![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > psssdm2 | Structured version Visualization version GIF version |
Description: Field of a subposet. (Contributed by Mario Carneiro, 9-Sep-2015.) |
Ref | Expression |
---|---|
psssdm.1 | ⊢ 𝑋 = dom 𝑅 |
Ref | Expression |
---|---|
psssdm2 | ⊢ (𝑅 ∈ PosetRel → dom (𝑅 ∩ (𝐴 × 𝐴)) = (𝑋 ∩ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmin 5925 | . . . 4 ⊢ dom (𝑅 ∩ (𝐴 × 𝐴)) ⊆ (dom 𝑅 ∩ dom (𝐴 × 𝐴)) | |
2 | psssdm.1 | . . . . . 6 ⊢ 𝑋 = dom 𝑅 | |
3 | 2 | eqcomi 2744 | . . . . 5 ⊢ dom 𝑅 = 𝑋 |
4 | dmxpid 5944 | . . . . 5 ⊢ dom (𝐴 × 𝐴) = 𝐴 | |
5 | 3, 4 | ineq12i 4226 | . . . 4 ⊢ (dom 𝑅 ∩ dom (𝐴 × 𝐴)) = (𝑋 ∩ 𝐴) |
6 | 1, 5 | sseqtri 4032 | . . 3 ⊢ dom (𝑅 ∩ (𝐴 × 𝐴)) ⊆ (𝑋 ∩ 𝐴) |
7 | 6 | a1i 11 | . 2 ⊢ (𝑅 ∈ PosetRel → dom (𝑅 ∩ (𝐴 × 𝐴)) ⊆ (𝑋 ∩ 𝐴)) |
8 | simpr 484 | . . . . 5 ⊢ ((𝑅 ∈ PosetRel ∧ 𝑥 ∈ (𝑋 ∩ 𝐴)) → 𝑥 ∈ (𝑋 ∩ 𝐴)) | |
9 | 8 | elin2d 4215 | . . . 4 ⊢ ((𝑅 ∈ PosetRel ∧ 𝑥 ∈ (𝑋 ∩ 𝐴)) → 𝑥 ∈ 𝐴) |
10 | elinel1 4211 | . . . . 5 ⊢ (𝑥 ∈ (𝑋 ∩ 𝐴) → 𝑥 ∈ 𝑋) | |
11 | 2 | psref 18632 | . . . . 5 ⊢ ((𝑅 ∈ PosetRel ∧ 𝑥 ∈ 𝑋) → 𝑥𝑅𝑥) |
12 | 10, 11 | sylan2 593 | . . . 4 ⊢ ((𝑅 ∈ PosetRel ∧ 𝑥 ∈ (𝑋 ∩ 𝐴)) → 𝑥𝑅𝑥) |
13 | brinxp2 5766 | . . . 4 ⊢ (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥 ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ 𝑥𝑅𝑥)) | |
14 | 9, 9, 12, 13 | syl21anbrc 1343 | . . 3 ⊢ ((𝑅 ∈ PosetRel ∧ 𝑥 ∈ (𝑋 ∩ 𝐴)) → 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥) |
15 | vex 3482 | . . . 4 ⊢ 𝑥 ∈ V | |
16 | 15, 15 | breldm 5922 | . . 3 ⊢ (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥 → 𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴))) |
17 | 14, 16 | syl 17 | . 2 ⊢ ((𝑅 ∈ PosetRel ∧ 𝑥 ∈ (𝑋 ∩ 𝐴)) → 𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴))) |
18 | 7, 17 | eqelssd 4017 | 1 ⊢ (𝑅 ∈ PosetRel → dom (𝑅 ∩ (𝐴 × 𝐴)) = (𝑋 ∩ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∩ cin 3962 ⊆ wss 3963 class class class wbr 5148 × cxp 5687 dom cdm 5689 PosetRelcps 18622 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ps 18624 |
This theorem is referenced by: psssdm 18640 ordtrest 23226 |
Copyright terms: Public domain | W3C validator |