![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmsnop | Structured version Visualization version GIF version |
Description: The domain of a singleton of an ordered pair is the singleton of the first member. (Contributed by NM, 30-Jan-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
dmsnop.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
dmsnop | ⊢ dom {〈𝐴, 𝐵〉} = {𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmsnop.1 | . 2 ⊢ 𝐵 ∈ V | |
2 | dmsnopg 6211 | . 2 ⊢ (𝐵 ∈ V → dom {〈𝐴, 𝐵〉} = {𝐴}) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ dom {〈𝐴, 𝐵〉} = {𝐴} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 ∈ wcel 2099 Vcvv 3469 {csn 4624 〈cop 4630 dom cdm 5672 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 df-rab 3428 df-v 3471 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-br 5143 df-dm 5682 |
This theorem is referenced by: dmtpop 6216 dmsnsnsn 6218 op1sta 6223 snres0 6296 funtp 6604 funopdmsn 7153 frrlem14 8298 wfrlem13OLD 8335 wfrlem16OLD 8338 tfrlem10 8401 ac6sfi 9303 dcomex 10462 axdc3lem4 10468 cnfldfunALT 21281 cnfldfunALTOLD 21294 cnfldfunALTOLDOLD 21295 noextend 27586 nosupbday 27625 nosupbnd1 27634 nosupbnd2 27636 noinfbday 27640 noinfbnd1 27649 noinfbnd2 27651 bnj1416 34606 bnj1421 34609 fineqvac 34653 subfacp1lem2a 34726 subfacp1lem5 34730 |
Copyright terms: Public domain | W3C validator |