Step | Hyp | Ref
| Expression |
1 | | umgr2v2evtx.g |
. . . 4
⊢ 𝐺 = 〈𝑉, {〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}〉 |
2 | 1 | umgr2v2e 27795 |
. . 3
⊢ (((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ≠ 𝐵) → 𝐺 ∈ UMGraph) |
3 | 1 | umgr2v2evtxel 27792 |
. . . . 5
⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → 𝐴 ∈ (Vtx‘𝐺)) |
4 | 3 | 3adant3 1130 |
. . . 4
⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ (Vtx‘𝐺)) |
5 | 4 | adantr 480 |
. . 3
⊢ (((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ≠ 𝐵) → 𝐴 ∈ (Vtx‘𝐺)) |
6 | | eqid 2738 |
. . . 4
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) |
7 | | eqid 2738 |
. . . 4
⊢
(iEdg‘𝐺) =
(iEdg‘𝐺) |
8 | | eqid 2738 |
. . . 4
⊢ dom
(iEdg‘𝐺) = dom
(iEdg‘𝐺) |
9 | | eqid 2738 |
. . . 4
⊢
(VtxDeg‘𝐺) =
(VtxDeg‘𝐺) |
10 | 6, 7, 8, 9 | vtxdumgrval 27756 |
. . 3
⊢ ((𝐺 ∈ UMGraph ∧ 𝐴 ∈ (Vtx‘𝐺)) → ((VtxDeg‘𝐺)‘𝐴) = (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝐴 ∈ ((iEdg‘𝐺)‘𝑥)})) |
11 | 2, 5, 10 | syl2anc 583 |
. 2
⊢ (((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ≠ 𝐵) → ((VtxDeg‘𝐺)‘𝐴) = (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝐴 ∈ ((iEdg‘𝐺)‘𝑥)})) |
12 | 1 | umgr2v2eiedg 27793 |
. . . . . . . 8
⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (iEdg‘𝐺) = {〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}) |
13 | 12 | dmeqd 5803 |
. . . . . . 7
⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → dom (iEdg‘𝐺) = dom {〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}) |
14 | | prex 5350 |
. . . . . . . 8
⊢ {𝐴, 𝐵} ∈ V |
15 | 14, 14 | dmprop 6109 |
. . . . . . 7
⊢ dom
{〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉} = {0, 1} |
16 | 13, 15 | eqtrdi 2795 |
. . . . . 6
⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → dom (iEdg‘𝐺) = {0, 1}) |
17 | 12 | fveq1d 6758 |
. . . . . . 7
⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((iEdg‘𝐺)‘𝑥) = ({〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}‘𝑥)) |
18 | 17 | eleq2d 2824 |
. . . . . 6
⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴 ∈ ((iEdg‘𝐺)‘𝑥) ↔ 𝐴 ∈ ({〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}‘𝑥))) |
19 | 16, 18 | rabeqbidv 3410 |
. . . . 5
⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → {𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝐴 ∈ ((iEdg‘𝐺)‘𝑥)} = {𝑥 ∈ {0, 1} ∣ 𝐴 ∈ ({〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}‘𝑥)}) |
20 | 19 | fveq2d 6760 |
. . . 4
⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝐴 ∈ ((iEdg‘𝐺)‘𝑥)}) = (♯‘{𝑥 ∈ {0, 1} ∣ 𝐴 ∈ ({〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}‘𝑥)})) |
21 | | prid1g 4693 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴, 𝐵}) |
22 | | 0ne1 11974 |
. . . . . . . . . . . 12
⊢ 0 ≠
1 |
23 | | c0ex 10900 |
. . . . . . . . . . . . 13
⊢ 0 ∈
V |
24 | 23, 14 | fvpr1 7047 |
. . . . . . . . . . . 12
⊢ (0 ≠ 1
→ ({〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}‘0) = {𝐴, 𝐵}) |
25 | 22, 24 | ax-mp 5 |
. . . . . . . . . . 11
⊢
({〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}‘0) = {𝐴, 𝐵} |
26 | 21, 25 | eleqtrrdi 2850 |
. . . . . . . . . 10
⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ ({〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}‘0)) |
27 | | 1ex 10902 |
. . . . . . . . . . . . 13
⊢ 1 ∈
V |
28 | 27, 14 | fvpr2 7049 |
. . . . . . . . . . . 12
⊢ (0 ≠ 1
→ ({〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}‘1) = {𝐴, 𝐵}) |
29 | 22, 28 | ax-mp 5 |
. . . . . . . . . . 11
⊢
({〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}‘1) = {𝐴, 𝐵} |
30 | 21, 29 | eleqtrrdi 2850 |
. . . . . . . . . 10
⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ ({〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}‘1)) |
31 | | fveq2 6756 |
. . . . . . . . . . . 12
⊢ (𝑥 = 0 → ({〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}‘𝑥) = ({〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}‘0)) |
32 | 31 | eleq2d 2824 |
. . . . . . . . . . 11
⊢ (𝑥 = 0 → (𝐴 ∈ ({〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}‘𝑥) ↔ 𝐴 ∈ ({〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}‘0))) |
33 | | fveq2 6756 |
. . . . . . . . . . . 12
⊢ (𝑥 = 1 → ({〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}‘𝑥) = ({〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}‘1)) |
34 | 33 | eleq2d 2824 |
. . . . . . . . . . 11
⊢ (𝑥 = 1 → (𝐴 ∈ ({〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}‘𝑥) ↔ 𝐴 ∈ ({〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}‘1))) |
35 | 23, 27, 32, 34 | ralpr 4633 |
. . . . . . . . . 10
⊢
(∀𝑥 ∈
{0, 1}𝐴 ∈ ({〈0,
{𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}‘𝑥) ↔ (𝐴 ∈ ({〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}‘0) ∧ 𝐴 ∈ ({〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}‘1))) |
36 | 26, 30, 35 | sylanbrc 582 |
. . . . . . . . 9
⊢ (𝐴 ∈ 𝑉 → ∀𝑥 ∈ {0, 1}𝐴 ∈ ({〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}‘𝑥)) |
37 | | rabid2 3307 |
. . . . . . . . 9
⊢ ({0, 1} =
{𝑥 ∈ {0, 1} ∣
𝐴 ∈ ({〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}‘𝑥)} ↔ ∀𝑥 ∈ {0, 1}𝐴 ∈ ({〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}‘𝑥)) |
38 | 36, 37 | sylibr 233 |
. . . . . . . 8
⊢ (𝐴 ∈ 𝑉 → {0, 1} = {𝑥 ∈ {0, 1} ∣ 𝐴 ∈ ({〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}‘𝑥)}) |
39 | 38 | eqcomd 2744 |
. . . . . . 7
⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ {0, 1} ∣ 𝐴 ∈ ({〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}‘𝑥)} = {0, 1}) |
40 | 39 | fveq2d 6760 |
. . . . . 6
⊢ (𝐴 ∈ 𝑉 → (♯‘{𝑥 ∈ {0, 1} ∣ 𝐴 ∈ ({〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}‘𝑥)}) = (♯‘{0,
1})) |
41 | | prhash2ex 14042 |
. . . . . 6
⊢
(♯‘{0, 1}) = 2 |
42 | 40, 41 | eqtrdi 2795 |
. . . . 5
⊢ (𝐴 ∈ 𝑉 → (♯‘{𝑥 ∈ {0, 1} ∣ 𝐴 ∈ ({〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}‘𝑥)}) = 2) |
43 | 42 | 3ad2ant2 1132 |
. . . 4
⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (♯‘{𝑥 ∈ {0, 1} ∣ 𝐴 ∈ ({〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}‘𝑥)}) = 2) |
44 | 20, 43 | eqtrd 2778 |
. . 3
⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝐴 ∈ ((iEdg‘𝐺)‘𝑥)}) = 2) |
45 | 44 | adantr 480 |
. 2
⊢ (((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ≠ 𝐵) → (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝐴 ∈ ((iEdg‘𝐺)‘𝑥)}) = 2) |
46 | 11, 45 | eqtrd 2778 |
1
⊢ (((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ≠ 𝐵) → ((VtxDeg‘𝐺)‘𝐴) = 2) |