![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmpropg | Structured version Visualization version GIF version |
Description: The domain of an unordered pair of ordered pairs. (Contributed by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
dmpropg | ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) → dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = {𝐴, 𝐶}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmsnopg 6169 | . . 3 ⊢ (𝐵 ∈ 𝑉 → dom {⟨𝐴, 𝐵⟩} = {𝐴}) | |
2 | dmsnopg 6169 | . . 3 ⊢ (𝐷 ∈ 𝑊 → dom {⟨𝐶, 𝐷⟩} = {𝐶}) | |
3 | uneq12 4122 | . . 3 ⊢ ((dom {⟨𝐴, 𝐵⟩} = {𝐴} ∧ dom {⟨𝐶, 𝐷⟩} = {𝐶}) → (dom {⟨𝐴, 𝐵⟩} ∪ dom {⟨𝐶, 𝐷⟩}) = ({𝐴} ∪ {𝐶})) | |
4 | 1, 2, 3 | syl2an 597 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) → (dom {⟨𝐴, 𝐵⟩} ∪ dom {⟨𝐶, 𝐷⟩}) = ({𝐴} ∪ {𝐶})) |
5 | df-pr 4593 | . . . 4 ⊢ {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩}) | |
6 | 5 | dmeqi 5864 | . . 3 ⊢ dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = dom ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩}) |
7 | dmun 5870 | . . 3 ⊢ dom ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩}) = (dom {⟨𝐴, 𝐵⟩} ∪ dom {⟨𝐶, 𝐷⟩}) | |
8 | 6, 7 | eqtri 2761 | . 2 ⊢ dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = (dom {⟨𝐴, 𝐵⟩} ∪ dom {⟨𝐶, 𝐷⟩}) |
9 | df-pr 4593 | . 2 ⊢ {𝐴, 𝐶} = ({𝐴} ∪ {𝐶}) | |
10 | 4, 8, 9 | 3eqtr4g 2798 | 1 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) → dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = {𝐴, 𝐶}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∪ cun 3912 {csn 4590 {cpr 4592 ⟨cop 4596 dom cdm 5637 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-12 2172 ax-ext 2704 ax-sep 5260 ax-nul 5267 ax-pr 5388 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-rab 3407 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4287 df-if 4491 df-sn 4591 df-pr 4593 df-op 4597 df-br 5110 df-dm 5647 |
This theorem is referenced by: dmprop 6173 funtpg 6560 fnprg 6564 hashdmpropge2 14391 s2dmALT 14806 s4dom 14817 estrreslem2 18034 structiedg0val 28022 |
Copyright terms: Public domain | W3C validator |