MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psssdm2 Structured version   Visualization version   GIF version

Theorem psssdm2 18214
Description: Field of a subposet. (Contributed by Mario Carneiro, 9-Sep-2015.)
Hypothesis
Ref Expression
psssdm.1 𝑋 = dom 𝑅
Assertion
Ref Expression
psssdm2 (𝑅 ∈ PosetRel → dom (𝑅 ∩ (𝐴 × 𝐴)) = (𝑋𝐴))

Proof of Theorem psssdm2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dmin 5809 . . . 4 dom (𝑅 ∩ (𝐴 × 𝐴)) ⊆ (dom 𝑅 ∩ dom (𝐴 × 𝐴))
2 psssdm.1 . . . . . 6 𝑋 = dom 𝑅
32eqcomi 2747 . . . . 5 dom 𝑅 = 𝑋
4 dmxpid 5828 . . . . 5 dom (𝐴 × 𝐴) = 𝐴
53, 4ineq12i 4141 . . . 4 (dom 𝑅 ∩ dom (𝐴 × 𝐴)) = (𝑋𝐴)
61, 5sseqtri 3953 . . 3 dom (𝑅 ∩ (𝐴 × 𝐴)) ⊆ (𝑋𝐴)
76a1i 11 . 2 (𝑅 ∈ PosetRel → dom (𝑅 ∩ (𝐴 × 𝐴)) ⊆ (𝑋𝐴))
8 simpr 484 . . . . 5 ((𝑅 ∈ PosetRel ∧ 𝑥 ∈ (𝑋𝐴)) → 𝑥 ∈ (𝑋𝐴))
98elin2d 4129 . . . 4 ((𝑅 ∈ PosetRel ∧ 𝑥 ∈ (𝑋𝐴)) → 𝑥𝐴)
10 elinel1 4125 . . . . 5 (𝑥 ∈ (𝑋𝐴) → 𝑥𝑋)
112psref 18207 . . . . 5 ((𝑅 ∈ PosetRel ∧ 𝑥𝑋) → 𝑥𝑅𝑥)
1210, 11sylan2 592 . . . 4 ((𝑅 ∈ PosetRel ∧ 𝑥 ∈ (𝑋𝐴)) → 𝑥𝑅𝑥)
13 brinxp2 5655 . . . 4 (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥 ↔ ((𝑥𝐴𝑥𝐴) ∧ 𝑥𝑅𝑥))
149, 9, 12, 13syl21anbrc 1342 . . 3 ((𝑅 ∈ PosetRel ∧ 𝑥 ∈ (𝑋𝐴)) → 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥)
15 vex 3426 . . . 4 𝑥 ∈ V
1615, 15breldm 5806 . . 3 (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)))
1714, 16syl 17 . 2 ((𝑅 ∈ PosetRel ∧ 𝑥 ∈ (𝑋𝐴)) → 𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)))
187, 17eqelssd 3938 1 (𝑅 ∈ PosetRel → dom (𝑅 ∩ (𝐴 × 𝐴)) = (𝑋𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  cin 3882  wss 3883   class class class wbr 5070   × cxp 5578  dom cdm 5580  PosetRelcps 18197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ps 18199
This theorem is referenced by:  psssdm  18215  ordtrest  22261
  Copyright terms: Public domain W3C validator