![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmtpop | Structured version Visualization version GIF version |
Description: The domain of an unordered triple of ordered pairs. (Contributed by NM, 14-Sep-2011.) |
Ref | Expression |
---|---|
dmsnop.1 | ⊢ 𝐵 ∈ V |
dmprop.1 | ⊢ 𝐷 ∈ V |
dmtpop.1 | ⊢ 𝐹 ∈ V |
Ref | Expression |
---|---|
dmtpop | ⊢ dom {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉, 〈𝐸, 𝐹〉} = {𝐴, 𝐶, 𝐸} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-tp 4653 | . . . 4 ⊢ {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉, 〈𝐸, 𝐹〉} = ({〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} ∪ {〈𝐸, 𝐹〉}) | |
2 | 1 | dmeqi 5929 | . . 3 ⊢ dom {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉, 〈𝐸, 𝐹〉} = dom ({〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} ∪ {〈𝐸, 𝐹〉}) |
3 | dmun 5935 | . . 3 ⊢ dom ({〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} ∪ {〈𝐸, 𝐹〉}) = (dom {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} ∪ dom {〈𝐸, 𝐹〉}) | |
4 | dmsnop.1 | . . . . 5 ⊢ 𝐵 ∈ V | |
5 | dmprop.1 | . . . . 5 ⊢ 𝐷 ∈ V | |
6 | 4, 5 | dmprop 6248 | . . . 4 ⊢ dom {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} = {𝐴, 𝐶} |
7 | dmtpop.1 | . . . . 5 ⊢ 𝐹 ∈ V | |
8 | 7 | dmsnop 6247 | . . . 4 ⊢ dom {〈𝐸, 𝐹〉} = {𝐸} |
9 | 6, 8 | uneq12i 4189 | . . 3 ⊢ (dom {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} ∪ dom {〈𝐸, 𝐹〉}) = ({𝐴, 𝐶} ∪ {𝐸}) |
10 | 2, 3, 9 | 3eqtri 2772 | . 2 ⊢ dom {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉, 〈𝐸, 𝐹〉} = ({𝐴, 𝐶} ∪ {𝐸}) |
11 | df-tp 4653 | . 2 ⊢ {𝐴, 𝐶, 𝐸} = ({𝐴, 𝐶} ∪ {𝐸}) | |
12 | 10, 11 | eqtr4i 2771 | 1 ⊢ dom {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉, 〈𝐸, 𝐹〉} = {𝐴, 𝐶, 𝐸} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∪ cun 3974 {csn 4648 {cpr 4650 {ctp 4652 〈cop 4654 dom cdm 5700 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-br 5167 df-dm 5710 |
This theorem is referenced by: fntp 6639 fntpb 7246 cnfldfunALT 21402 cnfldfunALTOLD 21415 cnfldfunALTOLDOLD 21416 |
Copyright terms: Public domain | W3C validator |