MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgr2v2evd2 Structured version   Visualization version   GIF version

Theorem umgr2v2evd2 29504
Description: In a multigraph with two edges connecting the same two vertices, each of the vertices has degree 2. (Contributed by AV, 18-Dec-2020.)
Hypothesis
Ref Expression
umgr2v2evtx.g 𝐺 = ⟨𝑉, {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}⟩
Assertion
Ref Expression
umgr2v2evd2 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → ((VtxDeg‘𝐺)‘𝐴) = 2)

Proof of Theorem umgr2v2evd2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 umgr2v2evtx.g . . . 4 𝐺 = ⟨𝑉, {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}⟩
21umgr2v2e 29502 . . 3 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → 𝐺 ∈ UMGraph)
31umgr2v2evtxel 29499 . . . . 5 ((𝑉𝑊𝐴𝑉) → 𝐴 ∈ (Vtx‘𝐺))
433adant3 1132 . . . 4 ((𝑉𝑊𝐴𝑉𝐵𝑉) → 𝐴 ∈ (Vtx‘𝐺))
54adantr 480 . . 3 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → 𝐴 ∈ (Vtx‘𝐺))
6 eqid 2731 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
7 eqid 2731 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
8 eqid 2731 . . . 4 dom (iEdg‘𝐺) = dom (iEdg‘𝐺)
9 eqid 2731 . . . 4 (VtxDeg‘𝐺) = (VtxDeg‘𝐺)
106, 7, 8, 9vtxdumgrval 29463 . . 3 ((𝐺 ∈ UMGraph ∧ 𝐴 ∈ (Vtx‘𝐺)) → ((VtxDeg‘𝐺)‘𝐴) = (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝐴 ∈ ((iEdg‘𝐺)‘𝑥)}))
112, 5, 10syl2anc 584 . 2 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → ((VtxDeg‘𝐺)‘𝐴) = (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝐴 ∈ ((iEdg‘𝐺)‘𝑥)}))
121umgr2v2eiedg 29500 . . . . . . . 8 ((𝑉𝑊𝐴𝑉𝐵𝑉) → (iEdg‘𝐺) = {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩})
1312dmeqd 5845 . . . . . . 7 ((𝑉𝑊𝐴𝑉𝐵𝑉) → dom (iEdg‘𝐺) = dom {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩})
14 prex 5375 . . . . . . . 8 {𝐴, 𝐵} ∈ V
1514, 14dmprop 6164 . . . . . . 7 dom {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩} = {0, 1}
1613, 15eqtrdi 2782 . . . . . 6 ((𝑉𝑊𝐴𝑉𝐵𝑉) → dom (iEdg‘𝐺) = {0, 1})
1712fveq1d 6824 . . . . . . 7 ((𝑉𝑊𝐴𝑉𝐵𝑉) → ((iEdg‘𝐺)‘𝑥) = ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘𝑥))
1817eleq2d 2817 . . . . . 6 ((𝑉𝑊𝐴𝑉𝐵𝑉) → (𝐴 ∈ ((iEdg‘𝐺)‘𝑥) ↔ 𝐴 ∈ ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘𝑥)))
1916, 18rabeqbidv 3413 . . . . 5 ((𝑉𝑊𝐴𝑉𝐵𝑉) → {𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝐴 ∈ ((iEdg‘𝐺)‘𝑥)} = {𝑥 ∈ {0, 1} ∣ 𝐴 ∈ ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘𝑥)})
2019fveq2d 6826 . . . 4 ((𝑉𝑊𝐴𝑉𝐵𝑉) → (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝐴 ∈ ((iEdg‘𝐺)‘𝑥)}) = (♯‘{𝑥 ∈ {0, 1} ∣ 𝐴 ∈ ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘𝑥)}))
21 prid1g 4713 . . . . . . . . . . 11 (𝐴𝑉𝐴 ∈ {𝐴, 𝐵})
22 0ne1 12193 . . . . . . . . . . . 12 0 ≠ 1
23 c0ex 11103 . . . . . . . . . . . . 13 0 ∈ V
2423, 14fvpr1 7126 . . . . . . . . . . . 12 (0 ≠ 1 → ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘0) = {𝐴, 𝐵})
2522, 24ax-mp 5 . . . . . . . . . . 11 ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘0) = {𝐴, 𝐵}
2621, 25eleqtrrdi 2842 . . . . . . . . . 10 (𝐴𝑉𝐴 ∈ ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘0))
27 1ex 11105 . . . . . . . . . . . . 13 1 ∈ V
2827, 14fvpr2 7127 . . . . . . . . . . . 12 (0 ≠ 1 → ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘1) = {𝐴, 𝐵})
2922, 28ax-mp 5 . . . . . . . . . . 11 ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘1) = {𝐴, 𝐵}
3021, 29eleqtrrdi 2842 . . . . . . . . . 10 (𝐴𝑉𝐴 ∈ ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘1))
31 fveq2 6822 . . . . . . . . . . . 12 (𝑥 = 0 → ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘𝑥) = ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘0))
3231eleq2d 2817 . . . . . . . . . . 11 (𝑥 = 0 → (𝐴 ∈ ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘𝑥) ↔ 𝐴 ∈ ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘0)))
33 fveq2 6822 . . . . . . . . . . . 12 (𝑥 = 1 → ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘𝑥) = ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘1))
3433eleq2d 2817 . . . . . . . . . . 11 (𝑥 = 1 → (𝐴 ∈ ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘𝑥) ↔ 𝐴 ∈ ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘1)))
3523, 27, 32, 34ralpr 4653 . . . . . . . . . 10 (∀𝑥 ∈ {0, 1}𝐴 ∈ ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘𝑥) ↔ (𝐴 ∈ ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘0) ∧ 𝐴 ∈ ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘1)))
3626, 30, 35sylanbrc 583 . . . . . . . . 9 (𝐴𝑉 → ∀𝑥 ∈ {0, 1}𝐴 ∈ ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘𝑥))
37 rabid2 3428 . . . . . . . . 9 ({0, 1} = {𝑥 ∈ {0, 1} ∣ 𝐴 ∈ ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘𝑥)} ↔ ∀𝑥 ∈ {0, 1}𝐴 ∈ ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘𝑥))
3836, 37sylibr 234 . . . . . . . 8 (𝐴𝑉 → {0, 1} = {𝑥 ∈ {0, 1} ∣ 𝐴 ∈ ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘𝑥)})
3938eqcomd 2737 . . . . . . 7 (𝐴𝑉 → {𝑥 ∈ {0, 1} ∣ 𝐴 ∈ ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘𝑥)} = {0, 1})
4039fveq2d 6826 . . . . . 6 (𝐴𝑉 → (♯‘{𝑥 ∈ {0, 1} ∣ 𝐴 ∈ ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘𝑥)}) = (♯‘{0, 1}))
41 prhash2ex 14303 . . . . . 6 (♯‘{0, 1}) = 2
4240, 41eqtrdi 2782 . . . . 5 (𝐴𝑉 → (♯‘{𝑥 ∈ {0, 1} ∣ 𝐴 ∈ ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘𝑥)}) = 2)
43423ad2ant2 1134 . . . 4 ((𝑉𝑊𝐴𝑉𝐵𝑉) → (♯‘{𝑥 ∈ {0, 1} ∣ 𝐴 ∈ ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘𝑥)}) = 2)
4420, 43eqtrd 2766 . . 3 ((𝑉𝑊𝐴𝑉𝐵𝑉) → (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝐴 ∈ ((iEdg‘𝐺)‘𝑥)}) = 2)
4544adantr 480 . 2 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝐴 ∈ ((iEdg‘𝐺)‘𝑥)}) = 2)
4611, 45eqtrd 2766 1 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → ((VtxDeg‘𝐺)‘𝐴) = 2)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wral 3047  {crab 3395  {cpr 4578  cop 4582  dom cdm 5616  cfv 6481  0cc0 11003  1c1 11004  2c2 12177  chash 14234  Vtxcvtx 28972  iEdgciedg 28973  UMGraphcumgr 29057  VtxDegcvtxdg 29442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-oadd 8389  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-dju 9791  df-card 9829  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-2 12185  df-n0 12379  df-xnn0 12452  df-z 12466  df-uz 12730  df-xadd 13009  df-fz 13405  df-hash 14235  df-vtx 28974  df-iedg 28975  df-upgr 29058  df-umgr 29059  df-vtxdg 29443
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator