MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fpr Structured version   Visualization version   GIF version

Theorem fpr 6912
Description: A function with a domain of two elements. (Contributed by Jeff Madsen, 20-Jun-2010.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Hypotheses
Ref Expression
fpr.1 𝐴 ∈ V
fpr.2 𝐵 ∈ V
fpr.3 𝐶 ∈ V
fpr.4 𝐷 ∈ V
Assertion
Ref Expression
fpr (𝐴𝐵 → {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}:{𝐴, 𝐵}⟶{𝐶, 𝐷})

Proof of Theorem fpr
StepHypRef Expression
1 fpr.1 . . . 4 𝐴 ∈ V
2 fpr.2 . . . 4 𝐵 ∈ V
3 fpr.3 . . . 4 𝐶 ∈ V
4 fpr.4 . . . 4 𝐷 ∈ V
51, 2, 3, 4funpr 6407 . . 3 (𝐴𝐵 → Fun {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩})
63, 4dmprop 6072 . . 3 dom {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} = {𝐴, 𝐵}
7 df-fn 6355 . . 3 ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} Fn {𝐴, 𝐵} ↔ (Fun {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} ∧ dom {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} = {𝐴, 𝐵}))
85, 6, 7sylanblrc 590 . 2 (𝐴𝐵 → {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} Fn {𝐴, 𝐵})
9 df-pr 4567 . . . . 5 {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} = ({⟨𝐴, 𝐶⟩} ∪ {⟨𝐵, 𝐷⟩})
109rneqi 5806 . . . 4 ran {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} = ran ({⟨𝐴, 𝐶⟩} ∪ {⟨𝐵, 𝐷⟩})
11 rnun 6002 . . . 4 ran ({⟨𝐴, 𝐶⟩} ∪ {⟨𝐵, 𝐷⟩}) = (ran {⟨𝐴, 𝐶⟩} ∪ ran {⟨𝐵, 𝐷⟩})
121rnsnop 6079 . . . . . 6 ran {⟨𝐴, 𝐶⟩} = {𝐶}
132rnsnop 6079 . . . . . 6 ran {⟨𝐵, 𝐷⟩} = {𝐷}
1412, 13uneq12i 4141 . . . . 5 (ran {⟨𝐴, 𝐶⟩} ∪ ran {⟨𝐵, 𝐷⟩}) = ({𝐶} ∪ {𝐷})
15 df-pr 4567 . . . . 5 {𝐶, 𝐷} = ({𝐶} ∪ {𝐷})
1614, 15eqtr4i 2852 . . . 4 (ran {⟨𝐴, 𝐶⟩} ∪ ran {⟨𝐵, 𝐷⟩}) = {𝐶, 𝐷}
1710, 11, 163eqtri 2853 . . 3 ran {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} = {𝐶, 𝐷}
1817eqimssi 4029 . 2 ran {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} ⊆ {𝐶, 𝐷}
19 df-f 6356 . 2 ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}:{𝐴, 𝐵}⟶{𝐶, 𝐷} ↔ ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} Fn {𝐴, 𝐵} ∧ ran {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} ⊆ {𝐶, 𝐷}))
208, 18, 19sylanblrc 590 1 (𝐴𝐵 → {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}:{𝐴, 𝐵}⟶{𝐶, 𝐷})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1530  wcel 2107  wne 3021  Vcvv 3500  cun 3938  wss 3940  {csn 4564  {cpr 4566  cop 4570  dom cdm 5554  ran crn 5555  Fun wfun 6346   Fn wfn 6347  wf 6348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-sep 5200  ax-nul 5207  ax-pr 5326
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-ral 3148  df-rex 3149  df-rab 3152  df-v 3502  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-nul 4296  df-if 4471  df-sn 4565  df-pr 4567  df-op 4571  df-br 5064  df-opab 5126  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-fun 6354  df-fn 6355  df-f 6356
This theorem is referenced by:  fprg  6913  fprb  6952  1sdom  8710  axlowdimlem4  26648  coinfliprv  31629  poimirlem22  34784  nnsum3primes4  43788  nnsum3primesgbe  43792
  Copyright terms: Public domain W3C validator