| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmsnop | Structured version Visualization version GIF version | ||
| Description: The domain of a singleton of an ordered pair is the singleton of the first member. (Contributed by NM, 30-Jan-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| dmsnop.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| dmsnop | ⊢ dom {〈𝐴, 𝐵〉} = {𝐴} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmsnop.1 | . 2 ⊢ 𝐵 ∈ V | |
| 2 | dmsnopg 6160 | . 2 ⊢ (𝐵 ∈ V → dom {〈𝐴, 𝐵〉} = {𝐴}) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ dom {〈𝐴, 𝐵〉} = {𝐴} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 Vcvv 3436 {csn 4573 〈cop 4579 dom cdm 5614 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-dm 5624 |
| This theorem is referenced by: dmtpop 6165 dmsnsnsn 6167 op1sta 6172 snres0 6245 funtp 6538 funopdmsn 7083 frrlem14 8229 tfrlem10 8306 ac6sfi 9168 dcomex 10338 axdc3lem4 10344 cnfldfunALT 21306 cnfldfunALTOLD 21319 noextend 27605 nosupbday 27644 nosupbnd1 27653 nosupbnd2 27655 noinfbday 27659 noinfbnd1 27668 noinfbnd2 27670 bnj1416 35051 bnj1421 35054 fineqvac 35139 subfacp1lem2a 35224 subfacp1lem5 35228 |
| Copyright terms: Public domain | W3C validator |