MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashfun Structured version   Visualization version   GIF version

Theorem hashfun 14344
Description: A finite set is a function iff it is equinumerous to its domain. (Contributed by Mario Carneiro, 26-Sep-2013.) (Revised by Mario Carneiro, 12-Mar-2015.)
Assertion
Ref Expression
hashfun (𝐹 ∈ Fin → (Fun 𝐹 ↔ (♯‘𝐹) = (♯‘dom 𝐹)))

Proof of Theorem hashfun
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funfn 6536 . . 3 (Fun 𝐹𝐹 Fn dom 𝐹)
2 hashfn 14282 . . 3 (𝐹 Fn dom 𝐹 → (♯‘𝐹) = (♯‘dom 𝐹))
31, 2sylbi 216 . 2 (Fun 𝐹 → (♯‘𝐹) = (♯‘dom 𝐹))
4 dmfi 9281 . . . . . . . . . . 11 (𝐹 ∈ Fin → dom 𝐹 ∈ Fin)
5 hashcl 14263 . . . . . . . . . . 11 (dom 𝐹 ∈ Fin → (♯‘dom 𝐹) ∈ ℕ0)
64, 5syl 17 . . . . . . . . . 10 (𝐹 ∈ Fin → (♯‘dom 𝐹) ∈ ℕ0)
76nn0red 12481 . . . . . . . . 9 (𝐹 ∈ Fin → (♯‘dom 𝐹) ∈ ℝ)
87adantr 482 . . . . . . . 8 ((𝐹 ∈ Fin ∧ ¬ Rel 𝐹) → (♯‘dom 𝐹) ∈ ℝ)
9 df-rel 5645 . . . . . . . . . . . . 13 (Rel 𝐹𝐹 ⊆ (V × V))
10 dfss3 3937 . . . . . . . . . . . . 13 (𝐹 ⊆ (V × V) ↔ ∀𝑥𝐹 𝑥 ∈ (V × V))
119, 10bitri 275 . . . . . . . . . . . 12 (Rel 𝐹 ↔ ∀𝑥𝐹 𝑥 ∈ (V × V))
1211notbii 320 . . . . . . . . . . 11 (¬ Rel 𝐹 ↔ ¬ ∀𝑥𝐹 𝑥 ∈ (V × V))
13 rexnal 3104 . . . . . . . . . . 11 (∃𝑥𝐹 ¬ 𝑥 ∈ (V × V) ↔ ¬ ∀𝑥𝐹 𝑥 ∈ (V × V))
1412, 13bitr4i 278 . . . . . . . . . 10 (¬ Rel 𝐹 ↔ ∃𝑥𝐹 ¬ 𝑥 ∈ (V × V))
15 dmun 5871 . . . . . . . . . . . . . . . 16 dom ((𝐹 ∖ {𝑥}) ∪ {𝑥}) = (dom (𝐹 ∖ {𝑥}) ∪ dom {𝑥})
1615fveq2i 6850 . . . . . . . . . . . . . . 15 (♯‘dom ((𝐹 ∖ {𝑥}) ∪ {𝑥})) = (♯‘(dom (𝐹 ∖ {𝑥}) ∪ dom {𝑥}))
17 dmsnn0 6164 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (V × V) ↔ dom {𝑥} ≠ ∅)
1817biimpri 227 . . . . . . . . . . . . . . . . . . . 20 (dom {𝑥} ≠ ∅ → 𝑥 ∈ (V × V))
1918necon1bi 2973 . . . . . . . . . . . . . . . . . . 19 𝑥 ∈ (V × V) → dom {𝑥} = ∅)
20193ad2ant3 1136 . . . . . . . . . . . . . . . . . 18 ((𝐹 ∈ Fin ∧ 𝑥𝐹 ∧ ¬ 𝑥 ∈ (V × V)) → dom {𝑥} = ∅)
2120uneq2d 4128 . . . . . . . . . . . . . . . . 17 ((𝐹 ∈ Fin ∧ 𝑥𝐹 ∧ ¬ 𝑥 ∈ (V × V)) → (dom (𝐹 ∖ {𝑥}) ∪ dom {𝑥}) = (dom (𝐹 ∖ {𝑥}) ∪ ∅))
22 un0 4355 . . . . . . . . . . . . . . . . 17 (dom (𝐹 ∖ {𝑥}) ∪ ∅) = dom (𝐹 ∖ {𝑥})
2321, 22eqtrdi 2793 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ Fin ∧ 𝑥𝐹 ∧ ¬ 𝑥 ∈ (V × V)) → (dom (𝐹 ∖ {𝑥}) ∪ dom {𝑥}) = dom (𝐹 ∖ {𝑥}))
2423fveq2d 6851 . . . . . . . . . . . . . . 15 ((𝐹 ∈ Fin ∧ 𝑥𝐹 ∧ ¬ 𝑥 ∈ (V × V)) → (♯‘(dom (𝐹 ∖ {𝑥}) ∪ dom {𝑥})) = (♯‘dom (𝐹 ∖ {𝑥})))
2516, 24eqtrid 2789 . . . . . . . . . . . . . 14 ((𝐹 ∈ Fin ∧ 𝑥𝐹 ∧ ¬ 𝑥 ∈ (V × V)) → (♯‘dom ((𝐹 ∖ {𝑥}) ∪ {𝑥})) = (♯‘dom (𝐹 ∖ {𝑥})))
26 diffi 9130 . . . . . . . . . . . . . . . . . . 19 (𝐹 ∈ Fin → (𝐹 ∖ {𝑥}) ∈ Fin)
27 dmfi 9281 . . . . . . . . . . . . . . . . . . 19 ((𝐹 ∖ {𝑥}) ∈ Fin → dom (𝐹 ∖ {𝑥}) ∈ Fin)
2826, 27syl 17 . . . . . . . . . . . . . . . . . 18 (𝐹 ∈ Fin → dom (𝐹 ∖ {𝑥}) ∈ Fin)
29 hashcl 14263 . . . . . . . . . . . . . . . . . 18 (dom (𝐹 ∖ {𝑥}) ∈ Fin → (♯‘dom (𝐹 ∖ {𝑥})) ∈ ℕ0)
3028, 29syl 17 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ Fin → (♯‘dom (𝐹 ∖ {𝑥})) ∈ ℕ0)
3130nn0red 12481 . . . . . . . . . . . . . . . 16 (𝐹 ∈ Fin → (♯‘dom (𝐹 ∖ {𝑥})) ∈ ℝ)
32 hashcl 14263 . . . . . . . . . . . . . . . . . 18 ((𝐹 ∖ {𝑥}) ∈ Fin → (♯‘(𝐹 ∖ {𝑥})) ∈ ℕ0)
3326, 32syl 17 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ Fin → (♯‘(𝐹 ∖ {𝑥})) ∈ ℕ0)
3433nn0red 12481 . . . . . . . . . . . . . . . 16 (𝐹 ∈ Fin → (♯‘(𝐹 ∖ {𝑥})) ∈ ℝ)
35 peano2re 11335 . . . . . . . . . . . . . . . . 17 ((♯‘(𝐹 ∖ {𝑥})) ∈ ℝ → ((♯‘(𝐹 ∖ {𝑥})) + 1) ∈ ℝ)
3634, 35syl 17 . . . . . . . . . . . . . . . 16 (𝐹 ∈ Fin → ((♯‘(𝐹 ∖ {𝑥})) + 1) ∈ ℝ)
37 fidomdm 9280 . . . . . . . . . . . . . . . . . 18 ((𝐹 ∖ {𝑥}) ∈ Fin → dom (𝐹 ∖ {𝑥}) ≼ (𝐹 ∖ {𝑥}))
3826, 37syl 17 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ Fin → dom (𝐹 ∖ {𝑥}) ≼ (𝐹 ∖ {𝑥}))
39 hashdom 14286 . . . . . . . . . . . . . . . . . 18 ((dom (𝐹 ∖ {𝑥}) ∈ Fin ∧ (𝐹 ∖ {𝑥}) ∈ Fin) → ((♯‘dom (𝐹 ∖ {𝑥})) ≤ (♯‘(𝐹 ∖ {𝑥})) ↔ dom (𝐹 ∖ {𝑥}) ≼ (𝐹 ∖ {𝑥})))
4028, 26, 39syl2anc 585 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ Fin → ((♯‘dom (𝐹 ∖ {𝑥})) ≤ (♯‘(𝐹 ∖ {𝑥})) ↔ dom (𝐹 ∖ {𝑥}) ≼ (𝐹 ∖ {𝑥})))
4138, 40mpbird 257 . . . . . . . . . . . . . . . 16 (𝐹 ∈ Fin → (♯‘dom (𝐹 ∖ {𝑥})) ≤ (♯‘(𝐹 ∖ {𝑥})))
4234ltp1d 12092 . . . . . . . . . . . . . . . 16 (𝐹 ∈ Fin → (♯‘(𝐹 ∖ {𝑥})) < ((♯‘(𝐹 ∖ {𝑥})) + 1))
4331, 34, 36, 41, 42lelttrd 11320 . . . . . . . . . . . . . . 15 (𝐹 ∈ Fin → (♯‘dom (𝐹 ∖ {𝑥})) < ((♯‘(𝐹 ∖ {𝑥})) + 1))
44433ad2ant1 1134 . . . . . . . . . . . . . 14 ((𝐹 ∈ Fin ∧ 𝑥𝐹 ∧ ¬ 𝑥 ∈ (V × V)) → (♯‘dom (𝐹 ∖ {𝑥})) < ((♯‘(𝐹 ∖ {𝑥})) + 1))
4525, 44eqbrtrd 5132 . . . . . . . . . . . . 13 ((𝐹 ∈ Fin ∧ 𝑥𝐹 ∧ ¬ 𝑥 ∈ (V × V)) → (♯‘dom ((𝐹 ∖ {𝑥}) ∪ {𝑥})) < ((♯‘(𝐹 ∖ {𝑥})) + 1))
46 snfi 8995 . . . . . . . . . . . . . . . . 17 {𝑥} ∈ Fin
47 disjdifr 4437 . . . . . . . . . . . . . . . . 17 ((𝐹 ∖ {𝑥}) ∩ {𝑥}) = ∅
48 hashun 14289 . . . . . . . . . . . . . . . . 17 (((𝐹 ∖ {𝑥}) ∈ Fin ∧ {𝑥} ∈ Fin ∧ ((𝐹 ∖ {𝑥}) ∩ {𝑥}) = ∅) → (♯‘((𝐹 ∖ {𝑥}) ∪ {𝑥})) = ((♯‘(𝐹 ∖ {𝑥})) + (♯‘{𝑥})))
4946, 47, 48mp3an23 1454 . . . . . . . . . . . . . . . 16 ((𝐹 ∖ {𝑥}) ∈ Fin → (♯‘((𝐹 ∖ {𝑥}) ∪ {𝑥})) = ((♯‘(𝐹 ∖ {𝑥})) + (♯‘{𝑥})))
5026, 49syl 17 . . . . . . . . . . . . . . 15 (𝐹 ∈ Fin → (♯‘((𝐹 ∖ {𝑥}) ∪ {𝑥})) = ((♯‘(𝐹 ∖ {𝑥})) + (♯‘{𝑥})))
51 hashsng 14276 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ V → (♯‘{𝑥}) = 1)
5251elv 3454 . . . . . . . . . . . . . . . 16 (♯‘{𝑥}) = 1
5352oveq2i 7373 . . . . . . . . . . . . . . 15 ((♯‘(𝐹 ∖ {𝑥})) + (♯‘{𝑥})) = ((♯‘(𝐹 ∖ {𝑥})) + 1)
5450, 53eqtr2di 2794 . . . . . . . . . . . . . 14 (𝐹 ∈ Fin → ((♯‘(𝐹 ∖ {𝑥})) + 1) = (♯‘((𝐹 ∖ {𝑥}) ∪ {𝑥})))
55543ad2ant1 1134 . . . . . . . . . . . . 13 ((𝐹 ∈ Fin ∧ 𝑥𝐹 ∧ ¬ 𝑥 ∈ (V × V)) → ((♯‘(𝐹 ∖ {𝑥})) + 1) = (♯‘((𝐹 ∖ {𝑥}) ∪ {𝑥})))
5645, 55breqtrd 5136 . . . . . . . . . . . 12 ((𝐹 ∈ Fin ∧ 𝑥𝐹 ∧ ¬ 𝑥 ∈ (V × V)) → (♯‘dom ((𝐹 ∖ {𝑥}) ∪ {𝑥})) < (♯‘((𝐹 ∖ {𝑥}) ∪ {𝑥})))
57 difsnid 4775 . . . . . . . . . . . . . . 15 (𝑥𝐹 → ((𝐹 ∖ {𝑥}) ∪ {𝑥}) = 𝐹)
5857dmeqd 5866 . . . . . . . . . . . . . 14 (𝑥𝐹 → dom ((𝐹 ∖ {𝑥}) ∪ {𝑥}) = dom 𝐹)
5958fveq2d 6851 . . . . . . . . . . . . 13 (𝑥𝐹 → (♯‘dom ((𝐹 ∖ {𝑥}) ∪ {𝑥})) = (♯‘dom 𝐹))
60593ad2ant2 1135 . . . . . . . . . . . 12 ((𝐹 ∈ Fin ∧ 𝑥𝐹 ∧ ¬ 𝑥 ∈ (V × V)) → (♯‘dom ((𝐹 ∖ {𝑥}) ∪ {𝑥})) = (♯‘dom 𝐹))
6157fveq2d 6851 . . . . . . . . . . . . 13 (𝑥𝐹 → (♯‘((𝐹 ∖ {𝑥}) ∪ {𝑥})) = (♯‘𝐹))
62613ad2ant2 1135 . . . . . . . . . . . 12 ((𝐹 ∈ Fin ∧ 𝑥𝐹 ∧ ¬ 𝑥 ∈ (V × V)) → (♯‘((𝐹 ∖ {𝑥}) ∪ {𝑥})) = (♯‘𝐹))
6356, 60, 623brtr3d 5141 . . . . . . . . . . 11 ((𝐹 ∈ Fin ∧ 𝑥𝐹 ∧ ¬ 𝑥 ∈ (V × V)) → (♯‘dom 𝐹) < (♯‘𝐹))
6463rexlimdv3a 3157 . . . . . . . . . 10 (𝐹 ∈ Fin → (∃𝑥𝐹 ¬ 𝑥 ∈ (V × V) → (♯‘dom 𝐹) < (♯‘𝐹)))
6514, 64biimtrid 241 . . . . . . . . 9 (𝐹 ∈ Fin → (¬ Rel 𝐹 → (♯‘dom 𝐹) < (♯‘𝐹)))
6665imp 408 . . . . . . . 8 ((𝐹 ∈ Fin ∧ ¬ Rel 𝐹) → (♯‘dom 𝐹) < (♯‘𝐹))
678, 66gtned 11297 . . . . . . 7 ((𝐹 ∈ Fin ∧ ¬ Rel 𝐹) → (♯‘𝐹) ≠ (♯‘dom 𝐹))
6867ex 414 . . . . . 6 (𝐹 ∈ Fin → (¬ Rel 𝐹 → (♯‘𝐹) ≠ (♯‘dom 𝐹)))
6968necon4bd 2964 . . . . 5 (𝐹 ∈ Fin → ((♯‘𝐹) = (♯‘dom 𝐹) → Rel 𝐹))
7069imp 408 . . . 4 ((𝐹 ∈ Fin ∧ (♯‘𝐹) = (♯‘dom 𝐹)) → Rel 𝐹)
71 2nalexn 1831 . . . . . . . 8 (¬ ∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧) ↔ ∃𝑥𝑦 ¬ ∀𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧))
72 df-ne 2945 . . . . . . . . . . . . 13 (𝑦𝑧 ↔ ¬ 𝑦 = 𝑧)
7372anbi2i 624 . . . . . . . . . . . 12 (((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∧ 𝑦𝑧) ↔ ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∧ ¬ 𝑦 = 𝑧))
74 annim 405 . . . . . . . . . . . 12 (((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∧ ¬ 𝑦 = 𝑧) ↔ ¬ ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧))
7573, 74bitri 275 . . . . . . . . . . 11 (((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∧ 𝑦𝑧) ↔ ¬ ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧))
7675exbii 1851 . . . . . . . . . 10 (∃𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∧ 𝑦𝑧) ↔ ∃𝑧 ¬ ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧))
77 exnal 1830 . . . . . . . . . 10 (∃𝑧 ¬ ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧) ↔ ¬ ∀𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧))
7876, 77bitr2i 276 . . . . . . . . 9 (¬ ∀𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧) ↔ ∃𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∧ 𝑦𝑧))
79782exbii 1852 . . . . . . . 8 (∃𝑥𝑦 ¬ ∀𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧) ↔ ∃𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∧ 𝑦𝑧))
8071, 79bitri 275 . . . . . . 7 (¬ ∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧) ↔ ∃𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∧ 𝑦𝑧))
817adantr 482 . . . . . . . . . . 11 ((𝐹 ∈ Fin ∧ ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∧ 𝑦𝑧)) → (♯‘dom 𝐹) ∈ ℝ)
82 2re 12234 . . . . . . . . . . . . 13 2 ∈ ℝ
83 diffi 9130 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ Fin → (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}) ∈ Fin)
84 dmfi 9281 . . . . . . . . . . . . . . . . 17 ((𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}) ∈ Fin → dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}) ∈ Fin)
8583, 84syl 17 . . . . . . . . . . . . . . . 16 (𝐹 ∈ Fin → dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}) ∈ Fin)
86 hashcl 14263 . . . . . . . . . . . . . . . 16 (dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}) ∈ Fin → (♯‘dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩})) ∈ ℕ0)
8785, 86syl 17 . . . . . . . . . . . . . . 15 (𝐹 ∈ Fin → (♯‘dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩})) ∈ ℕ0)
8887nn0red 12481 . . . . . . . . . . . . . 14 (𝐹 ∈ Fin → (♯‘dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩})) ∈ ℝ)
8988adantr 482 . . . . . . . . . . . . 13 ((𝐹 ∈ Fin ∧ ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∧ 𝑦𝑧)) → (♯‘dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩})) ∈ ℝ)
90 readdcl 11141 . . . . . . . . . . . . 13 ((2 ∈ ℝ ∧ (♯‘dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩})) ∈ ℝ) → (2 + (♯‘dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}))) ∈ ℝ)
9182, 89, 90sylancr 588 . . . . . . . . . . . 12 ((𝐹 ∈ Fin ∧ ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∧ 𝑦𝑧)) → (2 + (♯‘dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}))) ∈ ℝ)
92 hashcl 14263 . . . . . . . . . . . . . 14 (𝐹 ∈ Fin → (♯‘𝐹) ∈ ℕ0)
9392nn0red 12481 . . . . . . . . . . . . 13 (𝐹 ∈ Fin → (♯‘𝐹) ∈ ℝ)
9493adantr 482 . . . . . . . . . . . 12 ((𝐹 ∈ Fin ∧ ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∧ 𝑦𝑧)) → (♯‘𝐹) ∈ ℝ)
95 1re 11162 . . . . . . . . . . . . . . 15 1 ∈ ℝ
96 readdcl 11141 . . . . . . . . . . . . . . 15 ((1 ∈ ℝ ∧ (♯‘dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩})) ∈ ℝ) → (1 + (♯‘dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}))) ∈ ℝ)
9795, 88, 96sylancr 588 . . . . . . . . . . . . . 14 (𝐹 ∈ Fin → (1 + (♯‘dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}))) ∈ ℝ)
9897adantr 482 . . . . . . . . . . . . 13 ((𝐹 ∈ Fin ∧ ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∧ 𝑦𝑧)) → (1 + (♯‘dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}))) ∈ ℝ)
9982, 88, 90sylancr 588 . . . . . . . . . . . . . 14 (𝐹 ∈ Fin → (2 + (♯‘dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}))) ∈ ℝ)
10099adantr 482 . . . . . . . . . . . . 13 ((𝐹 ∈ Fin ∧ ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∧ 𝑦𝑧)) → (2 + (♯‘dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}))) ∈ ℝ)
101 opex 5426 . . . . . . . . . . . . . . . . . . . . 21 𝑥, 𝑦⟩ ∈ V
102 opex 5426 . . . . . . . . . . . . . . . . . . . . 21 𝑥, 𝑧⟩ ∈ V
103101, 102prss 4785 . . . . . . . . . . . . . . . . . . . 20 ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ↔ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩} ⊆ 𝐹)
104 undif 4446 . . . . . . . . . . . . . . . . . . . 20 ({⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩} ⊆ 𝐹 ↔ ({⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩} ∪ (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩})) = 𝐹)
105103, 104sylbb 218 . . . . . . . . . . . . . . . . . . 19 ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → ({⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩} ∪ (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩})) = 𝐹)
106105dmeqd 5866 . . . . . . . . . . . . . . . . . 18 ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → dom ({⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩} ∪ (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩})) = dom 𝐹)
107 dmun 5871 . . . . . . . . . . . . . . . . . 18 dom ({⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩} ∪ (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩})) = (dom {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩} ∪ dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}))
108106, 107eqtr3di 2792 . . . . . . . . . . . . . . . . 17 ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → dom 𝐹 = (dom {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩} ∪ dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩})))
109 vex 3452 . . . . . . . . . . . . . . . . . . . 20 𝑦 ∈ V
110 vex 3452 . . . . . . . . . . . . . . . . . . . 20 𝑧 ∈ V
111109, 110dmprop 6174 . . . . . . . . . . . . . . . . . . 19 dom {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩} = {𝑥, 𝑥}
112 dfsn2 4604 . . . . . . . . . . . . . . . . . . 19 {𝑥} = {𝑥, 𝑥}
113111, 112eqtr4i 2768 . . . . . . . . . . . . . . . . . 18 dom {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩} = {𝑥}
114113uneq1i 4124 . . . . . . . . . . . . . . . . 17 (dom {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩} ∪ dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩})) = ({𝑥} ∪ dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}))
115108, 114eqtrdi 2793 . . . . . . . . . . . . . . . 16 ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → dom 𝐹 = ({𝑥} ∪ dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩})))
116115fveq2d 6851 . . . . . . . . . . . . . . 15 ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → (♯‘dom 𝐹) = (♯‘({𝑥} ∪ dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}))))
117116ad2antrl 727 . . . . . . . . . . . . . 14 ((𝐹 ∈ Fin ∧ ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∧ 𝑦𝑧)) → (♯‘dom 𝐹) = (♯‘({𝑥} ∪ dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}))))
118 hashun2 14290 . . . . . . . . . . . . . . . . 17 (({𝑥} ∈ Fin ∧ dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}) ∈ Fin) → (♯‘({𝑥} ∪ dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}))) ≤ ((♯‘{𝑥}) + (♯‘dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}))))
11946, 85, 118sylancr 588 . . . . . . . . . . . . . . . 16 (𝐹 ∈ Fin → (♯‘({𝑥} ∪ dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}))) ≤ ((♯‘{𝑥}) + (♯‘dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}))))
12052oveq1i 7372 . . . . . . . . . . . . . . . 16 ((♯‘{𝑥}) + (♯‘dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}))) = (1 + (♯‘dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩})))
121119, 120breqtrdi 5151 . . . . . . . . . . . . . . 15 (𝐹 ∈ Fin → (♯‘({𝑥} ∪ dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}))) ≤ (1 + (♯‘dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}))))
122121adantr 482 . . . . . . . . . . . . . 14 ((𝐹 ∈ Fin ∧ ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∧ 𝑦𝑧)) → (♯‘({𝑥} ∪ dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}))) ≤ (1 + (♯‘dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}))))
123117, 122eqbrtrd 5132 . . . . . . . . . . . . 13 ((𝐹 ∈ Fin ∧ ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∧ 𝑦𝑧)) → (♯‘dom 𝐹) ≤ (1 + (♯‘dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}))))
124 1lt2 12331 . . . . . . . . . . . . . . 15 1 < 2
125 ltadd1 11629 . . . . . . . . . . . . . . . 16 ((1 ∈ ℝ ∧ 2 ∈ ℝ ∧ (♯‘dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩})) ∈ ℝ) → (1 < 2 ↔ (1 + (♯‘dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}))) < (2 + (♯‘dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩})))))
12695, 82, 88, 125mp3an12i 1466 . . . . . . . . . . . . . . 15 (𝐹 ∈ Fin → (1 < 2 ↔ (1 + (♯‘dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}))) < (2 + (♯‘dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩})))))
127124, 126mpbii 232 . . . . . . . . . . . . . 14 (𝐹 ∈ Fin → (1 + (♯‘dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}))) < (2 + (♯‘dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}))))
128127adantr 482 . . . . . . . . . . . . 13 ((𝐹 ∈ Fin ∧ ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∧ 𝑦𝑧)) → (1 + (♯‘dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}))) < (2 + (♯‘dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}))))
12981, 98, 100, 123, 128lelttrd 11320 . . . . . . . . . . . 12 ((𝐹 ∈ Fin ∧ ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∧ 𝑦𝑧)) → (♯‘dom 𝐹) < (2 + (♯‘dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}))))
130 fidomdm 9280 . . . . . . . . . . . . . . . . 17 ((𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}) ∈ Fin → dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}) ≼ (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}))
13183, 130syl 17 . . . . . . . . . . . . . . . 16 (𝐹 ∈ Fin → dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}) ≼ (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}))
132 hashdom 14286 . . . . . . . . . . . . . . . . 17 ((dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}) ∈ Fin ∧ (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}) ∈ Fin) → ((♯‘dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩})) ≤ (♯‘(𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩})) ↔ dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}) ≼ (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩})))
13385, 83, 132syl2anc 585 . . . . . . . . . . . . . . . 16 (𝐹 ∈ Fin → ((♯‘dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩})) ≤ (♯‘(𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩})) ↔ dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}) ≼ (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩})))
134131, 133mpbird 257 . . . . . . . . . . . . . . 15 (𝐹 ∈ Fin → (♯‘dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩})) ≤ (♯‘(𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩})))
135 hashcl 14263 . . . . . . . . . . . . . . . . . 18 ((𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}) ∈ Fin → (♯‘(𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩})) ∈ ℕ0)
13683, 135syl 17 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ Fin → (♯‘(𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩})) ∈ ℕ0)
137136nn0red 12481 . . . . . . . . . . . . . . . 16 (𝐹 ∈ Fin → (♯‘(𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩})) ∈ ℝ)
138 leadd2 11631 . . . . . . . . . . . . . . . . 17 (((♯‘dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩})) ∈ ℝ ∧ (♯‘(𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩})) ∈ ℝ ∧ 2 ∈ ℝ) → ((♯‘dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩})) ≤ (♯‘(𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩})) ↔ (2 + (♯‘dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}))) ≤ (2 + (♯‘(𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩})))))
13982, 138mp3an3 1451 . . . . . . . . . . . . . . . 16 (((♯‘dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩})) ∈ ℝ ∧ (♯‘(𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩})) ∈ ℝ) → ((♯‘dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩})) ≤ (♯‘(𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩})) ↔ (2 + (♯‘dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}))) ≤ (2 + (♯‘(𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩})))))
14088, 137, 139syl2anc 585 . . . . . . . . . . . . . . 15 (𝐹 ∈ Fin → ((♯‘dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩})) ≤ (♯‘(𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩})) ↔ (2 + (♯‘dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}))) ≤ (2 + (♯‘(𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩})))))
141134, 140mpbid 231 . . . . . . . . . . . . . 14 (𝐹 ∈ Fin → (2 + (♯‘dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}))) ≤ (2 + (♯‘(𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}))))
142141adantr 482 . . . . . . . . . . . . 13 ((𝐹 ∈ Fin ∧ ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∧ 𝑦𝑧)) → (2 + (♯‘dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}))) ≤ (2 + (♯‘(𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}))))
143 prfi 9273 . . . . . . . . . . . . . . . . 17 {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩} ∈ Fin
144 disjdif 4436 . . . . . . . . . . . . . . . . 17 ({⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩} ∩ (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩})) = ∅
145 hashun 14289 . . . . . . . . . . . . . . . . 17 (({⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩} ∈ Fin ∧ (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}) ∈ Fin ∧ ({⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩} ∩ (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩})) = ∅) → (♯‘({⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩} ∪ (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}))) = ((♯‘{⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}) + (♯‘(𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}))))
146143, 144, 145mp3an13 1453 . . . . . . . . . . . . . . . 16 ((𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}) ∈ Fin → (♯‘({⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩} ∪ (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}))) = ((♯‘{⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}) + (♯‘(𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}))))
14783, 146syl 17 . . . . . . . . . . . . . . 15 (𝐹 ∈ Fin → (♯‘({⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩} ∪ (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}))) = ((♯‘{⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}) + (♯‘(𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}))))
148147adantr 482 . . . . . . . . . . . . . 14 ((𝐹 ∈ Fin ∧ ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∧ 𝑦𝑧)) → (♯‘({⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩} ∪ (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}))) = ((♯‘{⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}) + (♯‘(𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}))))
149105fveq2d 6851 . . . . . . . . . . . . . . 15 ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → (♯‘({⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩} ∪ (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}))) = (♯‘𝐹))
150149ad2antrl 727 . . . . . . . . . . . . . 14 ((𝐹 ∈ Fin ∧ ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∧ 𝑦𝑧)) → (♯‘({⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩} ∪ (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}))) = (♯‘𝐹))
151 vex 3452 . . . . . . . . . . . . . . . . . . . 20 𝑥 ∈ V
152151, 109opth 5438 . . . . . . . . . . . . . . . . . . 19 (⟨𝑥, 𝑦⟩ = ⟨𝑥, 𝑧⟩ ↔ (𝑥 = 𝑥𝑦 = 𝑧))
153152simprbi 498 . . . . . . . . . . . . . . . . . 18 (⟨𝑥, 𝑦⟩ = ⟨𝑥, 𝑧⟩ → 𝑦 = 𝑧)
154153necon3i 2977 . . . . . . . . . . . . . . . . 17 (𝑦𝑧 → ⟨𝑥, 𝑦⟩ ≠ ⟨𝑥, 𝑧⟩)
155 hashprg 14302 . . . . . . . . . . . . . . . . . 18 ((⟨𝑥, 𝑦⟩ ∈ V ∧ ⟨𝑥, 𝑧⟩ ∈ V) → (⟨𝑥, 𝑦⟩ ≠ ⟨𝑥, 𝑧⟩ ↔ (♯‘{⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}) = 2))
156101, 102, 155mp2an 691 . . . . . . . . . . . . . . . . 17 (⟨𝑥, 𝑦⟩ ≠ ⟨𝑥, 𝑧⟩ ↔ (♯‘{⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}) = 2)
157154, 156sylib 217 . . . . . . . . . . . . . . . 16 (𝑦𝑧 → (♯‘{⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}) = 2)
158157oveq1d 7377 . . . . . . . . . . . . . . 15 (𝑦𝑧 → ((♯‘{⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}) + (♯‘(𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}))) = (2 + (♯‘(𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}))))
159158ad2antll 728 . . . . . . . . . . . . . 14 ((𝐹 ∈ Fin ∧ ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∧ 𝑦𝑧)) → ((♯‘{⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}) + (♯‘(𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}))) = (2 + (♯‘(𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}))))
160148, 150, 1593eqtr3rd 2786 . . . . . . . . . . . . 13 ((𝐹 ∈ Fin ∧ ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∧ 𝑦𝑧)) → (2 + (♯‘(𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}))) = (♯‘𝐹))
161142, 160breqtrd 5136 . . . . . . . . . . . 12 ((𝐹 ∈ Fin ∧ ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∧ 𝑦𝑧)) → (2 + (♯‘dom (𝐹 ∖ {⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑧⟩}))) ≤ (♯‘𝐹))
16281, 91, 94, 129, 161ltletrd 11322 . . . . . . . . . . 11 ((𝐹 ∈ Fin ∧ ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∧ 𝑦𝑧)) → (♯‘dom 𝐹) < (♯‘𝐹))
16381, 162gtned 11297 . . . . . . . . . 10 ((𝐹 ∈ Fin ∧ ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∧ 𝑦𝑧)) → (♯‘𝐹) ≠ (♯‘dom 𝐹))
164163ex 414 . . . . . . . . 9 (𝐹 ∈ Fin → (((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∧ 𝑦𝑧) → (♯‘𝐹) ≠ (♯‘dom 𝐹)))
165164exlimdv 1937 . . . . . . . 8 (𝐹 ∈ Fin → (∃𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∧ 𝑦𝑧) → (♯‘𝐹) ≠ (♯‘dom 𝐹)))
166165exlimdvv 1938 . . . . . . 7 (𝐹 ∈ Fin → (∃𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∧ 𝑦𝑧) → (♯‘𝐹) ≠ (♯‘dom 𝐹)))
16780, 166biimtrid 241 . . . . . 6 (𝐹 ∈ Fin → (¬ ∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧) → (♯‘𝐹) ≠ (♯‘dom 𝐹)))
168167necon4bd 2964 . . . . 5 (𝐹 ∈ Fin → ((♯‘𝐹) = (♯‘dom 𝐹) → ∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧)))
169168imp 408 . . . 4 ((𝐹 ∈ Fin ∧ (♯‘𝐹) = (♯‘dom 𝐹)) → ∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧))
170 dffun4 6517 . . . 4 (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧)))
17170, 169, 170sylanbrc 584 . . 3 ((𝐹 ∈ Fin ∧ (♯‘𝐹) = (♯‘dom 𝐹)) → Fun 𝐹)
172171ex 414 . 2 (𝐹 ∈ Fin → ((♯‘𝐹) = (♯‘dom 𝐹) → Fun 𝐹))
1733, 172impbid2 225 1 (𝐹 ∈ Fin → (Fun 𝐹 ↔ (♯‘𝐹) = (♯‘dom 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  w3a 1088  wal 1540   = wceq 1542  wex 1782  wcel 2107  wne 2944  wral 3065  wrex 3074  Vcvv 3448  cdif 3912  cun 3913  cin 3914  wss 3915  c0 4287  {csn 4591  {cpr 4593  cop 4597   class class class wbr 5110   × cxp 5636  dom cdm 5638  Rel wrel 5643  Fun wfun 6495   Fn wfn 6496  cfv 6501  (class class class)co 7362  cdom 8888  Fincfn 8890  cr 11057  1c1 11059   + caddc 11061   < clt 11196  cle 11197  2c2 12215  0cn0 12420  chash 14237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-cnex 11114  ax-resscn 11115  ax-1cn 11116  ax-icn 11117  ax-addcl 11118  ax-addrcl 11119  ax-mulcl 11120  ax-mulrcl 11121  ax-mulcom 11122  ax-addass 11123  ax-mulass 11124  ax-distr 11125  ax-i2m1 11126  ax-1ne0 11127  ax-1rid 11128  ax-rnegex 11129  ax-rrecex 11130  ax-cnre 11131  ax-pre-lttri 11132  ax-pre-lttrn 11133  ax-pre-ltadd 11134  ax-pre-mulgt0 11135
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-int 4913  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-1st 7926  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-oadd 8421  df-er 8655  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-dju 9844  df-card 9882  df-pnf 11198  df-mnf 11199  df-xr 11200  df-ltxr 11201  df-le 11202  df-sub 11394  df-neg 11395  df-nn 12161  df-2 12223  df-n0 12421  df-xnn0 12493  df-z 12507  df-uz 12771  df-fz 13432  df-hash 14238
This theorem is referenced by:  hashres  14345  hashreshashfun  14346  ccatalpha  14488  cycpmconjslem2  32046  hashfundm  33746
  Copyright terms: Public domain W3C validator