Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  releldmqs Structured version   Visualization version   GIF version

Theorem releldmqs 38659
Description: Elementhood in the domain quotient of a relation. (Contributed by Peter Mazsa, 24-Apr-2021.)
Assertion
Ref Expression
releldmqs (𝐴𝑉 → (Rel 𝑅 → (𝐴 ∈ (dom 𝑅 / 𝑅) ↔ ∃𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅𝐴 = [𝑢]𝑅)))
Distinct variable groups:   𝑢,𝐴,𝑥   𝑢,𝑅,𝑥
Allowed substitution hints:   𝑉(𝑥,𝑢)

Proof of Theorem releldmqs
StepHypRef Expression
1 resdm 6044 . . . . . 6 (Rel 𝑅 → (𝑅 ↾ dom 𝑅) = 𝑅)
21dmqseqd 38643 . . . . 5 (Rel 𝑅 → (dom (𝑅 ↾ dom 𝑅) / (𝑅 ↾ dom 𝑅)) = (dom 𝑅 / 𝑅))
32eleq2d 2827 . . . 4 (Rel 𝑅 → (𝐴 ∈ (dom (𝑅 ↾ dom 𝑅) / (𝑅 ↾ dom 𝑅)) ↔ 𝐴 ∈ (dom 𝑅 / 𝑅)))
43adantl 481 . . 3 ((𝐴𝑉 ∧ Rel 𝑅) → (𝐴 ∈ (dom (𝑅 ↾ dom 𝑅) / (𝑅 ↾ dom 𝑅)) ↔ 𝐴 ∈ (dom 𝑅 / 𝑅)))
5 eldmqsres2 38289 . . . 4 (𝐴𝑉 → (𝐴 ∈ (dom (𝑅 ↾ dom 𝑅) / (𝑅 ↾ dom 𝑅)) ↔ ∃𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅𝐴 = [𝑢]𝑅))
65adantr 480 . . 3 ((𝐴𝑉 ∧ Rel 𝑅) → (𝐴 ∈ (dom (𝑅 ↾ dom 𝑅) / (𝑅 ↾ dom 𝑅)) ↔ ∃𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅𝐴 = [𝑢]𝑅))
74, 6bitr3d 281 . 2 ((𝐴𝑉 ∧ Rel 𝑅) → (𝐴 ∈ (dom 𝑅 / 𝑅) ↔ ∃𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅𝐴 = [𝑢]𝑅))
87ex 412 1 (𝐴𝑉 → (Rel 𝑅 → (𝐴 ∈ (dom 𝑅 / 𝑅) ↔ ∃𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅𝐴 = [𝑢]𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wrex 3070  dom cdm 5685  cres 5687  Rel wrel 5690  [cec 8743   / cqs 8744
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-br 5144  df-opab 5206  df-xp 5691  df-rel 5692  df-cnv 5693  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-ec 8747  df-qs 8751
This theorem is referenced by:  disjdmqsss  38803
  Copyright terms: Public domain W3C validator