MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmtpop Structured version   Visualization version   GIF version

Theorem dmtpop 6249
Description: The domain of an unordered triple of ordered pairs. (Contributed by NM, 14-Sep-2011.)
Hypotheses
Ref Expression
dmsnop.1 𝐵 ∈ V
dmprop.1 𝐷 ∈ V
dmtpop.1 𝐹 ∈ V
Assertion
Ref Expression
dmtpop dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩, ⟨𝐸, 𝐹⟩} = {𝐴, 𝐶, 𝐸}

Proof of Theorem dmtpop
StepHypRef Expression
1 df-tp 4653 . . . 4 {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩, ⟨𝐸, 𝐹⟩} = ({⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∪ {⟨𝐸, 𝐹⟩})
21dmeqi 5929 . . 3 dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩, ⟨𝐸, 𝐹⟩} = dom ({⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∪ {⟨𝐸, 𝐹⟩})
3 dmun 5935 . . 3 dom ({⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∪ {⟨𝐸, 𝐹⟩}) = (dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∪ dom {⟨𝐸, 𝐹⟩})
4 dmsnop.1 . . . . 5 𝐵 ∈ V
5 dmprop.1 . . . . 5 𝐷 ∈ V
64, 5dmprop 6248 . . . 4 dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = {𝐴, 𝐶}
7 dmtpop.1 . . . . 5 𝐹 ∈ V
87dmsnop 6247 . . . 4 dom {⟨𝐸, 𝐹⟩} = {𝐸}
96, 8uneq12i 4189 . . 3 (dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∪ dom {⟨𝐸, 𝐹⟩}) = ({𝐴, 𝐶} ∪ {𝐸})
102, 3, 93eqtri 2772 . 2 dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩, ⟨𝐸, 𝐹⟩} = ({𝐴, 𝐶} ∪ {𝐸})
11 df-tp 4653 . 2 {𝐴, 𝐶, 𝐸} = ({𝐴, 𝐶} ∪ {𝐸})
1210, 11eqtr4i 2771 1 dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩, ⟨𝐸, 𝐹⟩} = {𝐴, 𝐶, 𝐸}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2108  Vcvv 3488  cun 3974  {csn 4648  {cpr 4650  {ctp 4652  cop 4654  dom cdm 5700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-br 5167  df-dm 5710
This theorem is referenced by:  fntp  6639  fntpb  7246  cnfldfunALT  21402  cnfldfunALTOLD  21415  cnfldfunALTOLDOLD  21416
  Copyright terms: Public domain W3C validator