| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmsnop | Structured version Visualization version GIF version | ||
| Description: The domain of a singleton of an ordered pair is the singleton of the first member. (Contributed by NM, 30-Jan-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| dmsnop.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| dmsnop | ⊢ dom {〈𝐴, 𝐵〉} = {𝐴} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmsnop.1 | . 2 ⊢ 𝐵 ∈ V | |
| 2 | dmsnopg 6189 | . 2 ⊢ (𝐵 ∈ V → dom {〈𝐴, 𝐵〉} = {𝐴}) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ dom {〈𝐴, 𝐵〉} = {𝐴} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 Vcvv 3450 {csn 4592 〈cop 4598 dom cdm 5641 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-dm 5651 |
| This theorem is referenced by: dmtpop 6194 dmsnsnsn 6196 op1sta 6201 snres0 6274 funtp 6576 funopdmsn 7125 frrlem14 8281 tfrlem10 8358 ac6sfi 9238 dcomex 10407 axdc3lem4 10413 cnfldfunALT 21286 cnfldfunALTOLD 21299 noextend 27585 nosupbday 27624 nosupbnd1 27633 nosupbnd2 27635 noinfbday 27639 noinfbnd1 27648 noinfbnd2 27650 bnj1416 35036 bnj1421 35039 fineqvac 35094 subfacp1lem2a 35174 subfacp1lem5 35178 |
| Copyright terms: Public domain | W3C validator |