| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmsnop | Structured version Visualization version GIF version | ||
| Description: The domain of a singleton of an ordered pair is the singleton of the first member. (Contributed by NM, 30-Jan-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| dmsnop.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| dmsnop | ⊢ dom {〈𝐴, 𝐵〉} = {𝐴} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmsnop.1 | . 2 ⊢ 𝐵 ∈ V | |
| 2 | dmsnopg 6162 | . 2 ⊢ (𝐵 ∈ V → dom {〈𝐴, 𝐵〉} = {𝐴}) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ dom {〈𝐴, 𝐵〉} = {𝐴} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 Vcvv 3436 {csn 4577 〈cop 4583 dom cdm 5619 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-dm 5629 |
| This theorem is referenced by: dmtpop 6167 dmsnsnsn 6169 op1sta 6174 snres0 6246 funtp 6539 funopdmsn 7084 frrlem14 8232 tfrlem10 8309 ac6sfi 9173 dcomex 10341 axdc3lem4 10347 cnfldfunALT 21276 cnfldfunALTOLD 21289 noextend 27576 nosupbday 27615 nosupbnd1 27624 nosupbnd2 27626 noinfbday 27630 noinfbnd1 27639 noinfbnd2 27641 bnj1416 35006 bnj1421 35009 fineqvac 35072 subfacp1lem2a 35153 subfacp1lem5 35157 |
| Copyright terms: Public domain | W3C validator |