MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmpropg Structured version   Visualization version   GIF version

Theorem dmpropg 6107
Description: The domain of an unordered pair of ordered pairs. (Contributed by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
dmpropg ((𝐵𝑉𝐷𝑊) → dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = {𝐴, 𝐶})

Proof of Theorem dmpropg
StepHypRef Expression
1 dmsnopg 6105 . . 3 (𝐵𝑉 → dom {⟨𝐴, 𝐵⟩} = {𝐴})
2 dmsnopg 6105 . . 3 (𝐷𝑊 → dom {⟨𝐶, 𝐷⟩} = {𝐶})
3 uneq12 4088 . . 3 ((dom {⟨𝐴, 𝐵⟩} = {𝐴} ∧ dom {⟨𝐶, 𝐷⟩} = {𝐶}) → (dom {⟨𝐴, 𝐵⟩} ∪ dom {⟨𝐶, 𝐷⟩}) = ({𝐴} ∪ {𝐶}))
41, 2, 3syl2an 595 . 2 ((𝐵𝑉𝐷𝑊) → (dom {⟨𝐴, 𝐵⟩} ∪ dom {⟨𝐶, 𝐷⟩}) = ({𝐴} ∪ {𝐶}))
5 df-pr 4561 . . . 4 {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩})
65dmeqi 5802 . . 3 dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = dom ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩})
7 dmun 5808 . . 3 dom ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩}) = (dom {⟨𝐴, 𝐵⟩} ∪ dom {⟨𝐶, 𝐷⟩})
86, 7eqtri 2766 . 2 dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = (dom {⟨𝐴, 𝐵⟩} ∪ dom {⟨𝐶, 𝐷⟩})
9 df-pr 4561 . 2 {𝐴, 𝐶} = ({𝐴} ∪ {𝐶})
104, 8, 93eqtr4g 2804 1 ((𝐵𝑉𝐷𝑊) → dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = {𝐴, 𝐶})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  cun 3881  {csn 4558  {cpr 4560  cop 4564  dom cdm 5580
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-dm 5590
This theorem is referenced by:  dmprop  6109  funtpg  6473  fnprg  6477  hashdmpropge2  14125  s2dmALT  14549  s4dom  14560  estrreslem2  17771  structiedg0val  27295
  Copyright terms: Public domain W3C validator