MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psssdm2 Structured version   Visualization version   GIF version

Theorem psssdm2 18651
Description: Field of a subposet. (Contributed by Mario Carneiro, 9-Sep-2015.)
Hypothesis
Ref Expression
psssdm.1 𝑋 = dom 𝑅
Assertion
Ref Expression
psssdm2 (𝑅 ∈ PosetRel → dom (𝑅 ∩ (𝐴 × 𝐴)) = (𝑋𝐴))

Proof of Theorem psssdm2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dmin 5936 . . . 4 dom (𝑅 ∩ (𝐴 × 𝐴)) ⊆ (dom 𝑅 ∩ dom (𝐴 × 𝐴))
2 psssdm.1 . . . . . 6 𝑋 = dom 𝑅
32eqcomi 2749 . . . . 5 dom 𝑅 = 𝑋
4 dmxpid 5955 . . . . 5 dom (𝐴 × 𝐴) = 𝐴
53, 4ineq12i 4239 . . . 4 (dom 𝑅 ∩ dom (𝐴 × 𝐴)) = (𝑋𝐴)
61, 5sseqtri 4045 . . 3 dom (𝑅 ∩ (𝐴 × 𝐴)) ⊆ (𝑋𝐴)
76a1i 11 . 2 (𝑅 ∈ PosetRel → dom (𝑅 ∩ (𝐴 × 𝐴)) ⊆ (𝑋𝐴))
8 simpr 484 . . . . 5 ((𝑅 ∈ PosetRel ∧ 𝑥 ∈ (𝑋𝐴)) → 𝑥 ∈ (𝑋𝐴))
98elin2d 4228 . . . 4 ((𝑅 ∈ PosetRel ∧ 𝑥 ∈ (𝑋𝐴)) → 𝑥𝐴)
10 elinel1 4224 . . . . 5 (𝑥 ∈ (𝑋𝐴) → 𝑥𝑋)
112psref 18644 . . . . 5 ((𝑅 ∈ PosetRel ∧ 𝑥𝑋) → 𝑥𝑅𝑥)
1210, 11sylan2 592 . . . 4 ((𝑅 ∈ PosetRel ∧ 𝑥 ∈ (𝑋𝐴)) → 𝑥𝑅𝑥)
13 brinxp2 5777 . . . 4 (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥 ↔ ((𝑥𝐴𝑥𝐴) ∧ 𝑥𝑅𝑥))
149, 9, 12, 13syl21anbrc 1344 . . 3 ((𝑅 ∈ PosetRel ∧ 𝑥 ∈ (𝑋𝐴)) → 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥)
15 vex 3492 . . . 4 𝑥 ∈ V
1615, 15breldm 5933 . . 3 (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)))
1714, 16syl 17 . 2 ((𝑅 ∈ PosetRel ∧ 𝑥 ∈ (𝑋𝐴)) → 𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)))
187, 17eqelssd 4030 1 (𝑅 ∈ PosetRel → dom (𝑅 ∩ (𝐴 × 𝐴)) = (𝑋𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  cin 3975  wss 3976   class class class wbr 5166   × cxp 5698  dom cdm 5700  PosetRelcps 18634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ps 18636
This theorem is referenced by:  psssdm  18652  ordtrest  23231
  Copyright terms: Public domain W3C validator