| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fpr | Structured version Visualization version GIF version | ||
| Description: A function with a domain of two elements. (Contributed by Jeff Madsen, 20-Jun-2010.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
| Ref | Expression |
|---|---|
| fpr.1 | ⊢ 𝐴 ∈ V |
| fpr.2 | ⊢ 𝐵 ∈ V |
| fpr.3 | ⊢ 𝐶 ∈ V |
| fpr.4 | ⊢ 𝐷 ∈ V |
| Ref | Expression |
|---|---|
| fpr | ⊢ (𝐴 ≠ 𝐵 → {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}:{𝐴, 𝐵}⟶{𝐶, 𝐷}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fpr.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 2 | fpr.2 | . . . 4 ⊢ 𝐵 ∈ V | |
| 3 | fpr.3 | . . . 4 ⊢ 𝐶 ∈ V | |
| 4 | fpr.4 | . . . 4 ⊢ 𝐷 ∈ V | |
| 5 | 1, 2, 3, 4 | funpr 6575 | . . 3 ⊢ (𝐴 ≠ 𝐵 → Fun {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}) |
| 6 | 3, 4 | dmprop 6193 | . . 3 ⊢ dom {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} = {𝐴, 𝐵} |
| 7 | df-fn 6517 | . . 3 ⊢ ({〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} Fn {𝐴, 𝐵} ↔ (Fun {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} ∧ dom {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} = {𝐴, 𝐵})) | |
| 8 | 5, 6, 7 | sylanblrc 590 | . 2 ⊢ (𝐴 ≠ 𝐵 → {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} Fn {𝐴, 𝐵}) |
| 9 | df-pr 4595 | . . . . 5 ⊢ {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} = ({〈𝐴, 𝐶〉} ∪ {〈𝐵, 𝐷〉}) | |
| 10 | 9 | rneqi 5904 | . . . 4 ⊢ ran {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} = ran ({〈𝐴, 𝐶〉} ∪ {〈𝐵, 𝐷〉}) |
| 11 | rnun 6121 | . . . 4 ⊢ ran ({〈𝐴, 𝐶〉} ∪ {〈𝐵, 𝐷〉}) = (ran {〈𝐴, 𝐶〉} ∪ ran {〈𝐵, 𝐷〉}) | |
| 12 | 1 | rnsnop 6200 | . . . . . 6 ⊢ ran {〈𝐴, 𝐶〉} = {𝐶} |
| 13 | 2 | rnsnop 6200 | . . . . . 6 ⊢ ran {〈𝐵, 𝐷〉} = {𝐷} |
| 14 | 12, 13 | uneq12i 4132 | . . . . 5 ⊢ (ran {〈𝐴, 𝐶〉} ∪ ran {〈𝐵, 𝐷〉}) = ({𝐶} ∪ {𝐷}) |
| 15 | df-pr 4595 | . . . . 5 ⊢ {𝐶, 𝐷} = ({𝐶} ∪ {𝐷}) | |
| 16 | 14, 15 | eqtr4i 2756 | . . . 4 ⊢ (ran {〈𝐴, 𝐶〉} ∪ ran {〈𝐵, 𝐷〉}) = {𝐶, 𝐷} |
| 17 | 10, 11, 16 | 3eqtri 2757 | . . 3 ⊢ ran {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} = {𝐶, 𝐷} |
| 18 | 17 | eqimssi 4010 | . 2 ⊢ ran {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} ⊆ {𝐶, 𝐷} |
| 19 | df-f 6518 | . 2 ⊢ ({〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}:{𝐴, 𝐵}⟶{𝐶, 𝐷} ↔ ({〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} Fn {𝐴, 𝐵} ∧ ran {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} ⊆ {𝐶, 𝐷})) | |
| 20 | 8, 18, 19 | sylanblrc 590 | 1 ⊢ (𝐴 ≠ 𝐵 → {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}:{𝐴, 𝐵}⟶{𝐶, 𝐷}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 Vcvv 3450 ∪ cun 3915 ⊆ wss 3917 {csn 4592 {cpr 4594 〈cop 4598 dom cdm 5641 ran crn 5642 Fun wfun 6508 Fn wfn 6509 ⟶wf 6510 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-fun 6516 df-fn 6517 df-f 6518 |
| This theorem is referenced by: fprg 7130 fprb 7171 1sdomOLD 9203 axlowdimlem4 28879 coinfliprv 34481 poimirlem22 37643 nnsum3primes4 47793 nnsum3primesgbe 47797 |
| Copyright terms: Public domain | W3C validator |