MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fpr Structured version   Visualization version   GIF version

Theorem fpr 7088
Description: A function with a domain of two elements. (Contributed by Jeff Madsen, 20-Jun-2010.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Hypotheses
Ref Expression
fpr.1 𝐴 ∈ V
fpr.2 𝐵 ∈ V
fpr.3 𝐶 ∈ V
fpr.4 𝐷 ∈ V
Assertion
Ref Expression
fpr (𝐴𝐵 → {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}:{𝐴, 𝐵}⟶{𝐶, 𝐷})

Proof of Theorem fpr
StepHypRef Expression
1 fpr.1 . . . 4 𝐴 ∈ V
2 fpr.2 . . . 4 𝐵 ∈ V
3 fpr.3 . . . 4 𝐶 ∈ V
4 fpr.4 . . . 4 𝐷 ∈ V
51, 2, 3, 4funpr 6538 . . 3 (𝐴𝐵 → Fun {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩})
63, 4dmprop 6166 . . 3 dom {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} = {𝐴, 𝐵}
7 df-fn 6485 . . 3 ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} Fn {𝐴, 𝐵} ↔ (Fun {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} ∧ dom {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} = {𝐴, 𝐵}))
85, 6, 7sylanblrc 590 . 2 (𝐴𝐵 → {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} Fn {𝐴, 𝐵})
9 df-pr 4580 . . . . 5 {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} = ({⟨𝐴, 𝐶⟩} ∪ {⟨𝐵, 𝐷⟩})
109rneqi 5879 . . . 4 ran {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} = ran ({⟨𝐴, 𝐶⟩} ∪ {⟨𝐵, 𝐷⟩})
11 rnun 6094 . . . 4 ran ({⟨𝐴, 𝐶⟩} ∪ {⟨𝐵, 𝐷⟩}) = (ran {⟨𝐴, 𝐶⟩} ∪ ran {⟨𝐵, 𝐷⟩})
121rnsnop 6173 . . . . . 6 ran {⟨𝐴, 𝐶⟩} = {𝐶}
132rnsnop 6173 . . . . . 6 ran {⟨𝐵, 𝐷⟩} = {𝐷}
1412, 13uneq12i 4117 . . . . 5 (ran {⟨𝐴, 𝐶⟩} ∪ ran {⟨𝐵, 𝐷⟩}) = ({𝐶} ∪ {𝐷})
15 df-pr 4580 . . . . 5 {𝐶, 𝐷} = ({𝐶} ∪ {𝐷})
1614, 15eqtr4i 2755 . . . 4 (ran {⟨𝐴, 𝐶⟩} ∪ ran {⟨𝐵, 𝐷⟩}) = {𝐶, 𝐷}
1710, 11, 163eqtri 2756 . . 3 ran {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} = {𝐶, 𝐷}
1817eqimssi 3996 . 2 ran {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} ⊆ {𝐶, 𝐷}
19 df-f 6486 . 2 ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}:{𝐴, 𝐵}⟶{𝐶, 𝐷} ↔ ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} Fn {𝐴, 𝐵} ∧ ran {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} ⊆ {𝐶, 𝐷}))
208, 18, 19sylanblrc 590 1 (𝐴𝐵 → {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}:{𝐴, 𝐵}⟶{𝐶, 𝐷})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wne 2925  Vcvv 3436  cun 3901  wss 3903  {csn 4577  {cpr 4579  cop 4583  dom cdm 5619  ran crn 5620  Fun wfun 6476   Fn wfn 6477  wf 6478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5093  df-opab 5155  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-fun 6484  df-fn 6485  df-f 6486
This theorem is referenced by:  fprg  7089  fprb  7130  axlowdimlem4  28890  coinfliprv  34457  poimirlem22  37632  nnsum3primes4  47782  nnsum3primesgbe  47786
  Copyright terms: Public domain W3C validator