![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmtpop | Structured version Visualization version GIF version |
Description: The domain of an unordered triple of ordered pairs. (Contributed by NM, 14-Sep-2011.) |
Ref | Expression |
---|---|
dmsnop.1 | ⊢ 𝐵 ∈ V |
dmprop.1 | ⊢ 𝐷 ∈ V |
dmtpop.1 | ⊢ 𝐹 ∈ V |
Ref | Expression |
---|---|
dmtpop | ⊢ dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩, ⟨𝐸, 𝐹⟩} = {𝐴, 𝐶, 𝐸} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-tp 4595 | . . . 4 ⊢ {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩, ⟨𝐸, 𝐹⟩} = ({⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∪ {⟨𝐸, 𝐹⟩}) | |
2 | 1 | dmeqi 5864 | . . 3 ⊢ dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩, ⟨𝐸, 𝐹⟩} = dom ({⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∪ {⟨𝐸, 𝐹⟩}) |
3 | dmun 5870 | . . 3 ⊢ dom ({⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∪ {⟨𝐸, 𝐹⟩}) = (dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∪ dom {⟨𝐸, 𝐹⟩}) | |
4 | dmsnop.1 | . . . . 5 ⊢ 𝐵 ∈ V | |
5 | dmprop.1 | . . . . 5 ⊢ 𝐷 ∈ V | |
6 | 4, 5 | dmprop 6173 | . . . 4 ⊢ dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = {𝐴, 𝐶} |
7 | dmtpop.1 | . . . . 5 ⊢ 𝐹 ∈ V | |
8 | 7 | dmsnop 6172 | . . . 4 ⊢ dom {⟨𝐸, 𝐹⟩} = {𝐸} |
9 | 6, 8 | uneq12i 4125 | . . 3 ⊢ (dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∪ dom {⟨𝐸, 𝐹⟩}) = ({𝐴, 𝐶} ∪ {𝐸}) |
10 | 2, 3, 9 | 3eqtri 2765 | . 2 ⊢ dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩, ⟨𝐸, 𝐹⟩} = ({𝐴, 𝐶} ∪ {𝐸}) |
11 | df-tp 4595 | . 2 ⊢ {𝐴, 𝐶, 𝐸} = ({𝐴, 𝐶} ∪ {𝐸}) | |
12 | 10, 11 | eqtr4i 2764 | 1 ⊢ dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩, ⟨𝐸, 𝐹⟩} = {𝐴, 𝐶, 𝐸} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ∈ wcel 2107 Vcvv 3447 ∪ cun 3912 {csn 4590 {cpr 4592 {ctp 4594 ⟨cop 4596 dom cdm 5637 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-12 2172 ax-ext 2704 ax-sep 5260 ax-nul 5267 ax-pr 5388 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-rab 3407 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4287 df-if 4491 df-sn 4591 df-pr 4593 df-tp 4595 df-op 4597 df-br 5110 df-dm 5647 |
This theorem is referenced by: fntp 6566 fntpb 7163 cnfldfunALT 20832 cnfldfunALTOLD 20833 |
Copyright terms: Public domain | W3C validator |