![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmsnop | Structured version Visualization version GIF version |
Description: The domain of a singleton of an ordered pair is the singleton of the first member. (Contributed by NM, 30-Jan-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
dmsnop.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
dmsnop | ⊢ dom {〈𝐴, 𝐵〉} = {𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmsnop.1 | . 2 ⊢ 𝐵 ∈ V | |
2 | dmsnopg 6235 | . 2 ⊢ (𝐵 ∈ V → dom {〈𝐴, 𝐵〉} = {𝐴}) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ dom {〈𝐴, 𝐵〉} = {𝐴} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2106 Vcvv 3478 {csn 4631 〈cop 4637 dom cdm 5689 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-dm 5699 |
This theorem is referenced by: dmtpop 6240 dmsnsnsn 6242 op1sta 6247 snres0 6320 funtp 6625 funopdmsn 7170 frrlem14 8323 wfrlem13OLD 8360 wfrlem16OLD 8363 tfrlem10 8426 ac6sfi 9318 dcomex 10485 axdc3lem4 10491 cnfldfunALT 21397 cnfldfunALTOLD 21410 cnfldfunALTOLDOLD 21411 noextend 27726 nosupbday 27765 nosupbnd1 27774 nosupbnd2 27776 noinfbday 27780 noinfbnd1 27789 noinfbnd2 27791 bnj1416 35032 bnj1421 35035 fineqvac 35090 subfacp1lem2a 35165 subfacp1lem5 35169 |
Copyright terms: Public domain | W3C validator |