| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmtpop | Structured version Visualization version GIF version | ||
| Description: The domain of an unordered triple of ordered pairs. (Contributed by NM, 14-Sep-2011.) |
| Ref | Expression |
|---|---|
| dmsnop.1 | ⊢ 𝐵 ∈ V |
| dmprop.1 | ⊢ 𝐷 ∈ V |
| dmtpop.1 | ⊢ 𝐹 ∈ V |
| Ref | Expression |
|---|---|
| dmtpop | ⊢ dom {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉, 〈𝐸, 𝐹〉} = {𝐴, 𝐶, 𝐸} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-tp 4597 | . . . 4 ⊢ {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉, 〈𝐸, 𝐹〉} = ({〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} ∪ {〈𝐸, 𝐹〉}) | |
| 2 | 1 | dmeqi 5871 | . . 3 ⊢ dom {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉, 〈𝐸, 𝐹〉} = dom ({〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} ∪ {〈𝐸, 𝐹〉}) |
| 3 | dmun 5877 | . . 3 ⊢ dom ({〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} ∪ {〈𝐸, 𝐹〉}) = (dom {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} ∪ dom {〈𝐸, 𝐹〉}) | |
| 4 | dmsnop.1 | . . . . 5 ⊢ 𝐵 ∈ V | |
| 5 | dmprop.1 | . . . . 5 ⊢ 𝐷 ∈ V | |
| 6 | 4, 5 | dmprop 6193 | . . . 4 ⊢ dom {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} = {𝐴, 𝐶} |
| 7 | dmtpop.1 | . . . . 5 ⊢ 𝐹 ∈ V | |
| 8 | 7 | dmsnop 6192 | . . . 4 ⊢ dom {〈𝐸, 𝐹〉} = {𝐸} |
| 9 | 6, 8 | uneq12i 4132 | . . 3 ⊢ (dom {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} ∪ dom {〈𝐸, 𝐹〉}) = ({𝐴, 𝐶} ∪ {𝐸}) |
| 10 | 2, 3, 9 | 3eqtri 2757 | . 2 ⊢ dom {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉, 〈𝐸, 𝐹〉} = ({𝐴, 𝐶} ∪ {𝐸}) |
| 11 | df-tp 4597 | . 2 ⊢ {𝐴, 𝐶, 𝐸} = ({𝐴, 𝐶} ∪ {𝐸}) | |
| 12 | 10, 11 | eqtr4i 2756 | 1 ⊢ dom {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉, 〈𝐸, 𝐹〉} = {𝐴, 𝐶, 𝐸} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 Vcvv 3450 ∪ cun 3915 {csn 4592 {cpr 4594 {ctp 4596 〈cop 4598 dom cdm 5641 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-br 5111 df-dm 5651 |
| This theorem is referenced by: fntp 6580 fntpb 7186 cnfldfunALT 21286 cnfldfunALTOLD 21299 |
| Copyright terms: Public domain | W3C validator |