| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmtpop | Structured version Visualization version GIF version | ||
| Description: The domain of an unordered triple of ordered pairs. (Contributed by NM, 14-Sep-2011.) |
| Ref | Expression |
|---|---|
| dmsnop.1 | ⊢ 𝐵 ∈ V |
| dmprop.1 | ⊢ 𝐷 ∈ V |
| dmtpop.1 | ⊢ 𝐹 ∈ V |
| Ref | Expression |
|---|---|
| dmtpop | ⊢ dom {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉, 〈𝐸, 𝐹〉} = {𝐴, 𝐶, 𝐸} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-tp 4578 | . . . 4 ⊢ {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉, 〈𝐸, 𝐹〉} = ({〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} ∪ {〈𝐸, 𝐹〉}) | |
| 2 | 1 | dmeqi 5843 | . . 3 ⊢ dom {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉, 〈𝐸, 𝐹〉} = dom ({〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} ∪ {〈𝐸, 𝐹〉}) |
| 3 | dmun 5849 | . . 3 ⊢ dom ({〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} ∪ {〈𝐸, 𝐹〉}) = (dom {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} ∪ dom {〈𝐸, 𝐹〉}) | |
| 4 | dmsnop.1 | . . . . 5 ⊢ 𝐵 ∈ V | |
| 5 | dmprop.1 | . . . . 5 ⊢ 𝐷 ∈ V | |
| 6 | 4, 5 | dmprop 6164 | . . . 4 ⊢ dom {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} = {𝐴, 𝐶} |
| 7 | dmtpop.1 | . . . . 5 ⊢ 𝐹 ∈ V | |
| 8 | 7 | dmsnop 6163 | . . . 4 ⊢ dom {〈𝐸, 𝐹〉} = {𝐸} |
| 9 | 6, 8 | uneq12i 4113 | . . 3 ⊢ (dom {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} ∪ dom {〈𝐸, 𝐹〉}) = ({𝐴, 𝐶} ∪ {𝐸}) |
| 10 | 2, 3, 9 | 3eqtri 2758 | . 2 ⊢ dom {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉, 〈𝐸, 𝐹〉} = ({𝐴, 𝐶} ∪ {𝐸}) |
| 11 | df-tp 4578 | . 2 ⊢ {𝐴, 𝐶, 𝐸} = ({𝐴, 𝐶} ∪ {𝐸}) | |
| 12 | 10, 11 | eqtr4i 2757 | 1 ⊢ dom {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉, 〈𝐸, 𝐹〉} = {𝐴, 𝐶, 𝐸} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∪ cun 3895 {csn 4573 {cpr 4575 {ctp 4577 〈cop 4579 dom cdm 5614 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-br 5090 df-dm 5624 |
| This theorem is referenced by: fntp 6542 fntpb 7143 cnfldfunALT 21306 cnfldfunALTOLD 21319 |
| Copyright terms: Public domain | W3C validator |