MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fpr Structured version   Visualization version   GIF version

Theorem fpr 7188
Description: A function with a domain of two elements. (Contributed by Jeff Madsen, 20-Jun-2010.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Hypotheses
Ref Expression
fpr.1 𝐴 ∈ V
fpr.2 𝐵 ∈ V
fpr.3 𝐶 ∈ V
fpr.4 𝐷 ∈ V
Assertion
Ref Expression
fpr (𝐴𝐵 → {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}:{𝐴, 𝐵}⟶{𝐶, 𝐷})

Proof of Theorem fpr
StepHypRef Expression
1 fpr.1 . . . 4 𝐴 ∈ V
2 fpr.2 . . . 4 𝐵 ∈ V
3 fpr.3 . . . 4 𝐶 ∈ V
4 fpr.4 . . . 4 𝐷 ∈ V
51, 2, 3, 4funpr 6634 . . 3 (𝐴𝐵 → Fun {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩})
63, 4dmprop 6248 . . 3 dom {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} = {𝐴, 𝐵}
7 df-fn 6576 . . 3 ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} Fn {𝐴, 𝐵} ↔ (Fun {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} ∧ dom {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} = {𝐴, 𝐵}))
85, 6, 7sylanblrc 589 . 2 (𝐴𝐵 → {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} Fn {𝐴, 𝐵})
9 df-pr 4651 . . . . 5 {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} = ({⟨𝐴, 𝐶⟩} ∪ {⟨𝐵, 𝐷⟩})
109rneqi 5962 . . . 4 ran {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} = ran ({⟨𝐴, 𝐶⟩} ∪ {⟨𝐵, 𝐷⟩})
11 rnun 6177 . . . 4 ran ({⟨𝐴, 𝐶⟩} ∪ {⟨𝐵, 𝐷⟩}) = (ran {⟨𝐴, 𝐶⟩} ∪ ran {⟨𝐵, 𝐷⟩})
121rnsnop 6255 . . . . . 6 ran {⟨𝐴, 𝐶⟩} = {𝐶}
132rnsnop 6255 . . . . . 6 ran {⟨𝐵, 𝐷⟩} = {𝐷}
1412, 13uneq12i 4189 . . . . 5 (ran {⟨𝐴, 𝐶⟩} ∪ ran {⟨𝐵, 𝐷⟩}) = ({𝐶} ∪ {𝐷})
15 df-pr 4651 . . . . 5 {𝐶, 𝐷} = ({𝐶} ∪ {𝐷})
1614, 15eqtr4i 2771 . . . 4 (ran {⟨𝐴, 𝐶⟩} ∪ ran {⟨𝐵, 𝐷⟩}) = {𝐶, 𝐷}
1710, 11, 163eqtri 2772 . . 3 ran {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} = {𝐶, 𝐷}
1817eqimssi 4069 . 2 ran {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} ⊆ {𝐶, 𝐷}
19 df-f 6577 . 2 ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}:{𝐴, 𝐵}⟶{𝐶, 𝐷} ↔ ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} Fn {𝐴, 𝐵} ∧ ran {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} ⊆ {𝐶, 𝐷}))
208, 18, 19sylanblrc 589 1 (𝐴𝐵 → {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}:{𝐴, 𝐵}⟶{𝐶, 𝐷})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  wne 2946  Vcvv 3488  cun 3974  wss 3976  {csn 4648  {cpr 4650  cop 4654  dom cdm 5700  ran crn 5701  Fun wfun 6567   Fn wfn 6568  wf 6569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-fun 6575  df-fn 6576  df-f 6577
This theorem is referenced by:  fprg  7189  fprb  7231  1sdomOLD  9312  axlowdimlem4  28978  coinfliprv  34447  poimirlem22  37602  nnsum3primes4  47662  nnsum3primesgbe  47666
  Copyright terms: Public domain W3C validator