MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashfun Structured version   Visualization version   GIF version

Theorem hashfun 14363
Description: A finite set is a function iff it is equinumerous to its domain. (Contributed by Mario Carneiro, 26-Sep-2013.) (Revised by Mario Carneiro, 12-Mar-2015.)
Assertion
Ref Expression
hashfun (𝐹 ∈ Fin → (Fun 𝐹 ↔ (♯‘𝐹) = (♯‘dom 𝐹)))

Proof of Theorem hashfun
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funfn 6516 . . 3 (Fun 𝐹𝐹 Fn dom 𝐹)
2 hashfn 14301 . . 3 (𝐹 Fn dom 𝐹 → (♯‘𝐹) = (♯‘dom 𝐹))
31, 2sylbi 217 . 2 (Fun 𝐹 → (♯‘𝐹) = (♯‘dom 𝐹))
4 dmfi 9244 . . . . . . . . . . 11 (𝐹 ∈ Fin → dom 𝐹 ∈ Fin)
5 hashcl 14282 . . . . . . . . . . 11 (dom 𝐹 ∈ Fin → (♯‘dom 𝐹) ∈ ℕ0)
64, 5syl 17 . . . . . . . . . 10 (𝐹 ∈ Fin → (♯‘dom 𝐹) ∈ ℕ0)
76nn0red 12465 . . . . . . . . 9 (𝐹 ∈ Fin → (♯‘dom 𝐹) ∈ ℝ)
87adantr 480 . . . . . . . 8 ((𝐹 ∈ Fin ∧ ¬ Rel 𝐹) → (♯‘dom 𝐹) ∈ ℝ)
9 df-rel 5630 . . . . . . . . . . . . 13 (Rel 𝐹𝐹 ⊆ (V × V))
10 dfss3 3926 . . . . . . . . . . . . 13 (𝐹 ⊆ (V × V) ↔ ∀𝑥𝐹 𝑥 ∈ (V × V))
119, 10bitri 275 . . . . . . . . . . . 12 (Rel 𝐹 ↔ ∀𝑥𝐹 𝑥 ∈ (V × V))
1211notbii 320 . . . . . . . . . . 11 (¬ Rel 𝐹 ↔ ¬ ∀𝑥𝐹 𝑥 ∈ (V × V))
13 rexnal 3081 . . . . . . . . . . 11 (∃𝑥𝐹 ¬ 𝑥 ∈ (V × V) ↔ ¬ ∀𝑥𝐹 𝑥 ∈ (V × V))
1412, 13bitr4i 278 . . . . . . . . . 10 (¬ Rel 𝐹 ↔ ∃𝑥𝐹 ¬ 𝑥 ∈ (V × V))
15 dmun 5857 . . . . . . . . . . . . . . . 16 dom ((𝐹 ∖ {𝑥}) ∪ {𝑥}) = (dom (𝐹 ∖ {𝑥}) ∪ dom {𝑥})
1615fveq2i 6829 . . . . . . . . . . . . . . 15 (♯‘dom ((𝐹 ∖ {𝑥}) ∪ {𝑥})) = (♯‘(dom (𝐹 ∖ {𝑥}) ∪ dom {𝑥}))
17 dmsnn0 6160 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (V × V) ↔ dom {𝑥} ≠ ∅)
1817biimpri 228 . . . . . . . . . . . . . . . . . . . 20 (dom {𝑥} ≠ ∅ → 𝑥 ∈ (V × V))
1918necon1bi 2953 . . . . . . . . . . . . . . . . . . 19 𝑥 ∈ (V × V) → dom {𝑥} = ∅)
20193ad2ant3 1135 . . . . . . . . . . . . . . . . . 18 ((𝐹 ∈ Fin ∧ 𝑥𝐹 ∧ ¬ 𝑥 ∈ (V × V)) → dom {𝑥} = ∅)
2120uneq2d 4121 . . . . . . . . . . . . . . . . 17 ((𝐹 ∈ Fin ∧ 𝑥𝐹 ∧ ¬ 𝑥 ∈ (V × V)) → (dom (𝐹 ∖ {𝑥}) ∪ dom {𝑥}) = (dom (𝐹 ∖ {𝑥}) ∪ ∅))
22 un0 4347 . . . . . . . . . . . . . . . . 17 (dom (𝐹 ∖ {𝑥}) ∪ ∅) = dom (𝐹 ∖ {𝑥})
2321, 22eqtrdi 2780 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ Fin ∧ 𝑥𝐹 ∧ ¬ 𝑥 ∈ (V × V)) → (dom (𝐹 ∖ {𝑥}) ∪ dom {𝑥}) = dom (𝐹 ∖ {𝑥}))
2423fveq2d 6830 . . . . . . . . . . . . . . 15 ((𝐹 ∈ Fin ∧ 𝑥𝐹 ∧ ¬ 𝑥 ∈ (V × V)) → (♯‘(dom (𝐹 ∖ {𝑥}) ∪ dom {𝑥})) = (♯‘dom (𝐹 ∖ {𝑥})))
2516, 24eqtrid 2776 . . . . . . . . . . . . . 14 ((𝐹 ∈ Fin ∧ 𝑥𝐹 ∧ ¬ 𝑥 ∈ (V × V)) → (♯‘dom ((𝐹 ∖ {𝑥}) ∪ {𝑥})) = (♯‘dom (𝐹 ∖ {𝑥})))
26 diffi 9099 . . . . . . . . . . . . . . . . . . 19 (𝐹 ∈ Fin → (𝐹 ∖ {𝑥}) ∈ Fin)
27 dmfi 9244 . . . . . . . . . . . . . . . . . . 19 ((𝐹 ∖ {𝑥}) ∈ Fin → dom (𝐹 ∖ {𝑥}) ∈ Fin)
2826, 27syl 17 . . . . . . . . . . . . . . . . . 18 (𝐹 ∈ Fin → dom (𝐹 ∖ {𝑥}) ∈ Fin)
29 hashcl 14282 . . . . . . . . . . . . . . . . . 18 (dom (𝐹 ∖ {𝑥}) ∈ Fin → (♯‘dom (𝐹 ∖ {𝑥})) ∈ ℕ0)
3028, 29syl 17 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ Fin → (♯‘dom (𝐹 ∖ {𝑥})) ∈ ℕ0)
3130nn0red 12465 . . . . . . . . . . . . . . . 16 (𝐹 ∈ Fin → (♯‘dom (𝐹 ∖ {𝑥})) ∈ ℝ)
32 hashcl 14282 . . . . . . . . . . . . . . . . . 18 ((𝐹 ∖ {𝑥}) ∈ Fin → (♯‘(𝐹 ∖ {𝑥})) ∈ ℕ0)
3326, 32syl 17 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ Fin → (♯‘(𝐹 ∖ {𝑥})) ∈ ℕ0)
3433nn0red 12465 . . . . . . . . . . . . . . . 16 (𝐹 ∈ Fin → (♯‘(𝐹 ∖ {𝑥})) ∈ ℝ)
35 peano2re 11308 . . . . . . . . . . . . . . . . 17 ((♯‘(𝐹 ∖ {𝑥})) ∈ ℝ → ((♯‘(𝐹 ∖ {𝑥})) + 1) ∈ ℝ)
3634, 35syl 17 . . . . . . . . . . . . . . . 16 (𝐹 ∈ Fin → ((♯‘(𝐹 ∖ {𝑥})) + 1) ∈ ℝ)
37 fidomdm 9243 . . . . . . . . . . . . . . . . . 18 ((𝐹 ∖ {𝑥}) ∈ Fin → dom (𝐹 ∖ {𝑥}) ≼ (𝐹 ∖ {𝑥}))
3826, 37syl 17 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ Fin → dom (𝐹 ∖ {𝑥}) ≼ (𝐹 ∖ {𝑥}))
39 hashdom 14305 . . . . . . . . . . . . . . . . . 18 ((dom (𝐹 ∖ {𝑥}) ∈ Fin ∧ (𝐹 ∖ {𝑥}) ∈ Fin) → ((♯‘dom (𝐹 ∖ {𝑥})) ≤ (♯‘(𝐹 ∖ {𝑥})) ↔ dom (𝐹 ∖ {𝑥}) ≼ (𝐹 ∖ {𝑥})))
4028, 26, 39syl2anc 584 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ Fin → ((♯‘dom (𝐹 ∖ {𝑥})) ≤ (♯‘(𝐹 ∖ {𝑥})) ↔ dom (𝐹 ∖ {𝑥}) ≼ (𝐹 ∖ {𝑥})))
4138, 40mpbird 257 . . . . . . . . . . . . . . . 16 (𝐹 ∈ Fin → (♯‘dom (𝐹 ∖ {𝑥})) ≤ (♯‘(𝐹 ∖ {𝑥})))
4234ltp1d 12074 . . . . . . . . . . . . . . . 16 (𝐹 ∈ Fin → (♯‘(𝐹 ∖ {𝑥})) < ((♯‘(𝐹 ∖ {𝑥})) + 1))
4331, 34, 36, 41, 42lelttrd 11293 . . . . . . . . . . . . . . 15 (𝐹 ∈ Fin → (♯‘dom (𝐹 ∖ {𝑥})) < ((♯‘(𝐹 ∖ {𝑥})) + 1))
44433ad2ant1 1133 . . . . . . . . . . . . . 14 ((𝐹 ∈ Fin ∧ 𝑥𝐹 ∧ ¬ 𝑥 ∈ (V × V)) → (♯‘dom (𝐹 ∖ {𝑥})) < ((♯‘(𝐹 ∖ {𝑥})) + 1))
4525, 44eqbrtrd 5117 . . . . . . . . . . . . 13 ((𝐹 ∈ Fin ∧ 𝑥𝐹 ∧ ¬ 𝑥 ∈ (V × V)) → (♯‘dom ((𝐹 ∖ {𝑥}) ∪ {𝑥})) < ((♯‘(𝐹 ∖ {𝑥})) + 1))
46 snfi 8975 . . . . . . . . . . . . . . . . 17 {𝑥} ∈ Fin
47 disjdifr 4426 . . . . . . . . . . . . . . . . 17 ((𝐹 ∖ {𝑥}) ∩ {𝑥}) = ∅
48 hashun 14308 . . . . . . . . . . . . . . . . 17 (((𝐹 ∖ {𝑥}) ∈ Fin ∧ {𝑥} ∈ Fin ∧ ((𝐹 ∖ {𝑥}) ∩ {𝑥}) = ∅) → (♯‘((𝐹 ∖ {𝑥}) ∪ {𝑥})) = ((♯‘(𝐹 ∖ {𝑥})) + (♯‘{𝑥})))
4946, 47, 48mp3an23 1455 . . . . . . . . . . . . . . . 16 ((𝐹 ∖ {𝑥}) ∈ Fin → (♯‘((𝐹 ∖ {𝑥}) ∪ {𝑥})) = ((♯‘(𝐹 ∖ {𝑥})) + (♯‘{𝑥})))
5026, 49syl 17 . . . . . . . . . . . . . . 15 (𝐹 ∈ Fin → (♯‘((𝐹 ∖ {𝑥}) ∪ {𝑥})) = ((♯‘(𝐹 ∖ {𝑥})) + (♯‘{𝑥})))
51 hashsng 14295 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ V → (♯‘{𝑥}) = 1)
5251elv 3443 . . . . . . . . . . . . . . . 16 (♯‘{𝑥}) = 1
5352oveq2i 7364 . . . . . . . . . . . . . . 15 ((♯‘(𝐹 ∖ {𝑥})) + (♯‘{𝑥})) = ((♯‘(𝐹 ∖ {𝑥})) + 1)
5450, 53eqtr2di 2781 . . . . . . . . . . . . . 14 (𝐹 ∈ Fin → ((♯‘(𝐹 ∖ {𝑥})) + 1) = (♯‘((𝐹 ∖ {𝑥}) ∪ {𝑥})))
55543ad2ant1 1133 . . . . . . . . . . . . 13 ((𝐹 ∈ Fin ∧ 𝑥𝐹 ∧ ¬ 𝑥 ∈ (V × V)) → ((♯‘(𝐹 ∖ {𝑥})) + 1) = (♯‘((𝐹 ∖ {𝑥}) ∪ {𝑥})))
5645, 55breqtrd 5121 . . . . . . . . . . . 12 ((𝐹 ∈ Fin ∧ 𝑥𝐹 ∧ ¬ 𝑥 ∈ (V × V)) → (♯‘dom ((𝐹 ∖ {𝑥}) ∪ {𝑥})) < (♯‘((𝐹 ∖ {𝑥}) ∪ {𝑥})))
57 difsnid 4764 . . . . . . . . . . . . . . 15 (𝑥𝐹 → ((𝐹 ∖ {𝑥}) ∪ {𝑥}) = 𝐹)
5857dmeqd 5852 . . . . . . . . . . . . . 14 (𝑥𝐹 → dom ((𝐹 ∖ {𝑥}) ∪ {𝑥}) = dom 𝐹)
5958fveq2d 6830 . . . . . . . . . . . . 13 (𝑥𝐹 → (♯‘dom ((𝐹 ∖ {𝑥}) ∪ {𝑥})) = (♯‘dom 𝐹))
60593ad2ant2 1134 . . . . . . . . . . . 12 ((𝐹 ∈ Fin ∧ 𝑥𝐹 ∧ ¬ 𝑥 ∈ (V × V)) → (♯‘dom ((𝐹 ∖ {𝑥}) ∪ {𝑥})) = (♯‘dom 𝐹))
6157fveq2d 6830 . . . . . . . . . . . . 13 (𝑥𝐹 → (♯‘((𝐹 ∖ {𝑥}) ∪ {𝑥})) = (♯‘𝐹))
62613ad2ant2 1134 . . . . . . . . . . . 12 ((𝐹 ∈ Fin ∧ 𝑥𝐹 ∧ ¬ 𝑥 ∈ (V × V)) → (♯‘((𝐹 ∖ {𝑥}) ∪ {𝑥})) = (♯‘𝐹))
6356, 60, 623brtr3d 5126 . . . . . . . . . . 11 ((𝐹 ∈ Fin ∧ 𝑥𝐹 ∧ ¬ 𝑥 ∈ (V × V)) → (♯‘dom 𝐹) < (♯‘𝐹))
6463rexlimdv3a 3134 . . . . . . . . . 10 (𝐹 ∈ Fin → (∃𝑥𝐹 ¬ 𝑥 ∈ (V × V) → (♯‘dom 𝐹) < (♯‘𝐹)))
6514, 64biimtrid 242 . . . . . . . . 9 (𝐹 ∈ Fin → (¬ Rel 𝐹 → (♯‘dom 𝐹) < (♯‘𝐹)))
6665imp 406 . . . . . . . 8 ((𝐹 ∈ Fin ∧ ¬ Rel 𝐹) → (♯‘dom 𝐹) < (♯‘𝐹))
678, 66gtned 11270 . . . . . . 7 ((𝐹 ∈ Fin ∧ ¬ Rel 𝐹) → (♯‘𝐹) ≠ (♯‘dom 𝐹))
6867ex 412 . . . . . 6 (𝐹 ∈ Fin → (¬ Rel 𝐹 → (♯‘𝐹) ≠ (♯‘dom 𝐹)))
6968necon4bd 2945 . . . . 5 (𝐹 ∈ Fin → ((♯‘𝐹) = (♯‘dom 𝐹) → Rel 𝐹))
7069imp 406 . . . 4 ((𝐹 ∈ Fin ∧ (♯‘𝐹) = (♯‘dom 𝐹)) → Rel 𝐹)
71 2nalexn 1828 . . . . . . . 8 (¬ ∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧) ↔ ∃𝑥𝑦 ¬ ∀𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧))
72 df-ne 2926 . . . . . . . . . . . . 13 (𝑦𝑧 ↔ ¬ 𝑦 = 𝑧)
7372anbi2i 623 . . . . . . . . . . . 12 (((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∧ 𝑦𝑧) ↔ ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∧ ¬ 𝑦 = 𝑧))
74 annim 403 . . . . . . . . . . . 12 (((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∧ ¬ 𝑦 = 𝑧) ↔ ¬ ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧))
7573, 74bitri 275 . . . . . . . . . . 11 (((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∧ 𝑦𝑧) ↔ ¬ ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧))
7675exbii 1848 . . . . . . . . . 10 (∃𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∧ 𝑦𝑧) ↔ ∃𝑧 ¬ ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧))
77 exnal 1827 . . . . . . . . . 10 (∃𝑧 ¬ ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧) ↔ ¬ ∀𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧))
7876, 77bitr2i 276 . . . . . . . . 9 (¬ ∀𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧) ↔ ∃𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∧ 𝑦𝑧))
79782exbii 1849 . . . . . . . 8 (∃𝑥𝑦 ¬ ∀𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧) ↔ ∃𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∧ 𝑦𝑧))
8071, 79bitri 275 . . . . . . 7 (¬ ∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧) ↔ ∃𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∧ 𝑦𝑧))
817adantr 480 . . . . . . . . . . 11 ((𝐹 ∈ Fin ∧ ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∧ 𝑦𝑧)) → (♯‘dom 𝐹) ∈ ℝ)
82 2re 12221 . . . . . . . . . . . . 13 2 ∈ ℝ
83 diffi 9099 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ Fin → (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}) ∈ Fin)
84 dmfi 9244 . . . . . . . . . . . . . . . . 17 ((𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}) ∈ Fin → dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}) ∈ Fin)
8583, 84syl 17 . . . . . . . . . . . . . . . 16 (𝐹 ∈ Fin → dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}) ∈ Fin)
86 hashcl 14282 . . . . . . . . . . . . . . . 16 (dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}) ∈ Fin → (♯‘dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩})) ∈ ℕ0)
8785, 86syl 17 . . . . . . . . . . . . . . 15 (𝐹 ∈ Fin → (♯‘dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩})) ∈ ℕ0)
8887nn0red 12465 . . . . . . . . . . . . . 14 (𝐹 ∈ Fin → (♯‘dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩})) ∈ ℝ)
8988adantr 480 . . . . . . . . . . . . 13 ((𝐹 ∈ Fin ∧ ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∧ 𝑦𝑧)) → (♯‘dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩})) ∈ ℝ)
90 readdcl 11111 . . . . . . . . . . . . 13 ((2 ∈ ℝ ∧ (♯‘dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩})) ∈ ℝ) → (2 + (♯‘dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}))) ∈ ℝ)
9182, 89, 90sylancr 587 . . . . . . . . . . . 12 ((𝐹 ∈ Fin ∧ ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∧ 𝑦𝑧)) → (2 + (♯‘dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}))) ∈ ℝ)
92 hashcl 14282 . . . . . . . . . . . . . 14 (𝐹 ∈ Fin → (♯‘𝐹) ∈ ℕ0)
9392nn0red 12465 . . . . . . . . . . . . 13 (𝐹 ∈ Fin → (♯‘𝐹) ∈ ℝ)
9493adantr 480 . . . . . . . . . . . 12 ((𝐹 ∈ Fin ∧ ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∧ 𝑦𝑧)) → (♯‘𝐹) ∈ ℝ)
95 1re 11134 . . . . . . . . . . . . . . 15 1 ∈ ℝ
96 readdcl 11111 . . . . . . . . . . . . . . 15 ((1 ∈ ℝ ∧ (♯‘dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩})) ∈ ℝ) → (1 + (♯‘dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}))) ∈ ℝ)
9795, 88, 96sylancr 587 . . . . . . . . . . . . . 14 (𝐹 ∈ Fin → (1 + (♯‘dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}))) ∈ ℝ)
9897adantr 480 . . . . . . . . . . . . 13 ((𝐹 ∈ Fin ∧ ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∧ 𝑦𝑧)) → (1 + (♯‘dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}))) ∈ ℝ)
9982, 88, 90sylancr 587 . . . . . . . . . . . . . 14 (𝐹 ∈ Fin → (2 + (♯‘dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}))) ∈ ℝ)
10099adantr 480 . . . . . . . . . . . . 13 ((𝐹 ∈ Fin ∧ ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∧ 𝑦𝑧)) → (2 + (♯‘dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}))) ∈ ℝ)
101 opex 5411 . . . . . . . . . . . . . . . . . . . . 21 𝑥, 𝑦⟩ ∈ V
102 opex 5411 . . . . . . . . . . . . . . . . . . . . 21 𝑥, 𝑧⟩ ∈ V
103101, 102prss 4774 . . . . . . . . . . . . . . . . . . . 20 ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ↔ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩} ⊆ 𝐹)
104 undif 4435 . . . . . . . . . . . . . . . . . . . 20 ({⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩} ⊆ 𝐹 ↔ ({⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩} ∪ (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩})) = 𝐹)
105103, 104sylbb 219 . . . . . . . . . . . . . . . . . . 19 ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → ({⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩} ∪ (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩})) = 𝐹)
106105dmeqd 5852 . . . . . . . . . . . . . . . . . 18 ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → dom ({⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩} ∪ (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩})) = dom 𝐹)
107 dmun 5857 . . . . . . . . . . . . . . . . . 18 dom ({⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩} ∪ (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩})) = (dom {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩} ∪ dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}))
108106, 107eqtr3di 2779 . . . . . . . . . . . . . . . . 17 ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → dom 𝐹 = (dom {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩} ∪ dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩})))
109 vex 3442 . . . . . . . . . . . . . . . . . . . 20 𝑦 ∈ V
110 vex 3442 . . . . . . . . . . . . . . . . . . . 20 𝑧 ∈ V
111109, 110dmprop 6170 . . . . . . . . . . . . . . . . . . 19 dom {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩} = {𝑥, 𝑥}
112 dfsn2 4592 . . . . . . . . . . . . . . . . . . 19 {𝑥} = {𝑥, 𝑥}
113111, 112eqtr4i 2755 . . . . . . . . . . . . . . . . . 18 dom {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩} = {𝑥}
114113uneq1i 4117 . . . . . . . . . . . . . . . . 17 (dom {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩} ∪ dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩})) = ({𝑥} ∪ dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}))
115108, 114eqtrdi 2780 . . . . . . . . . . . . . . . 16 ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → dom 𝐹 = ({𝑥} ∪ dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩})))
116115fveq2d 6830 . . . . . . . . . . . . . . 15 ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → (♯‘dom 𝐹) = (♯‘({𝑥} ∪ dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}))))
117116ad2antrl 728 . . . . . . . . . . . . . 14 ((𝐹 ∈ Fin ∧ ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∧ 𝑦𝑧)) → (♯‘dom 𝐹) = (♯‘({𝑥} ∪ dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}))))
118 hashun2 14309 . . . . . . . . . . . . . . . . 17 (({𝑥} ∈ Fin ∧ dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}) ∈ Fin) → (♯‘({𝑥} ∪ dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}))) ≤ ((♯‘{𝑥}) + (♯‘dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}))))
11946, 85, 118sylancr 587 . . . . . . . . . . . . . . . 16 (𝐹 ∈ Fin → (♯‘({𝑥} ∪ dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}))) ≤ ((♯‘{𝑥}) + (♯‘dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}))))
12052oveq1i 7363 . . . . . . . . . . . . . . . 16 ((♯‘{𝑥}) + (♯‘dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}))) = (1 + (♯‘dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩})))
121119, 120breqtrdi 5136 . . . . . . . . . . . . . . 15 (𝐹 ∈ Fin → (♯‘({𝑥} ∪ dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}))) ≤ (1 + (♯‘dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}))))
122121adantr 480 . . . . . . . . . . . . . 14 ((𝐹 ∈ Fin ∧ ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∧ 𝑦𝑧)) → (♯‘({𝑥} ∪ dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}))) ≤ (1 + (♯‘dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}))))
123117, 122eqbrtrd 5117 . . . . . . . . . . . . 13 ((𝐹 ∈ Fin ∧ ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∧ 𝑦𝑧)) → (♯‘dom 𝐹) ≤ (1 + (♯‘dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}))))
124 1lt2 12313 . . . . . . . . . . . . . . 15 1 < 2
125 ltadd1 11606 . . . . . . . . . . . . . . . 16 ((1 ∈ ℝ ∧ 2 ∈ ℝ ∧ (♯‘dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩})) ∈ ℝ) → (1 < 2 ↔ (1 + (♯‘dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}))) < (2 + (♯‘dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩})))))
12695, 82, 88, 125mp3an12i 1467 . . . . . . . . . . . . . . 15 (𝐹 ∈ Fin → (1 < 2 ↔ (1 + (♯‘dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}))) < (2 + (♯‘dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩})))))
127124, 126mpbii 233 . . . . . . . . . . . . . 14 (𝐹 ∈ Fin → (1 + (♯‘dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}))) < (2 + (♯‘dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}))))
128127adantr 480 . . . . . . . . . . . . 13 ((𝐹 ∈ Fin ∧ ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∧ 𝑦𝑧)) → (1 + (♯‘dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}))) < (2 + (♯‘dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}))))
12981, 98, 100, 123, 128lelttrd 11293 . . . . . . . . . . . 12 ((𝐹 ∈ Fin ∧ ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∧ 𝑦𝑧)) → (♯‘dom 𝐹) < (2 + (♯‘dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}))))
130 fidomdm 9243 . . . . . . . . . . . . . . . . 17 ((𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}) ∈ Fin → dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}) ≼ (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}))
13183, 130syl 17 . . . . . . . . . . . . . . . 16 (𝐹 ∈ Fin → dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}) ≼ (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}))
132 hashdom 14305 . . . . . . . . . . . . . . . . 17 ((dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}) ∈ Fin ∧ (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}) ∈ Fin) → ((♯‘dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩})) ≤ (♯‘(𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩})) ↔ dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}) ≼ (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩})))
13385, 83, 132syl2anc 584 . . . . . . . . . . . . . . . 16 (𝐹 ∈ Fin → ((♯‘dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩})) ≤ (♯‘(𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩})) ↔ dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}) ≼ (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩})))
134131, 133mpbird 257 . . . . . . . . . . . . . . 15 (𝐹 ∈ Fin → (♯‘dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩})) ≤ (♯‘(𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩})))
135 hashcl 14282 . . . . . . . . . . . . . . . . . 18 ((𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}) ∈ Fin → (♯‘(𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩})) ∈ ℕ0)
13683, 135syl 17 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ Fin → (♯‘(𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩})) ∈ ℕ0)
137136nn0red 12465 . . . . . . . . . . . . . . . 16 (𝐹 ∈ Fin → (♯‘(𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩})) ∈ ℝ)
138 leadd2 11608 . . . . . . . . . . . . . . . . 17 (((♯‘dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩})) ∈ ℝ ∧ (♯‘(𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩})) ∈ ℝ ∧ 2 ∈ ℝ) → ((♯‘dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩})) ≤ (♯‘(𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩})) ↔ (2 + (♯‘dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}))) ≤ (2 + (♯‘(𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩})))))
13982, 138mp3an3 1452 . . . . . . . . . . . . . . . 16 (((♯‘dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩})) ∈ ℝ ∧ (♯‘(𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩})) ∈ ℝ) → ((♯‘dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩})) ≤ (♯‘(𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩})) ↔ (2 + (♯‘dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}))) ≤ (2 + (♯‘(𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩})))))
14088, 137, 139syl2anc 584 . . . . . . . . . . . . . . 15 (𝐹 ∈ Fin → ((♯‘dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩})) ≤ (♯‘(𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩})) ↔ (2 + (♯‘dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}))) ≤ (2 + (♯‘(𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩})))))
141134, 140mpbid 232 . . . . . . . . . . . . . 14 (𝐹 ∈ Fin → (2 + (♯‘dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}))) ≤ (2 + (♯‘(𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}))))
142141adantr 480 . . . . . . . . . . . . 13 ((𝐹 ∈ Fin ∧ ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∧ 𝑦𝑧)) → (2 + (♯‘dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}))) ≤ (2 + (♯‘(𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}))))
143 prfi 9232 . . . . . . . . . . . . . . . . 17 {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩} ∈ Fin
144 disjdif 4425 . . . . . . . . . . . . . . . . 17 ({⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩} ∩ (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩})) = ∅
145 hashun 14308 . . . . . . . . . . . . . . . . 17 (({⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩} ∈ Fin ∧ (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}) ∈ Fin ∧ ({⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩} ∩ (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩})) = ∅) → (♯‘({⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩} ∪ (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}))) = ((♯‘{⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}) + (♯‘(𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}))))
146143, 144, 145mp3an13 1454 . . . . . . . . . . . . . . . 16 ((𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}) ∈ Fin → (♯‘({⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩} ∪ (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}))) = ((♯‘{⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}) + (♯‘(𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}))))
14783, 146syl 17 . . . . . . . . . . . . . . 15 (𝐹 ∈ Fin → (♯‘({⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩} ∪ (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}))) = ((♯‘{⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}) + (♯‘(𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}))))
148147adantr 480 . . . . . . . . . . . . . 14 ((𝐹 ∈ Fin ∧ ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∧ 𝑦𝑧)) → (♯‘({⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩} ∪ (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}))) = ((♯‘{⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}) + (♯‘(𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}))))
149105fveq2d 6830 . . . . . . . . . . . . . . 15 ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → (♯‘({⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩} ∪ (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}))) = (♯‘𝐹))
150149ad2antrl 728 . . . . . . . . . . . . . 14 ((𝐹 ∈ Fin ∧ ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∧ 𝑦𝑧)) → (♯‘({⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩} ∪ (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}))) = (♯‘𝐹))
151 vex 3442 . . . . . . . . . . . . . . . . . . . 20 𝑥 ∈ V
152151, 109opth 5423 . . . . . . . . . . . . . . . . . . 19 (⟨𝑥, 𝑦⟩ = ⟨𝑥, 𝑧⟩ ↔ (𝑥 = 𝑥𝑦 = 𝑧))
153152simprbi 496 . . . . . . . . . . . . . . . . . 18 (⟨𝑥, 𝑦⟩ = ⟨𝑥, 𝑧⟩ → 𝑦 = 𝑧)
154153necon3i 2957 . . . . . . . . . . . . . . . . 17 (𝑦𝑧 → ⟨𝑥, 𝑦⟩ ≠ ⟨𝑥, 𝑧⟩)
155 hashprg 14321 . . . . . . . . . . . . . . . . . 18 ((⟨𝑥, 𝑦⟩ ∈ V ∧ ⟨𝑥, 𝑧⟩ ∈ V) → (⟨𝑥, 𝑦⟩ ≠ ⟨𝑥, 𝑧⟩ ↔ (♯‘{⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}) = 2))
156101, 102, 155mp2an 692 . . . . . . . . . . . . . . . . 17 (⟨𝑥, 𝑦⟩ ≠ ⟨𝑥, 𝑧⟩ ↔ (♯‘{⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}) = 2)
157154, 156sylib 218 . . . . . . . . . . . . . . . 16 (𝑦𝑧 → (♯‘{⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}) = 2)
158157oveq1d 7368 . . . . . . . . . . . . . . 15 (𝑦𝑧 → ((♯‘{⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}) + (♯‘(𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}))) = (2 + (♯‘(𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}))))
159158ad2antll 729 . . . . . . . . . . . . . 14 ((𝐹 ∈ Fin ∧ ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∧ 𝑦𝑧)) → ((♯‘{⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}) + (♯‘(𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}))) = (2 + (♯‘(𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}))))
160148, 150, 1593eqtr3rd 2773 . . . . . . . . . . . . 13 ((𝐹 ∈ Fin ∧ ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∧ 𝑦𝑧)) → (2 + (♯‘(𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}))) = (♯‘𝐹))
161142, 160breqtrd 5121 . . . . . . . . . . . 12 ((𝐹 ∈ Fin ∧ ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∧ 𝑦𝑧)) → (2 + (♯‘dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}))) ≤ (♯‘𝐹))
16281, 91, 94, 129, 161ltletrd 11295 . . . . . . . . . . 11 ((𝐹 ∈ Fin ∧ ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∧ 𝑦𝑧)) → (♯‘dom 𝐹) < (♯‘𝐹))
16381, 162gtned 11270 . . . . . . . . . 10 ((𝐹 ∈ Fin ∧ ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∧ 𝑦𝑧)) → (♯‘𝐹) ≠ (♯‘dom 𝐹))
164163ex 412 . . . . . . . . 9 (𝐹 ∈ Fin → (((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∧ 𝑦𝑧) → (♯‘𝐹) ≠ (♯‘dom 𝐹)))
165164exlimdv 1933 . . . . . . . 8 (𝐹 ∈ Fin → (∃𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∧ 𝑦𝑧) → (♯‘𝐹) ≠ (♯‘dom 𝐹)))
166165exlimdvv 1934 . . . . . . 7 (𝐹 ∈ Fin → (∃𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∧ 𝑦𝑧) → (♯‘𝐹) ≠ (♯‘dom 𝐹)))
16780, 166biimtrid 242 . . . . . 6 (𝐹 ∈ Fin → (¬ ∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧) → (♯‘𝐹) ≠ (♯‘dom 𝐹)))
168167necon4bd 2945 . . . . 5 (𝐹 ∈ Fin → ((♯‘𝐹) = (♯‘dom 𝐹) → ∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧)))
169168imp 406 . . . 4 ((𝐹 ∈ Fin ∧ (♯‘𝐹) = (♯‘dom 𝐹)) → ∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧))
170 dffun4 6499 . . . 4 (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧)))
17170, 169, 170sylanbrc 583 . . 3 ((𝐹 ∈ Fin ∧ (♯‘𝐹) = (♯‘dom 𝐹)) → Fun 𝐹)
172171ex 412 . 2 (𝐹 ∈ Fin → ((♯‘𝐹) = (♯‘dom 𝐹) → Fun 𝐹))
1733, 172impbid2 226 1 (𝐹 ∈ Fin → (Fun 𝐹 ↔ (♯‘𝐹) = (♯‘dom 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086  wal 1538   = wceq 1540  wex 1779  wcel 2109  wne 2925  wral 3044  wrex 3053  Vcvv 3438  cdif 3902  cun 3903  cin 3904  wss 3905  c0 4286  {csn 4579  {cpr 4581  cop 4585   class class class wbr 5095   × cxp 5621  dom cdm 5623  Rel wrel 5628  Fun wfun 6480   Fn wfn 6481  cfv 6486  (class class class)co 7353  cdom 8877  Fincfn 8879  cr 11027  1c1 11029   + caddc 11031   < clt 11168  cle 11169  2c2 12202  0cn0 12403  chash 14256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-oadd 8399  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-dju 9816  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-nn 12148  df-2 12210  df-n0 12404  df-xnn0 12477  df-z 12491  df-uz 12755  df-fz 13430  df-hash 14257
This theorem is referenced by:  hashres  14364  hashreshashfun  14365  hashfundm  14368  ccatalpha  14519  cycpmconjslem2  33116
  Copyright terms: Public domain W3C validator