| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmprop | Structured version Visualization version GIF version | ||
| Description: The domain of an unordered pair of ordered pairs. (Contributed by NM, 13-Sep-2011.) |
| Ref | Expression |
|---|---|
| dmsnop.1 | ⊢ 𝐵 ∈ V |
| dmprop.1 | ⊢ 𝐷 ∈ V |
| Ref | Expression |
|---|---|
| dmprop | ⊢ dom {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} = {𝐴, 𝐶} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmsnop.1 | . 2 ⊢ 𝐵 ∈ V | |
| 2 | dmprop.1 | . 2 ⊢ 𝐷 ∈ V | |
| 3 | dmpropg 6191 | . 2 ⊢ ((𝐵 ∈ V ∧ 𝐷 ∈ V) → dom {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} = {𝐴, 𝐶}) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ dom {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} = {𝐴, 𝐶} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 Vcvv 3450 {cpr 4594 〈cop 4598 dom cdm 5641 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-dm 5651 |
| This theorem is referenced by: dmtpop 6194 funtp 6576 fpr 7129 fnprb 7185 hashfun 14409 umgr2v2evd2 29462 ex-dm 30375 |
| Copyright terms: Public domain | W3C validator |