| Step | Hyp | Ref
| Expression |
| 1 | | umgr2v2evtx.g |
. . . 4
⊢ 𝐺 = 〈𝑉, {〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}〉 |
| 2 | 1 | umgr2v2e 29543 |
. . 3
⊢ (((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ≠ 𝐵) → 𝐺 ∈ UMGraph) |
| 3 | 1 | umgr2v2evtxel 29540 |
. . . . 5
⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → 𝐴 ∈ (Vtx‘𝐺)) |
| 4 | 3 | 3adant3 1133 |
. . . 4
⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ (Vtx‘𝐺)) |
| 5 | 4 | adantr 480 |
. . 3
⊢ (((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ≠ 𝐵) → 𝐴 ∈ (Vtx‘𝐺)) |
| 6 | | eqid 2737 |
. . . 4
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) |
| 7 | | eqid 2737 |
. . . 4
⊢
(iEdg‘𝐺) =
(iEdg‘𝐺) |
| 8 | | eqid 2737 |
. . . 4
⊢ dom
(iEdg‘𝐺) = dom
(iEdg‘𝐺) |
| 9 | | eqid 2737 |
. . . 4
⊢
(VtxDeg‘𝐺) =
(VtxDeg‘𝐺) |
| 10 | 6, 7, 8, 9 | vtxdumgrval 29504 |
. . 3
⊢ ((𝐺 ∈ UMGraph ∧ 𝐴 ∈ (Vtx‘𝐺)) → ((VtxDeg‘𝐺)‘𝐴) = (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝐴 ∈ ((iEdg‘𝐺)‘𝑥)})) |
| 11 | 2, 5, 10 | syl2anc 584 |
. 2
⊢ (((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ≠ 𝐵) → ((VtxDeg‘𝐺)‘𝐴) = (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝐴 ∈ ((iEdg‘𝐺)‘𝑥)})) |
| 12 | 1 | umgr2v2eiedg 29541 |
. . . . . . . 8
⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (iEdg‘𝐺) = {〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}) |
| 13 | 12 | dmeqd 5916 |
. . . . . . 7
⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → dom (iEdg‘𝐺) = dom {〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}) |
| 14 | | prex 5437 |
. . . . . . . 8
⊢ {𝐴, 𝐵} ∈ V |
| 15 | 14, 14 | dmprop 6237 |
. . . . . . 7
⊢ dom
{〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉} = {0, 1} |
| 16 | 13, 15 | eqtrdi 2793 |
. . . . . 6
⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → dom (iEdg‘𝐺) = {0, 1}) |
| 17 | 12 | fveq1d 6908 |
. . . . . . 7
⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((iEdg‘𝐺)‘𝑥) = ({〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}‘𝑥)) |
| 18 | 17 | eleq2d 2827 |
. . . . . 6
⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴 ∈ ((iEdg‘𝐺)‘𝑥) ↔ 𝐴 ∈ ({〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}‘𝑥))) |
| 19 | 16, 18 | rabeqbidv 3455 |
. . . . 5
⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → {𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝐴 ∈ ((iEdg‘𝐺)‘𝑥)} = {𝑥 ∈ {0, 1} ∣ 𝐴 ∈ ({〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}‘𝑥)}) |
| 20 | 19 | fveq2d 6910 |
. . . 4
⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝐴 ∈ ((iEdg‘𝐺)‘𝑥)}) = (♯‘{𝑥 ∈ {0, 1} ∣ 𝐴 ∈ ({〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}‘𝑥)})) |
| 21 | | prid1g 4760 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴, 𝐵}) |
| 22 | | 0ne1 12337 |
. . . . . . . . . . . 12
⊢ 0 ≠
1 |
| 23 | | c0ex 11255 |
. . . . . . . . . . . . 13
⊢ 0 ∈
V |
| 24 | 23, 14 | fvpr1 7212 |
. . . . . . . . . . . 12
⊢ (0 ≠ 1
→ ({〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}‘0) = {𝐴, 𝐵}) |
| 25 | 22, 24 | ax-mp 5 |
. . . . . . . . . . 11
⊢
({〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}‘0) = {𝐴, 𝐵} |
| 26 | 21, 25 | eleqtrrdi 2852 |
. . . . . . . . . 10
⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ ({〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}‘0)) |
| 27 | | 1ex 11257 |
. . . . . . . . . . . . 13
⊢ 1 ∈
V |
| 28 | 27, 14 | fvpr2 7213 |
. . . . . . . . . . . 12
⊢ (0 ≠ 1
→ ({〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}‘1) = {𝐴, 𝐵}) |
| 29 | 22, 28 | ax-mp 5 |
. . . . . . . . . . 11
⊢
({〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}‘1) = {𝐴, 𝐵} |
| 30 | 21, 29 | eleqtrrdi 2852 |
. . . . . . . . . 10
⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ ({〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}‘1)) |
| 31 | | fveq2 6906 |
. . . . . . . . . . . 12
⊢ (𝑥 = 0 → ({〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}‘𝑥) = ({〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}‘0)) |
| 32 | 31 | eleq2d 2827 |
. . . . . . . . . . 11
⊢ (𝑥 = 0 → (𝐴 ∈ ({〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}‘𝑥) ↔ 𝐴 ∈ ({〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}‘0))) |
| 33 | | fveq2 6906 |
. . . . . . . . . . . 12
⊢ (𝑥 = 1 → ({〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}‘𝑥) = ({〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}‘1)) |
| 34 | 33 | eleq2d 2827 |
. . . . . . . . . . 11
⊢ (𝑥 = 1 → (𝐴 ∈ ({〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}‘𝑥) ↔ 𝐴 ∈ ({〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}‘1))) |
| 35 | 23, 27, 32, 34 | ralpr 4700 |
. . . . . . . . . 10
⊢
(∀𝑥 ∈
{0, 1}𝐴 ∈ ({〈0,
{𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}‘𝑥) ↔ (𝐴 ∈ ({〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}‘0) ∧ 𝐴 ∈ ({〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}‘1))) |
| 36 | 26, 30, 35 | sylanbrc 583 |
. . . . . . . . 9
⊢ (𝐴 ∈ 𝑉 → ∀𝑥 ∈ {0, 1}𝐴 ∈ ({〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}‘𝑥)) |
| 37 | | rabid2 3470 |
. . . . . . . . 9
⊢ ({0, 1} =
{𝑥 ∈ {0, 1} ∣
𝐴 ∈ ({〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}‘𝑥)} ↔ ∀𝑥 ∈ {0, 1}𝐴 ∈ ({〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}‘𝑥)) |
| 38 | 36, 37 | sylibr 234 |
. . . . . . . 8
⊢ (𝐴 ∈ 𝑉 → {0, 1} = {𝑥 ∈ {0, 1} ∣ 𝐴 ∈ ({〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}‘𝑥)}) |
| 39 | 38 | eqcomd 2743 |
. . . . . . 7
⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ {0, 1} ∣ 𝐴 ∈ ({〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}‘𝑥)} = {0, 1}) |
| 40 | 39 | fveq2d 6910 |
. . . . . 6
⊢ (𝐴 ∈ 𝑉 → (♯‘{𝑥 ∈ {0, 1} ∣ 𝐴 ∈ ({〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}‘𝑥)}) = (♯‘{0,
1})) |
| 41 | | prhash2ex 14438 |
. . . . . 6
⊢
(♯‘{0, 1}) = 2 |
| 42 | 40, 41 | eqtrdi 2793 |
. . . . 5
⊢ (𝐴 ∈ 𝑉 → (♯‘{𝑥 ∈ {0, 1} ∣ 𝐴 ∈ ({〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}‘𝑥)}) = 2) |
| 43 | 42 | 3ad2ant2 1135 |
. . . 4
⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (♯‘{𝑥 ∈ {0, 1} ∣ 𝐴 ∈ ({〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}‘𝑥)}) = 2) |
| 44 | 20, 43 | eqtrd 2777 |
. . 3
⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝐴 ∈ ((iEdg‘𝐺)‘𝑥)}) = 2) |
| 45 | 44 | adantr 480 |
. 2
⊢ (((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ≠ 𝐵) → (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝐴 ∈ ((iEdg‘𝐺)‘𝑥)}) = 2) |
| 46 | 11, 45 | eqtrd 2777 |
1
⊢ (((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ≠ 𝐵) → ((VtxDeg‘𝐺)‘𝐴) = 2) |