Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  releldmqs Structured version   Visualization version   GIF version

Theorem releldmqs 38614
Description: Elementhood in the domain quotient of a relation. (Contributed by Peter Mazsa, 24-Apr-2021.)
Assertion
Ref Expression
releldmqs (𝐴𝑉 → (Rel 𝑅 → (𝐴 ∈ (dom 𝑅 / 𝑅) ↔ ∃𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅𝐴 = [𝑢]𝑅)))
Distinct variable groups:   𝑢,𝐴,𝑥   𝑢,𝑅,𝑥
Allowed substitution hints:   𝑉(𝑥,𝑢)

Proof of Theorem releldmqs
StepHypRef Expression
1 resdm 6055 . . . . . 6 (Rel 𝑅 → (𝑅 ↾ dom 𝑅) = 𝑅)
21dmqseqd 38598 . . . . 5 (Rel 𝑅 → (dom (𝑅 ↾ dom 𝑅) / (𝑅 ↾ dom 𝑅)) = (dom 𝑅 / 𝑅))
32eleq2d 2830 . . . 4 (Rel 𝑅 → (𝐴 ∈ (dom (𝑅 ↾ dom 𝑅) / (𝑅 ↾ dom 𝑅)) ↔ 𝐴 ∈ (dom 𝑅 / 𝑅)))
43adantl 481 . . 3 ((𝐴𝑉 ∧ Rel 𝑅) → (𝐴 ∈ (dom (𝑅 ↾ dom 𝑅) / (𝑅 ↾ dom 𝑅)) ↔ 𝐴 ∈ (dom 𝑅 / 𝑅)))
5 eldmqsres2 38244 . . . 4 (𝐴𝑉 → (𝐴 ∈ (dom (𝑅 ↾ dom 𝑅) / (𝑅 ↾ dom 𝑅)) ↔ ∃𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅𝐴 = [𝑢]𝑅))
65adantr 480 . . 3 ((𝐴𝑉 ∧ Rel 𝑅) → (𝐴 ∈ (dom (𝑅 ↾ dom 𝑅) / (𝑅 ↾ dom 𝑅)) ↔ ∃𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅𝐴 = [𝑢]𝑅))
74, 6bitr3d 281 . 2 ((𝐴𝑉 ∧ Rel 𝑅) → (𝐴 ∈ (dom 𝑅 / 𝑅) ↔ ∃𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅𝐴 = [𝑢]𝑅))
87ex 412 1 (𝐴𝑉 → (Rel 𝑅 → (𝐴 ∈ (dom 𝑅 / 𝑅) ↔ ∃𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅𝐴 = [𝑢]𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wrex 3076  dom cdm 5700  cres 5702  Rel wrel 5705  [cec 8761   / cqs 8762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-cnv 5708  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ec 8765  df-qs 8769
This theorem is referenced by:  disjdmqsss  38758
  Copyright terms: Public domain W3C validator