Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fpr | Structured version Visualization version GIF version |
Description: A function with a domain of two elements. (Contributed by Jeff Madsen, 20-Jun-2010.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
Ref | Expression |
---|---|
fpr.1 | ⊢ 𝐴 ∈ V |
fpr.2 | ⊢ 𝐵 ∈ V |
fpr.3 | ⊢ 𝐶 ∈ V |
fpr.4 | ⊢ 𝐷 ∈ V |
Ref | Expression |
---|---|
fpr | ⊢ (𝐴 ≠ 𝐵 → {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}:{𝐴, 𝐵}⟶{𝐶, 𝐷}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fpr.1 | . . . 4 ⊢ 𝐴 ∈ V | |
2 | fpr.2 | . . . 4 ⊢ 𝐵 ∈ V | |
3 | fpr.3 | . . . 4 ⊢ 𝐶 ∈ V | |
4 | fpr.4 | . . . 4 ⊢ 𝐷 ∈ V | |
5 | 1, 2, 3, 4 | funpr 6490 | . . 3 ⊢ (𝐴 ≠ 𝐵 → Fun {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}) |
6 | 3, 4 | dmprop 6120 | . . 3 ⊢ dom {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} = {𝐴, 𝐵} |
7 | df-fn 6436 | . . 3 ⊢ ({〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} Fn {𝐴, 𝐵} ↔ (Fun {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} ∧ dom {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} = {𝐴, 𝐵})) | |
8 | 5, 6, 7 | sylanblrc 590 | . 2 ⊢ (𝐴 ≠ 𝐵 → {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} Fn {𝐴, 𝐵}) |
9 | df-pr 4564 | . . . . 5 ⊢ {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} = ({〈𝐴, 𝐶〉} ∪ {〈𝐵, 𝐷〉}) | |
10 | 9 | rneqi 5846 | . . . 4 ⊢ ran {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} = ran ({〈𝐴, 𝐶〉} ∪ {〈𝐵, 𝐷〉}) |
11 | rnun 6049 | . . . 4 ⊢ ran ({〈𝐴, 𝐶〉} ∪ {〈𝐵, 𝐷〉}) = (ran {〈𝐴, 𝐶〉} ∪ ran {〈𝐵, 𝐷〉}) | |
12 | 1 | rnsnop 6127 | . . . . . 6 ⊢ ran {〈𝐴, 𝐶〉} = {𝐶} |
13 | 2 | rnsnop 6127 | . . . . . 6 ⊢ ran {〈𝐵, 𝐷〉} = {𝐷} |
14 | 12, 13 | uneq12i 4095 | . . . . 5 ⊢ (ran {〈𝐴, 𝐶〉} ∪ ran {〈𝐵, 𝐷〉}) = ({𝐶} ∪ {𝐷}) |
15 | df-pr 4564 | . . . . 5 ⊢ {𝐶, 𝐷} = ({𝐶} ∪ {𝐷}) | |
16 | 14, 15 | eqtr4i 2769 | . . . 4 ⊢ (ran {〈𝐴, 𝐶〉} ∪ ran {〈𝐵, 𝐷〉}) = {𝐶, 𝐷} |
17 | 10, 11, 16 | 3eqtri 2770 | . . 3 ⊢ ran {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} = {𝐶, 𝐷} |
18 | 17 | eqimssi 3979 | . 2 ⊢ ran {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} ⊆ {𝐶, 𝐷} |
19 | df-f 6437 | . 2 ⊢ ({〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}:{𝐴, 𝐵}⟶{𝐶, 𝐷} ↔ ({〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} Fn {𝐴, 𝐵} ∧ ran {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} ⊆ {𝐶, 𝐷})) | |
20 | 8, 18, 19 | sylanblrc 590 | 1 ⊢ (𝐴 ≠ 𝐵 → {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}:{𝐴, 𝐵}⟶{𝐶, 𝐷}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 Vcvv 3432 ∪ cun 3885 ⊆ wss 3887 {csn 4561 {cpr 4563 〈cop 4567 dom cdm 5589 ran crn 5590 Fun wfun 6427 Fn wfn 6428 ⟶wf 6429 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-fun 6435 df-fn 6436 df-f 6437 |
This theorem is referenced by: fprg 7027 fprb 7069 1sdom 9025 axlowdimlem4 27313 coinfliprv 32449 poimirlem22 35799 nnsum3primes4 45240 nnsum3primesgbe 45244 |
Copyright terms: Public domain | W3C validator |