MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmtpop Structured version   Visualization version   GIF version

Theorem dmtpop 6072
Description: The domain of an unordered triple of ordered pairs. (Contributed by NM, 14-Sep-2011.)
Hypotheses
Ref Expression
dmsnop.1 𝐵 ∈ V
dmprop.1 𝐷 ∈ V
dmtpop.1 𝐹 ∈ V
Assertion
Ref Expression
dmtpop dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩, ⟨𝐸, 𝐹⟩} = {𝐴, 𝐶, 𝐸}

Proof of Theorem dmtpop
StepHypRef Expression
1 df-tp 4568 . . . 4 {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩, ⟨𝐸, 𝐹⟩} = ({⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∪ {⟨𝐸, 𝐹⟩})
21dmeqi 5771 . . 3 dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩, ⟨𝐸, 𝐹⟩} = dom ({⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∪ {⟨𝐸, 𝐹⟩})
3 dmun 5777 . . 3 dom ({⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∪ {⟨𝐸, 𝐹⟩}) = (dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∪ dom {⟨𝐸, 𝐹⟩})
4 dmsnop.1 . . . . 5 𝐵 ∈ V
5 dmprop.1 . . . . 5 𝐷 ∈ V
64, 5dmprop 6071 . . . 4 dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = {𝐴, 𝐶}
7 dmtpop.1 . . . . 5 𝐹 ∈ V
87dmsnop 6070 . . . 4 dom {⟨𝐸, 𝐹⟩} = {𝐸}
96, 8uneq12i 4140 . . 3 (dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∪ dom {⟨𝐸, 𝐹⟩}) = ({𝐴, 𝐶} ∪ {𝐸})
102, 3, 93eqtri 2852 . 2 dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩, ⟨𝐸, 𝐹⟩} = ({𝐴, 𝐶} ∪ {𝐸})
11 df-tp 4568 . 2 {𝐴, 𝐶, 𝐸} = ({𝐴, 𝐶} ∪ {𝐸})
1210, 11eqtr4i 2851 1 dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩, ⟨𝐸, 𝐹⟩} = {𝐴, 𝐶, 𝐸}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1530  wcel 2107  Vcvv 3499  cun 3937  {csn 4563  {cpr 4565  {ctp 4567  cop 4569  dom cdm 5553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-sep 5199  ax-nul 5206  ax-pr 5325
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-rab 3151  df-v 3501  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4470  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-br 5063  df-dm 5563
This theorem is referenced by:  fntp  6411  fntpb  6970  cnfldfun  20476
  Copyright terms: Public domain W3C validator