Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dmtpop | Structured version Visualization version GIF version |
Description: The domain of an unordered triple of ordered pairs. (Contributed by NM, 14-Sep-2011.) |
Ref | Expression |
---|---|
dmsnop.1 | ⊢ 𝐵 ∈ V |
dmprop.1 | ⊢ 𝐷 ∈ V |
dmtpop.1 | ⊢ 𝐹 ∈ V |
Ref | Expression |
---|---|
dmtpop | ⊢ dom {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉, 〈𝐸, 𝐹〉} = {𝐴, 𝐶, 𝐸} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-tp 4546 | . . . 4 ⊢ {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉, 〈𝐸, 𝐹〉} = ({〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} ∪ {〈𝐸, 𝐹〉}) | |
2 | 1 | dmeqi 5773 | . . 3 ⊢ dom {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉, 〈𝐸, 𝐹〉} = dom ({〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} ∪ {〈𝐸, 𝐹〉}) |
3 | dmun 5779 | . . 3 ⊢ dom ({〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} ∪ {〈𝐸, 𝐹〉}) = (dom {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} ∪ dom {〈𝐸, 𝐹〉}) | |
4 | dmsnop.1 | . . . . 5 ⊢ 𝐵 ∈ V | |
5 | dmprop.1 | . . . . 5 ⊢ 𝐷 ∈ V | |
6 | 4, 5 | dmprop 6080 | . . . 4 ⊢ dom {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} = {𝐴, 𝐶} |
7 | dmtpop.1 | . . . . 5 ⊢ 𝐹 ∈ V | |
8 | 7 | dmsnop 6079 | . . . 4 ⊢ dom {〈𝐸, 𝐹〉} = {𝐸} |
9 | 6, 8 | uneq12i 4075 | . . 3 ⊢ (dom {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} ∪ dom {〈𝐸, 𝐹〉}) = ({𝐴, 𝐶} ∪ {𝐸}) |
10 | 2, 3, 9 | 3eqtri 2769 | . 2 ⊢ dom {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉, 〈𝐸, 𝐹〉} = ({𝐴, 𝐶} ∪ {𝐸}) |
11 | df-tp 4546 | . 2 ⊢ {𝐴, 𝐶, 𝐸} = ({𝐴, 𝐶} ∪ {𝐸}) | |
12 | 10, 11 | eqtr4i 2768 | 1 ⊢ dom {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉, 〈𝐸, 𝐹〉} = {𝐴, 𝐶, 𝐸} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1543 ∈ wcel 2110 Vcvv 3408 ∪ cun 3864 {csn 4541 {cpr 4543 {ctp 4545 〈cop 4547 dom cdm 5551 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-br 5054 df-dm 5561 |
This theorem is referenced by: fntp 6441 fntpb 7025 cnfldfun 20375 |
Copyright terms: Public domain | W3C validator |