MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmsnop Structured version   Visualization version   GIF version

Theorem dmsnop 6189
Description: The domain of a singleton of an ordered pair is the singleton of the first member. (Contributed by NM, 30-Jan-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypothesis
Ref Expression
dmsnop.1 𝐵 ∈ V
Assertion
Ref Expression
dmsnop dom {⟨𝐴, 𝐵⟩} = {𝐴}

Proof of Theorem dmsnop
StepHypRef Expression
1 dmsnop.1 . 2 𝐵 ∈ V
2 dmsnopg 6186 . 2 (𝐵 ∈ V → dom {⟨𝐴, 𝐵⟩} = {𝐴})
31, 2ax-mp 5 1 dom {⟨𝐴, 𝐵⟩} = {𝐴}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  Vcvv 3447  {csn 4589  cop 4595  dom cdm 5638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-dm 5648
This theorem is referenced by:  dmtpop  6191  dmsnsnsn  6193  op1sta  6198  snres0  6271  funtp  6573  funopdmsn  7122  frrlem14  8278  tfrlem10  8355  ac6sfi  9231  dcomex  10400  axdc3lem4  10406  cnfldfunALT  21279  cnfldfunALTOLD  21292  noextend  27578  nosupbday  27617  nosupbnd1  27626  nosupbnd2  27628  noinfbday  27632  noinfbnd1  27641  noinfbnd2  27643  bnj1416  35029  bnj1421  35032  fineqvac  35087  subfacp1lem2a  35167  subfacp1lem5  35171
  Copyright terms: Public domain W3C validator