MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgr2v2evd2 Structured version   Visualization version   GIF version

Theorem umgr2v2evd2 28475
Description: In a multigraph with two edges connecting the same two vertices, each of the vertices has degree 2. (Contributed by AV, 18-Dec-2020.)
Hypothesis
Ref Expression
umgr2v2evtx.g 𝐺 = ⟨𝑉, {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}⟩
Assertion
Ref Expression
umgr2v2evd2 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → ((VtxDeg‘𝐺)‘𝐴) = 2)

Proof of Theorem umgr2v2evd2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 umgr2v2evtx.g . . . 4 𝐺 = ⟨𝑉, {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}⟩
21umgr2v2e 28473 . . 3 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → 𝐺 ∈ UMGraph)
31umgr2v2evtxel 28470 . . . . 5 ((𝑉𝑊𝐴𝑉) → 𝐴 ∈ (Vtx‘𝐺))
433adant3 1132 . . . 4 ((𝑉𝑊𝐴𝑉𝐵𝑉) → 𝐴 ∈ (Vtx‘𝐺))
54adantr 481 . . 3 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → 𝐴 ∈ (Vtx‘𝐺))
6 eqid 2736 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
7 eqid 2736 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
8 eqid 2736 . . . 4 dom (iEdg‘𝐺) = dom (iEdg‘𝐺)
9 eqid 2736 . . . 4 (VtxDeg‘𝐺) = (VtxDeg‘𝐺)
106, 7, 8, 9vtxdumgrval 28434 . . 3 ((𝐺 ∈ UMGraph ∧ 𝐴 ∈ (Vtx‘𝐺)) → ((VtxDeg‘𝐺)‘𝐴) = (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝐴 ∈ ((iEdg‘𝐺)‘𝑥)}))
112, 5, 10syl2anc 584 . 2 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → ((VtxDeg‘𝐺)‘𝐴) = (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝐴 ∈ ((iEdg‘𝐺)‘𝑥)}))
121umgr2v2eiedg 28471 . . . . . . . 8 ((𝑉𝑊𝐴𝑉𝐵𝑉) → (iEdg‘𝐺) = {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩})
1312dmeqd 5861 . . . . . . 7 ((𝑉𝑊𝐴𝑉𝐵𝑉) → dom (iEdg‘𝐺) = dom {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩})
14 prex 5389 . . . . . . . 8 {𝐴, 𝐵} ∈ V
1514, 14dmprop 6169 . . . . . . 7 dom {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩} = {0, 1}
1613, 15eqtrdi 2792 . . . . . 6 ((𝑉𝑊𝐴𝑉𝐵𝑉) → dom (iEdg‘𝐺) = {0, 1})
1712fveq1d 6844 . . . . . . 7 ((𝑉𝑊𝐴𝑉𝐵𝑉) → ((iEdg‘𝐺)‘𝑥) = ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘𝑥))
1817eleq2d 2823 . . . . . 6 ((𝑉𝑊𝐴𝑉𝐵𝑉) → (𝐴 ∈ ((iEdg‘𝐺)‘𝑥) ↔ 𝐴 ∈ ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘𝑥)))
1916, 18rabeqbidv 3424 . . . . 5 ((𝑉𝑊𝐴𝑉𝐵𝑉) → {𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝐴 ∈ ((iEdg‘𝐺)‘𝑥)} = {𝑥 ∈ {0, 1} ∣ 𝐴 ∈ ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘𝑥)})
2019fveq2d 6846 . . . 4 ((𝑉𝑊𝐴𝑉𝐵𝑉) → (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝐴 ∈ ((iEdg‘𝐺)‘𝑥)}) = (♯‘{𝑥 ∈ {0, 1} ∣ 𝐴 ∈ ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘𝑥)}))
21 prid1g 4721 . . . . . . . . . . 11 (𝐴𝑉𝐴 ∈ {𝐴, 𝐵})
22 0ne1 12224 . . . . . . . . . . . 12 0 ≠ 1
23 c0ex 11149 . . . . . . . . . . . . 13 0 ∈ V
2423, 14fvpr1 7139 . . . . . . . . . . . 12 (0 ≠ 1 → ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘0) = {𝐴, 𝐵})
2522, 24ax-mp 5 . . . . . . . . . . 11 ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘0) = {𝐴, 𝐵}
2621, 25eleqtrrdi 2849 . . . . . . . . . 10 (𝐴𝑉𝐴 ∈ ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘0))
27 1ex 11151 . . . . . . . . . . . . 13 1 ∈ V
2827, 14fvpr2 7141 . . . . . . . . . . . 12 (0 ≠ 1 → ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘1) = {𝐴, 𝐵})
2922, 28ax-mp 5 . . . . . . . . . . 11 ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘1) = {𝐴, 𝐵}
3021, 29eleqtrrdi 2849 . . . . . . . . . 10 (𝐴𝑉𝐴 ∈ ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘1))
31 fveq2 6842 . . . . . . . . . . . 12 (𝑥 = 0 → ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘𝑥) = ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘0))
3231eleq2d 2823 . . . . . . . . . . 11 (𝑥 = 0 → (𝐴 ∈ ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘𝑥) ↔ 𝐴 ∈ ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘0)))
33 fveq2 6842 . . . . . . . . . . . 12 (𝑥 = 1 → ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘𝑥) = ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘1))
3433eleq2d 2823 . . . . . . . . . . 11 (𝑥 = 1 → (𝐴 ∈ ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘𝑥) ↔ 𝐴 ∈ ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘1)))
3523, 27, 32, 34ralpr 4661 . . . . . . . . . 10 (∀𝑥 ∈ {0, 1}𝐴 ∈ ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘𝑥) ↔ (𝐴 ∈ ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘0) ∧ 𝐴 ∈ ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘1)))
3626, 30, 35sylanbrc 583 . . . . . . . . 9 (𝐴𝑉 → ∀𝑥 ∈ {0, 1}𝐴 ∈ ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘𝑥))
37 rabid2 3436 . . . . . . . . 9 ({0, 1} = {𝑥 ∈ {0, 1} ∣ 𝐴 ∈ ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘𝑥)} ↔ ∀𝑥 ∈ {0, 1}𝐴 ∈ ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘𝑥))
3836, 37sylibr 233 . . . . . . . 8 (𝐴𝑉 → {0, 1} = {𝑥 ∈ {0, 1} ∣ 𝐴 ∈ ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘𝑥)})
3938eqcomd 2742 . . . . . . 7 (𝐴𝑉 → {𝑥 ∈ {0, 1} ∣ 𝐴 ∈ ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘𝑥)} = {0, 1})
4039fveq2d 6846 . . . . . 6 (𝐴𝑉 → (♯‘{𝑥 ∈ {0, 1} ∣ 𝐴 ∈ ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘𝑥)}) = (♯‘{0, 1}))
41 prhash2ex 14299 . . . . . 6 (♯‘{0, 1}) = 2
4240, 41eqtrdi 2792 . . . . 5 (𝐴𝑉 → (♯‘{𝑥 ∈ {0, 1} ∣ 𝐴 ∈ ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘𝑥)}) = 2)
43423ad2ant2 1134 . . . 4 ((𝑉𝑊𝐴𝑉𝐵𝑉) → (♯‘{𝑥 ∈ {0, 1} ∣ 𝐴 ∈ ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘𝑥)}) = 2)
4420, 43eqtrd 2776 . . 3 ((𝑉𝑊𝐴𝑉𝐵𝑉) → (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝐴 ∈ ((iEdg‘𝐺)‘𝑥)}) = 2)
4544adantr 481 . 2 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝐴 ∈ ((iEdg‘𝐺)‘𝑥)}) = 2)
4611, 45eqtrd 2776 1 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → ((VtxDeg‘𝐺)‘𝐴) = 2)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wral 3064  {crab 3407  {cpr 4588  cop 4592  dom cdm 5633  cfv 6496  0cc0 11051  1c1 11052  2c2 12208  chash 14230  Vtxcvtx 27947  iEdgciedg 27948  UMGraphcumgr 28032  VtxDegcvtxdg 28413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-oadd 8416  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-dju 9837  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-n0 12414  df-xnn0 12486  df-z 12500  df-uz 12764  df-xadd 13034  df-fz 13425  df-hash 14231  df-vtx 27949  df-iedg 27950  df-upgr 28033  df-umgr 28034  df-vtxdg 28414
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator