Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fpr | Structured version Visualization version GIF version |
Description: A function with a domain of two elements. (Contributed by Jeff Madsen, 20-Jun-2010.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
Ref | Expression |
---|---|
fpr.1 | ⊢ 𝐴 ∈ V |
fpr.2 | ⊢ 𝐵 ∈ V |
fpr.3 | ⊢ 𝐶 ∈ V |
fpr.4 | ⊢ 𝐷 ∈ V |
Ref | Expression |
---|---|
fpr | ⊢ (𝐴 ≠ 𝐵 → {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}:{𝐴, 𝐵}⟶{𝐶, 𝐷}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fpr.1 | . . . 4 ⊢ 𝐴 ∈ V | |
2 | fpr.2 | . . . 4 ⊢ 𝐵 ∈ V | |
3 | fpr.3 | . . . 4 ⊢ 𝐶 ∈ V | |
4 | fpr.4 | . . . 4 ⊢ 𝐷 ∈ V | |
5 | 1, 2, 3, 4 | funpr 6540 | . . 3 ⊢ (𝐴 ≠ 𝐵 → Fun {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}) |
6 | 3, 4 | dmprop 6155 | . . 3 ⊢ dom {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} = {𝐴, 𝐵} |
7 | df-fn 6482 | . . 3 ⊢ ({〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} Fn {𝐴, 𝐵} ↔ (Fun {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} ∧ dom {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} = {𝐴, 𝐵})) | |
8 | 5, 6, 7 | sylanblrc 590 | . 2 ⊢ (𝐴 ≠ 𝐵 → {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} Fn {𝐴, 𝐵}) |
9 | df-pr 4576 | . . . . 5 ⊢ {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} = ({〈𝐴, 𝐶〉} ∪ {〈𝐵, 𝐷〉}) | |
10 | 9 | rneqi 5878 | . . . 4 ⊢ ran {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} = ran ({〈𝐴, 𝐶〉} ∪ {〈𝐵, 𝐷〉}) |
11 | rnun 6084 | . . . 4 ⊢ ran ({〈𝐴, 𝐶〉} ∪ {〈𝐵, 𝐷〉}) = (ran {〈𝐴, 𝐶〉} ∪ ran {〈𝐵, 𝐷〉}) | |
12 | 1 | rnsnop 6162 | . . . . . 6 ⊢ ran {〈𝐴, 𝐶〉} = {𝐶} |
13 | 2 | rnsnop 6162 | . . . . . 6 ⊢ ran {〈𝐵, 𝐷〉} = {𝐷} |
14 | 12, 13 | uneq12i 4108 | . . . . 5 ⊢ (ran {〈𝐴, 𝐶〉} ∪ ran {〈𝐵, 𝐷〉}) = ({𝐶} ∪ {𝐷}) |
15 | df-pr 4576 | . . . . 5 ⊢ {𝐶, 𝐷} = ({𝐶} ∪ {𝐷}) | |
16 | 14, 15 | eqtr4i 2767 | . . . 4 ⊢ (ran {〈𝐴, 𝐶〉} ∪ ran {〈𝐵, 𝐷〉}) = {𝐶, 𝐷} |
17 | 10, 11, 16 | 3eqtri 2768 | . . 3 ⊢ ran {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} = {𝐶, 𝐷} |
18 | 17 | eqimssi 3990 | . 2 ⊢ ran {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} ⊆ {𝐶, 𝐷} |
19 | df-f 6483 | . 2 ⊢ ({〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}:{𝐴, 𝐵}⟶{𝐶, 𝐷} ↔ ({〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} Fn {𝐴, 𝐵} ∧ ran {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} ⊆ {𝐶, 𝐷})) | |
20 | 8, 18, 19 | sylanblrc 590 | 1 ⊢ (𝐴 ≠ 𝐵 → {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}:{𝐴, 𝐵}⟶{𝐶, 𝐷}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ≠ wne 2940 Vcvv 3441 ∪ cun 3896 ⊆ wss 3898 {csn 4573 {cpr 4575 〈cop 4579 dom cdm 5620 ran crn 5621 Fun wfun 6473 Fn wfn 6474 ⟶wf 6475 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-12 2170 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pr 5372 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-sn 4574 df-pr 4576 df-op 4580 df-br 5093 df-opab 5155 df-id 5518 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-fun 6481 df-fn 6482 df-f 6483 |
This theorem is referenced by: fprg 7083 fprb 7125 1sdomOLD 9114 axlowdimlem4 27602 coinfliprv 32749 poimirlem22 35912 nnsum3primes4 45599 nnsum3primesgbe 45603 |
Copyright terms: Public domain | W3C validator |