Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > psssdm2 | Structured version Visualization version GIF version |
Description: Field of a subposet. (Contributed by Mario Carneiro, 9-Sep-2015.) |
Ref | Expression |
---|---|
psssdm.1 | ⊢ 𝑋 = dom 𝑅 |
Ref | Expression |
---|---|
psssdm2 | ⊢ (𝑅 ∈ PosetRel → dom (𝑅 ∩ (𝐴 × 𝐴)) = (𝑋 ∩ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmin 5752 | . . . 4 ⊢ dom (𝑅 ∩ (𝐴 × 𝐴)) ⊆ (dom 𝑅 ∩ dom (𝐴 × 𝐴)) | |
2 | psssdm.1 | . . . . . 6 ⊢ 𝑋 = dom 𝑅 | |
3 | 2 | eqcomi 2768 | . . . . 5 ⊢ dom 𝑅 = 𝑋 |
4 | dmxpid 5772 | . . . . 5 ⊢ dom (𝐴 × 𝐴) = 𝐴 | |
5 | 3, 4 | ineq12i 4116 | . . . 4 ⊢ (dom 𝑅 ∩ dom (𝐴 × 𝐴)) = (𝑋 ∩ 𝐴) |
6 | 1, 5 | sseqtri 3929 | . . 3 ⊢ dom (𝑅 ∩ (𝐴 × 𝐴)) ⊆ (𝑋 ∩ 𝐴) |
7 | 6 | a1i 11 | . 2 ⊢ (𝑅 ∈ PosetRel → dom (𝑅 ∩ (𝐴 × 𝐴)) ⊆ (𝑋 ∩ 𝐴)) |
8 | simpr 489 | . . . . 5 ⊢ ((𝑅 ∈ PosetRel ∧ 𝑥 ∈ (𝑋 ∩ 𝐴)) → 𝑥 ∈ (𝑋 ∩ 𝐴)) | |
9 | 8 | elin2d 4105 | . . . 4 ⊢ ((𝑅 ∈ PosetRel ∧ 𝑥 ∈ (𝑋 ∩ 𝐴)) → 𝑥 ∈ 𝐴) |
10 | elinel1 4101 | . . . . 5 ⊢ (𝑥 ∈ (𝑋 ∩ 𝐴) → 𝑥 ∈ 𝑋) | |
11 | 2 | psref 17877 | . . . . 5 ⊢ ((𝑅 ∈ PosetRel ∧ 𝑥 ∈ 𝑋) → 𝑥𝑅𝑥) |
12 | 10, 11 | sylan2 596 | . . . 4 ⊢ ((𝑅 ∈ PosetRel ∧ 𝑥 ∈ (𝑋 ∩ 𝐴)) → 𝑥𝑅𝑥) |
13 | brinxp2 5599 | . . . 4 ⊢ (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥 ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ 𝑥𝑅𝑥)) | |
14 | 9, 9, 12, 13 | syl21anbrc 1342 | . . 3 ⊢ ((𝑅 ∈ PosetRel ∧ 𝑥 ∈ (𝑋 ∩ 𝐴)) → 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥) |
15 | vex 3414 | . . . 4 ⊢ 𝑥 ∈ V | |
16 | 15, 15 | breldm 5749 | . . 3 ⊢ (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥 → 𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴))) |
17 | 14, 16 | syl 17 | . 2 ⊢ ((𝑅 ∈ PosetRel ∧ 𝑥 ∈ (𝑋 ∩ 𝐴)) → 𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴))) |
18 | 7, 17 | eqelssd 3914 | 1 ⊢ (𝑅 ∈ PosetRel → dom (𝑅 ∩ (𝐴 × 𝐴)) = (𝑋 ∩ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 400 = wceq 1539 ∈ wcel 2112 ∩ cin 3858 ⊆ wss 3859 class class class wbr 5033 × cxp 5523 dom cdm 5525 PosetRelcps 17867 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5170 ax-nul 5177 ax-pr 5299 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-ral 3076 df-rex 3077 df-rab 3080 df-v 3412 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-nul 4227 df-if 4422 df-sn 4524 df-pr 4526 df-op 4530 df-uni 4800 df-br 5034 df-opab 5096 df-id 5431 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ps 17869 |
This theorem is referenced by: psssdm 17885 ordtrest 21895 |
Copyright terms: Public domain | W3C validator |