| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmpropg | Structured version Visualization version GIF version | ||
| Description: The domain of an unordered pair of ordered pairs. (Contributed by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| dmpropg | ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) → dom {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} = {𝐴, 𝐶}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmsnopg 6202 | . . 3 ⊢ (𝐵 ∈ 𝑉 → dom {〈𝐴, 𝐵〉} = {𝐴}) | |
| 2 | dmsnopg 6202 | . . 3 ⊢ (𝐷 ∈ 𝑊 → dom {〈𝐶, 𝐷〉} = {𝐶}) | |
| 3 | uneq12 4138 | . . 3 ⊢ ((dom {〈𝐴, 𝐵〉} = {𝐴} ∧ dom {〈𝐶, 𝐷〉} = {𝐶}) → (dom {〈𝐴, 𝐵〉} ∪ dom {〈𝐶, 𝐷〉}) = ({𝐴} ∪ {𝐶})) | |
| 4 | 1, 2, 3 | syl2an 596 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) → (dom {〈𝐴, 𝐵〉} ∪ dom {〈𝐶, 𝐷〉}) = ({𝐴} ∪ {𝐶})) |
| 5 | df-pr 4604 | . . . 4 ⊢ {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} = ({〈𝐴, 𝐵〉} ∪ {〈𝐶, 𝐷〉}) | |
| 6 | 5 | dmeqi 5884 | . . 3 ⊢ dom {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} = dom ({〈𝐴, 𝐵〉} ∪ {〈𝐶, 𝐷〉}) |
| 7 | dmun 5890 | . . 3 ⊢ dom ({〈𝐴, 𝐵〉} ∪ {〈𝐶, 𝐷〉}) = (dom {〈𝐴, 𝐵〉} ∪ dom {〈𝐶, 𝐷〉}) | |
| 8 | 6, 7 | eqtri 2758 | . 2 ⊢ dom {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} = (dom {〈𝐴, 𝐵〉} ∪ dom {〈𝐶, 𝐷〉}) |
| 9 | df-pr 4604 | . 2 ⊢ {𝐴, 𝐶} = ({𝐴} ∪ {𝐶}) | |
| 10 | 4, 8, 9 | 3eqtr4g 2795 | 1 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) → dom {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} = {𝐴, 𝐶}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∪ cun 3924 {csn 4601 {cpr 4603 〈cop 4607 dom cdm 5654 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-dm 5664 |
| This theorem is referenced by: dmprop 6206 funtpg 6590 fnprg 6594 hashdmpropge2 14499 s2dmALT 14925 s4dom 14936 estrreslem2 18148 structiedg0val 28947 |
| Copyright terms: Public domain | W3C validator |