴) = 𝐴 | |
| 5 | 3, 4 | ineq12i 4193 | . . . 4 ⊢ (dom 𝑅 ∩ dom (𝐴 × 𝐴)) = (𝑋 ∩ 𝐴) |
| 6 | 1, 5 | sseqtri 4007 | . . 3 ⊢ dom (𝑅 ∩ (𝐴 × 𝐴)) ⊆ (𝑋 ∩ 𝐴) |
| 7 | 6 | a1i 11 | . 2 ⊢ (𝑅 ∈ PosetRel → dom (𝑅 ∩ (𝐴 × 𝐴)) ⊆ (𝑋 ∩ 𝐴)) |
| 8 | simpr 484 | . . . . 5 ⊢ ((𝑅 ∈ PosetRel ∧ 𝑥 ∈ (𝑋 ∩ 𝐴)) → 𝑥 ∈ (𝑋 ∩ 𝐴)) | |
| 9 | 8 | elin2d 4180 | . . . 4 ⊢ ((𝑅 ∈ PosetRel ∧ 𝑥 ∈ (𝑋 ∩ 𝐴)) → 𝑥 ∈ 𝐴) |
| 10 | elinel1 4176 | . . . . 5 ⊢ (𝑥 ∈ (𝑋 ∩ 𝐴) → 𝑥 ∈ 𝑋) | |
| 11 | 2 | psref 18584 | . . . . 5 ⊢ ((𝑅 ∈ PosetRel ∧ 𝑥 ∈ 𝑋) → 𝑥𝑅𝑥) |
| 12 | 10, 11 | sylan2 593 | . . . 4 ⊢ ((𝑅 ∈ PosetRel ∧ 𝑥 ∈ (𝑋 ∩ 𝐴)) → 𝑥𝑅𝑥) |
| 13 | brinxp2 5732 | . . . 4 ⊢ (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥 ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ 𝑥𝑅𝑥)) | |
| 14 | 9, 9, 12, 13 | syl21anbrc 1345 | . . 3 ⊢ ((𝑅 ∈ PosetRel ∧ 𝑥 ∈ (𝑋 ∩ 𝐴)) → 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥) |
| 15 | vex 3463 | . . . 4 ⊢ 𝑥 ∈ V | |
| 16 | 15, 15 | breldm 5888 | . . 3 ⊢ (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥 → 𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴))) |
| 17 | 14, 16 | syl 17 | . 2 ⊢ ((𝑅 ∈ PosetRel ∧ 𝑥 ∈ (𝑋 ∩ 𝐴)) → 𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴))) |
| 18 | 7, 17 | eqelssd 3980 | 1 ⊢ (𝑅 ∈ PosetRel → dom (𝑅 ∩ (𝐴 × 𝐴)) = (𝑋 ∩ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∩ cin 3925 ⊆ wss 3926 class class class wbr 5119 × cxp 5652 dom cdm 5654 PosetRelcps 18574 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ps 18576 |
| This theorem is referenced by: psssdm 18592 ordtrest 23140 |
| Copyright terms: Public domain | W3C validator |