| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fpr | Structured version Visualization version GIF version | ||
| Description: A function with a domain of two elements. (Contributed by Jeff Madsen, 20-Jun-2010.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
| Ref | Expression |
|---|---|
| fpr.1 | ⊢ 𝐴 ∈ V |
| fpr.2 | ⊢ 𝐵 ∈ V |
| fpr.3 | ⊢ 𝐶 ∈ V |
| fpr.4 | ⊢ 𝐷 ∈ V |
| Ref | Expression |
|---|---|
| fpr | ⊢ (𝐴 ≠ 𝐵 → {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}:{𝐴, 𝐵}⟶{𝐶, 𝐷}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fpr.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 2 | fpr.2 | . . . 4 ⊢ 𝐵 ∈ V | |
| 3 | fpr.3 | . . . 4 ⊢ 𝐶 ∈ V | |
| 4 | fpr.4 | . . . 4 ⊢ 𝐷 ∈ V | |
| 5 | 1, 2, 3, 4 | funpr 6597 | . . 3 ⊢ (𝐴 ≠ 𝐵 → Fun {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}) |
| 6 | 3, 4 | dmprop 6211 | . . 3 ⊢ dom {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} = {𝐴, 𝐵} |
| 7 | df-fn 6539 | . . 3 ⊢ ({〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} Fn {𝐴, 𝐵} ↔ (Fun {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} ∧ dom {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} = {𝐴, 𝐵})) | |
| 8 | 5, 6, 7 | sylanblrc 590 | . 2 ⊢ (𝐴 ≠ 𝐵 → {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} Fn {𝐴, 𝐵}) |
| 9 | df-pr 4609 | . . . . 5 ⊢ {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} = ({〈𝐴, 𝐶〉} ∪ {〈𝐵, 𝐷〉}) | |
| 10 | 9 | rneqi 5922 | . . . 4 ⊢ ran {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} = ran ({〈𝐴, 𝐶〉} ∪ {〈𝐵, 𝐷〉}) |
| 11 | rnun 6139 | . . . 4 ⊢ ran ({〈𝐴, 𝐶〉} ∪ {〈𝐵, 𝐷〉}) = (ran {〈𝐴, 𝐶〉} ∪ ran {〈𝐵, 𝐷〉}) | |
| 12 | 1 | rnsnop 6218 | . . . . . 6 ⊢ ran {〈𝐴, 𝐶〉} = {𝐶} |
| 13 | 2 | rnsnop 6218 | . . . . . 6 ⊢ ran {〈𝐵, 𝐷〉} = {𝐷} |
| 14 | 12, 13 | uneq12i 4146 | . . . . 5 ⊢ (ran {〈𝐴, 𝐶〉} ∪ ran {〈𝐵, 𝐷〉}) = ({𝐶} ∪ {𝐷}) |
| 15 | df-pr 4609 | . . . . 5 ⊢ {𝐶, 𝐷} = ({𝐶} ∪ {𝐷}) | |
| 16 | 14, 15 | eqtr4i 2762 | . . . 4 ⊢ (ran {〈𝐴, 𝐶〉} ∪ ran {〈𝐵, 𝐷〉}) = {𝐶, 𝐷} |
| 17 | 10, 11, 16 | 3eqtri 2763 | . . 3 ⊢ ran {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} = {𝐶, 𝐷} |
| 18 | 17 | eqimssi 4024 | . 2 ⊢ ran {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} ⊆ {𝐶, 𝐷} |
| 19 | df-f 6540 | . 2 ⊢ ({〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}:{𝐴, 𝐵}⟶{𝐶, 𝐷} ↔ ({〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} Fn {𝐴, 𝐵} ∧ ran {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} ⊆ {𝐶, 𝐷})) | |
| 20 | 8, 18, 19 | sylanblrc 590 | 1 ⊢ (𝐴 ≠ 𝐵 → {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}:{𝐴, 𝐵}⟶{𝐶, 𝐷}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 Vcvv 3464 ∪ cun 3929 ⊆ wss 3931 {csn 4606 {cpr 4608 〈cop 4612 dom cdm 5659 ran crn 5660 Fun wfun 6530 Fn wfn 6531 ⟶wf 6532 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-fun 6538 df-fn 6539 df-f 6540 |
| This theorem is referenced by: fprg 7150 fprb 7191 1sdomOLD 9262 axlowdimlem4 28929 coinfliprv 34520 poimirlem22 37671 nnsum3primes4 47769 nnsum3primesgbe 47773 |
| Copyright terms: Public domain | W3C validator |