| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmsnop | Structured version Visualization version GIF version | ||
| Description: The domain of a singleton of an ordered pair is the singleton of the first member. (Contributed by NM, 30-Jan-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| dmsnop.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| dmsnop | ⊢ dom {〈𝐴, 𝐵〉} = {𝐴} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmsnop.1 | . 2 ⊢ 𝐵 ∈ V | |
| 2 | dmsnopg 6174 | . 2 ⊢ (𝐵 ∈ V → dom {〈𝐴, 𝐵〉} = {𝐴}) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ dom {〈𝐴, 𝐵〉} = {𝐴} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 Vcvv 3444 {csn 4585 〈cop 4591 dom cdm 5631 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-dm 5641 |
| This theorem is referenced by: dmtpop 6179 dmsnsnsn 6181 op1sta 6186 snres0 6259 funtp 6557 funopdmsn 7104 frrlem14 8255 tfrlem10 8332 ac6sfi 9207 dcomex 10376 axdc3lem4 10382 cnfldfunALT 21255 cnfldfunALTOLD 21268 noextend 27554 nosupbday 27593 nosupbnd1 27602 nosupbnd2 27604 noinfbday 27608 noinfbnd1 27617 noinfbnd2 27619 bnj1416 35002 bnj1421 35005 fineqvac 35060 subfacp1lem2a 35140 subfacp1lem5 35144 |
| Copyright terms: Public domain | W3C validator |