MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmtpop Structured version   Visualization version   GIF version

Theorem dmtpop 6220
Description: The domain of an unordered triple of ordered pairs. (Contributed by NM, 14-Sep-2011.)
Hypotheses
Ref Expression
dmsnop.1 𝐵 ∈ V
dmprop.1 𝐷 ∈ V
dmtpop.1 𝐹 ∈ V
Assertion
Ref Expression
dmtpop dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩, ⟨𝐸, 𝐹⟩} = {𝐴, 𝐶, 𝐸}

Proof of Theorem dmtpop
StepHypRef Expression
1 df-tp 4629 . . . 4 {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩, ⟨𝐸, 𝐹⟩} = ({⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∪ {⟨𝐸, 𝐹⟩})
21dmeqi 5902 . . 3 dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩, ⟨𝐸, 𝐹⟩} = dom ({⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∪ {⟨𝐸, 𝐹⟩})
3 dmun 5908 . . 3 dom ({⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∪ {⟨𝐸, 𝐹⟩}) = (dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∪ dom {⟨𝐸, 𝐹⟩})
4 dmsnop.1 . . . . 5 𝐵 ∈ V
5 dmprop.1 . . . . 5 𝐷 ∈ V
64, 5dmprop 6219 . . . 4 dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = {𝐴, 𝐶}
7 dmtpop.1 . . . . 5 𝐹 ∈ V
87dmsnop 6218 . . . 4 dom {⟨𝐸, 𝐹⟩} = {𝐸}
96, 8uneq12i 4159 . . 3 (dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∪ dom {⟨𝐸, 𝐹⟩}) = ({𝐴, 𝐶} ∪ {𝐸})
102, 3, 93eqtri 2758 . 2 dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩, ⟨𝐸, 𝐹⟩} = ({𝐴, 𝐶} ∪ {𝐸})
11 df-tp 4629 . 2 {𝐴, 𝐶, 𝐸} = ({𝐴, 𝐶} ∪ {𝐸})
1210, 11eqtr4i 2757 1 dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩, ⟨𝐸, 𝐹⟩} = {𝐴, 𝐶, 𝐸}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1534  wcel 2099  Vcvv 3463  cun 3945  {csn 4624  {cpr 4626  {ctp 4628  cop 4630  dom cdm 5673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-12 2167  ax-ext 2697  ax-sep 5295  ax-nul 5302  ax-pr 5424
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-clab 2704  df-cleq 2718  df-clel 2803  df-rab 3421  df-v 3465  df-dif 3950  df-un 3952  df-ss 3964  df-nul 4324  df-if 4525  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-br 5145  df-dm 5683
This theorem is referenced by:  fntp  6610  fntpb  7216  cnfldfunALT  21352  cnfldfunALTOLD  21365  cnfldfunALTOLDOLD  21366
  Copyright terms: Public domain W3C validator