MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psssdm2 Structured version   Visualization version   GIF version

Theorem psssdm2 18516
Description: Field of a subposet. (Contributed by Mario Carneiro, 9-Sep-2015.)
Hypothesis
Ref Expression
psssdm.1 𝑋 = dom 𝑅
Assertion
Ref Expression
psssdm2 (𝑅 ∈ PosetRel → dom (𝑅 ∩ (𝐴 × 𝐴)) = (𝑋𝐴))

Proof of Theorem psssdm2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dmin 5865 . . . 4 dom (𝑅 ∩ (𝐴 × 𝐴)) ⊆ (dom 𝑅 ∩ dom (𝐴 × 𝐴))
2 psssdm.1 . . . . . 6 𝑋 = dom 𝑅
32eqcomi 2738 . . . . 5 dom 𝑅 = 𝑋
4 dmxpid 5883 . . . . 5 dom (𝐴 × 𝐴) = 𝐴
53, 4ineq12i 4177 . . . 4 (dom 𝑅 ∩ dom (𝐴 × 𝐴)) = (𝑋𝐴)
61, 5sseqtri 3992 . . 3 dom (𝑅 ∩ (𝐴 × 𝐴)) ⊆ (𝑋𝐴)
76a1i 11 . 2 (𝑅 ∈ PosetRel → dom (𝑅 ∩ (𝐴 × 𝐴)) ⊆ (𝑋𝐴))
8 simpr 484 . . . . 5 ((𝑅 ∈ PosetRel ∧ 𝑥 ∈ (𝑋𝐴)) → 𝑥 ∈ (𝑋𝐴))
98elin2d 4164 . . . 4 ((𝑅 ∈ PosetRel ∧ 𝑥 ∈ (𝑋𝐴)) → 𝑥𝐴)
10 elinel1 4160 . . . . 5 (𝑥 ∈ (𝑋𝐴) → 𝑥𝑋)
112psref 18509 . . . . 5 ((𝑅 ∈ PosetRel ∧ 𝑥𝑋) → 𝑥𝑅𝑥)
1210, 11sylan2 593 . . . 4 ((𝑅 ∈ PosetRel ∧ 𝑥 ∈ (𝑋𝐴)) → 𝑥𝑅𝑥)
13 brinxp2 5709 . . . 4 (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥 ↔ ((𝑥𝐴𝑥𝐴) ∧ 𝑥𝑅𝑥))
149, 9, 12, 13syl21anbrc 1345 . . 3 ((𝑅 ∈ PosetRel ∧ 𝑥 ∈ (𝑋𝐴)) → 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥)
15 vex 3448 . . . 4 𝑥 ∈ V
1615, 15breldm 5862 . . 3 (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)))
1714, 16syl 17 . 2 ((𝑅 ∈ PosetRel ∧ 𝑥 ∈ (𝑋𝐴)) → 𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)))
187, 17eqelssd 3965 1 (𝑅 ∈ PosetRel → dom (𝑅 ∩ (𝐴 × 𝐴)) = (𝑋𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cin 3910  wss 3911   class class class wbr 5102   × cxp 5629  dom cdm 5631  PosetRelcps 18499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ps 18501
This theorem is referenced by:  psssdm  18517  ordtrest  23065
  Copyright terms: Public domain W3C validator