![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmsnop | Structured version Visualization version GIF version |
Description: The domain of a singleton of an ordered pair is the singleton of the first member. (Contributed by NM, 30-Jan-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
dmsnop.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
dmsnop | ⊢ dom {⟨𝐴, 𝐵⟩} = {𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmsnop.1 | . 2 ⊢ 𝐵 ∈ V | |
2 | dmsnopg 6212 | . 2 ⊢ (𝐵 ∈ V → dom {⟨𝐴, 𝐵⟩} = {𝐴}) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ dom {⟨𝐴, 𝐵⟩} = {𝐴} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ∈ wcel 2106 Vcvv 3474 {csn 4628 ⟨cop 4634 dom cdm 5676 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-dm 5686 |
This theorem is referenced by: dmtpop 6217 dmsnsnsn 6219 op1sta 6224 snres0 6297 funtp 6605 funopdmsn 7147 frrlem14 8283 wfrlem13OLD 8320 wfrlem16OLD 8323 tfrlem10 8386 ac6sfi 9286 dcomex 10441 axdc3lem4 10447 cnfldfunALT 20956 cnfldfunALTOLD 20957 noextend 27166 nosupbday 27205 nosupbnd1 27214 nosupbnd2 27216 noinfbday 27220 noinfbnd1 27229 noinfbnd2 27231 bnj1416 34045 bnj1421 34048 fineqvac 34092 subfacp1lem2a 34166 subfacp1lem5 34170 |
Copyright terms: Public domain | W3C validator |