Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dmsnop | Structured version Visualization version GIF version |
Description: The domain of a singleton of an ordered pair is the singleton of the first member. (Contributed by NM, 30-Jan-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
dmsnop.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
dmsnop | ⊢ dom {〈𝐴, 𝐵〉} = {𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmsnop.1 | . 2 ⊢ 𝐵 ∈ V | |
2 | dmsnopg 6047 | . 2 ⊢ (𝐵 ∈ V → dom {〈𝐴, 𝐵〉} = {𝐴}) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ dom {〈𝐴, 𝐵〉} = {𝐴} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1538 ∈ wcel 2111 Vcvv 3409 {csn 4525 〈cop 4531 dom cdm 5528 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-ext 2729 ax-sep 5173 ax-nul 5180 ax-pr 5302 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-v 3411 df-dif 3863 df-un 3865 df-nul 4228 df-if 4424 df-sn 4526 df-pr 4528 df-op 4532 df-br 5037 df-dm 5538 |
This theorem is referenced by: dmtpop 6052 dmsnsnsn 6054 op1sta 6059 funtp 6397 funopdmsn 6909 wfrlem13 7983 wfrlem16 7986 tfrlem10 8039 ac6sfi 8808 dcomex 9920 axdc3lem4 9926 cnfldfun 20191 bnj1416 32551 bnj1421 32554 subfacp1lem2a 32670 subfacp1lem5 32674 snres0 33205 frrlem14 33410 noextend 33466 nosupbday 33505 nosupbnd1 33514 nosupbnd2 33516 noinfbday 33520 noinfbnd1 33529 noinfbnd2 33531 |
Copyright terms: Public domain | W3C validator |