![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fpr | Structured version Visualization version GIF version |
Description: A function with a domain of two elements. (Contributed by Jeff Madsen, 20-Jun-2010.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
Ref | Expression |
---|---|
fpr.1 | ⊢ 𝐴 ∈ V |
fpr.2 | ⊢ 𝐵 ∈ V |
fpr.3 | ⊢ 𝐶 ∈ V |
fpr.4 | ⊢ 𝐷 ∈ V |
Ref | Expression |
---|---|
fpr | ⊢ (𝐴 ≠ 𝐵 → {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}:{𝐴, 𝐵}⟶{𝐶, 𝐷}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fpr.1 | . . . 4 ⊢ 𝐴 ∈ V | |
2 | fpr.2 | . . . 4 ⊢ 𝐵 ∈ V | |
3 | fpr.3 | . . . 4 ⊢ 𝐶 ∈ V | |
4 | fpr.4 | . . . 4 ⊢ 𝐷 ∈ V | |
5 | 1, 2, 3, 4 | funpr 6590 | . . 3 ⊢ (𝐴 ≠ 𝐵 → Fun {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}) |
6 | 3, 4 | dmprop 6202 | . . 3 ⊢ dom {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} = {𝐴, 𝐵} |
7 | df-fn 6532 | . . 3 ⊢ ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} Fn {𝐴, 𝐵} ↔ (Fun {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} ∧ dom {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} = {𝐴, 𝐵})) | |
8 | 5, 6, 7 | sylanblrc 590 | . 2 ⊢ (𝐴 ≠ 𝐵 → {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} Fn {𝐴, 𝐵}) |
9 | df-pr 4622 | . . . . 5 ⊢ {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} = ({⟨𝐴, 𝐶⟩} ∪ {⟨𝐵, 𝐷⟩}) | |
10 | 9 | rneqi 5925 | . . . 4 ⊢ ran {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} = ran ({⟨𝐴, 𝐶⟩} ∪ {⟨𝐵, 𝐷⟩}) |
11 | rnun 6131 | . . . 4 ⊢ ran ({⟨𝐴, 𝐶⟩} ∪ {⟨𝐵, 𝐷⟩}) = (ran {⟨𝐴, 𝐶⟩} ∪ ran {⟨𝐵, 𝐷⟩}) | |
12 | 1 | rnsnop 6209 | . . . . . 6 ⊢ ran {⟨𝐴, 𝐶⟩} = {𝐶} |
13 | 2 | rnsnop 6209 | . . . . . 6 ⊢ ran {⟨𝐵, 𝐷⟩} = {𝐷} |
14 | 12, 13 | uneq12i 4154 | . . . . 5 ⊢ (ran {⟨𝐴, 𝐶⟩} ∪ ran {⟨𝐵, 𝐷⟩}) = ({𝐶} ∪ {𝐷}) |
15 | df-pr 4622 | . . . . 5 ⊢ {𝐶, 𝐷} = ({𝐶} ∪ {𝐷}) | |
16 | 14, 15 | eqtr4i 2762 | . . . 4 ⊢ (ran {⟨𝐴, 𝐶⟩} ∪ ran {⟨𝐵, 𝐷⟩}) = {𝐶, 𝐷} |
17 | 10, 11, 16 | 3eqtri 2763 | . . 3 ⊢ ran {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} = {𝐶, 𝐷} |
18 | 17 | eqimssi 4035 | . 2 ⊢ ran {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} ⊆ {𝐶, 𝐷} |
19 | df-f 6533 | . 2 ⊢ ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}:{𝐴, 𝐵}⟶{𝐶, 𝐷} ↔ ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} Fn {𝐴, 𝐵} ∧ ran {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} ⊆ {𝐶, 𝐷})) | |
20 | 8, 18, 19 | sylanblrc 590 | 1 ⊢ (𝐴 ≠ 𝐵 → {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}:{𝐴, 𝐵}⟶{𝐶, 𝐷}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 ≠ wne 2939 Vcvv 3470 ∪ cun 3939 ⊆ wss 3941 {csn 4619 {cpr 4621 ⟨cop 4625 dom cdm 5666 ran crn 5667 Fun wfun 6523 Fn wfn 6524 ⟶wf 6525 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-12 2171 ax-ext 2702 ax-sep 5289 ax-nul 5296 ax-pr 5417 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-clab 2709 df-cleq 2723 df-clel 2809 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3430 df-v 3472 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4520 df-sn 4620 df-pr 4622 df-op 4626 df-br 5139 df-opab 5201 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-fun 6531 df-fn 6532 df-f 6533 |
This theorem is referenced by: fprg 7134 fprb 7176 1sdomOLD 9229 axlowdimlem4 28063 coinfliprv 33296 poimirlem22 36298 nnsum3primes4 46214 nnsum3primesgbe 46218 |
Copyright terms: Public domain | W3C validator |