Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > psssdm2 | Structured version Visualization version GIF version |
Description: Field of a subposet. (Contributed by Mario Carneiro, 9-Sep-2015.) |
Ref | Expression |
---|---|
psssdm.1 | ⊢ 𝑋 = dom 𝑅 |
Ref | Expression |
---|---|
psssdm2 | ⊢ (𝑅 ∈ PosetRel → dom (𝑅 ∩ (𝐴 × 𝐴)) = (𝑋 ∩ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmin 5809 | . . . 4 ⊢ dom (𝑅 ∩ (𝐴 × 𝐴)) ⊆ (dom 𝑅 ∩ dom (𝐴 × 𝐴)) | |
2 | psssdm.1 | . . . . . 6 ⊢ 𝑋 = dom 𝑅 | |
3 | 2 | eqcomi 2747 | . . . . 5 ⊢ dom 𝑅 = 𝑋 |
4 | dmxpid 5828 | . . . . 5 ⊢ dom (𝐴 × 𝐴) = 𝐴 | |
5 | 3, 4 | ineq12i 4141 | . . . 4 ⊢ (dom 𝑅 ∩ dom (𝐴 × 𝐴)) = (𝑋 ∩ 𝐴) |
6 | 1, 5 | sseqtri 3953 | . . 3 ⊢ dom (𝑅 ∩ (𝐴 × 𝐴)) ⊆ (𝑋 ∩ 𝐴) |
7 | 6 | a1i 11 | . 2 ⊢ (𝑅 ∈ PosetRel → dom (𝑅 ∩ (𝐴 × 𝐴)) ⊆ (𝑋 ∩ 𝐴)) |
8 | simpr 484 | . . . . 5 ⊢ ((𝑅 ∈ PosetRel ∧ 𝑥 ∈ (𝑋 ∩ 𝐴)) → 𝑥 ∈ (𝑋 ∩ 𝐴)) | |
9 | 8 | elin2d 4129 | . . . 4 ⊢ ((𝑅 ∈ PosetRel ∧ 𝑥 ∈ (𝑋 ∩ 𝐴)) → 𝑥 ∈ 𝐴) |
10 | elinel1 4125 | . . . . 5 ⊢ (𝑥 ∈ (𝑋 ∩ 𝐴) → 𝑥 ∈ 𝑋) | |
11 | 2 | psref 18207 | . . . . 5 ⊢ ((𝑅 ∈ PosetRel ∧ 𝑥 ∈ 𝑋) → 𝑥𝑅𝑥) |
12 | 10, 11 | sylan2 592 | . . . 4 ⊢ ((𝑅 ∈ PosetRel ∧ 𝑥 ∈ (𝑋 ∩ 𝐴)) → 𝑥𝑅𝑥) |
13 | brinxp2 5655 | . . . 4 ⊢ (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥 ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ 𝑥𝑅𝑥)) | |
14 | 9, 9, 12, 13 | syl21anbrc 1342 | . . 3 ⊢ ((𝑅 ∈ PosetRel ∧ 𝑥 ∈ (𝑋 ∩ 𝐴)) → 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥) |
15 | vex 3426 | . . . 4 ⊢ 𝑥 ∈ V | |
16 | 15, 15 | breldm 5806 | . . 3 ⊢ (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥 → 𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴))) |
17 | 14, 16 | syl 17 | . 2 ⊢ ((𝑅 ∈ PosetRel ∧ 𝑥 ∈ (𝑋 ∩ 𝐴)) → 𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴))) |
18 | 7, 17 | eqelssd 3938 | 1 ⊢ (𝑅 ∈ PosetRel → dom (𝑅 ∩ (𝐴 × 𝐴)) = (𝑋 ∩ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∩ cin 3882 ⊆ wss 3883 class class class wbr 5070 × cxp 5578 dom cdm 5580 PosetRelcps 18197 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ps 18199 |
This theorem is referenced by: psssdm 18215 ordtrest 22261 |
Copyright terms: Public domain | W3C validator |