| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > releldmqs | Structured version Visualization version GIF version | ||
| Description: Elementhood in the domain quotient of a relation. (Contributed by Peter Mazsa, 24-Apr-2021.) |
| Ref | Expression |
|---|---|
| releldmqs | ⊢ (𝐴 ∈ 𝑉 → (Rel 𝑅 → (𝐴 ∈ (dom 𝑅 / 𝑅) ↔ ∃𝑢 ∈ dom 𝑅∃𝑥 ∈ [ 𝑢]𝑅𝐴 = [𝑢]𝑅))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resdm 5986 | . . . . . 6 ⊢ (Rel 𝑅 → (𝑅 ↾ dom 𝑅) = 𝑅) | |
| 2 | 1 | dmqseqd 38606 | . . . . 5 ⊢ (Rel 𝑅 → (dom (𝑅 ↾ dom 𝑅) / (𝑅 ↾ dom 𝑅)) = (dom 𝑅 / 𝑅)) |
| 3 | 2 | eleq2d 2814 | . . . 4 ⊢ (Rel 𝑅 → (𝐴 ∈ (dom (𝑅 ↾ dom 𝑅) / (𝑅 ↾ dom 𝑅)) ↔ 𝐴 ∈ (dom 𝑅 / 𝑅))) |
| 4 | 3 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ Rel 𝑅) → (𝐴 ∈ (dom (𝑅 ↾ dom 𝑅) / (𝑅 ↾ dom 𝑅)) ↔ 𝐴 ∈ (dom 𝑅 / 𝑅))) |
| 5 | eldmqsres2 38249 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ (dom (𝑅 ↾ dom 𝑅) / (𝑅 ↾ dom 𝑅)) ↔ ∃𝑢 ∈ dom 𝑅∃𝑥 ∈ [ 𝑢]𝑅𝐴 = [𝑢]𝑅)) | |
| 6 | 5 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ Rel 𝑅) → (𝐴 ∈ (dom (𝑅 ↾ dom 𝑅) / (𝑅 ↾ dom 𝑅)) ↔ ∃𝑢 ∈ dom 𝑅∃𝑥 ∈ [ 𝑢]𝑅𝐴 = [𝑢]𝑅)) |
| 7 | 4, 6 | bitr3d 281 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ Rel 𝑅) → (𝐴 ∈ (dom 𝑅 / 𝑅) ↔ ∃𝑢 ∈ dom 𝑅∃𝑥 ∈ [ 𝑢]𝑅𝐴 = [𝑢]𝑅)) |
| 8 | 7 | ex 412 | 1 ⊢ (𝐴 ∈ 𝑉 → (Rel 𝑅 → (𝐴 ∈ (dom 𝑅 / 𝑅) ↔ ∃𝑢 ∈ dom 𝑅∃𝑥 ∈ [ 𝑢]𝑅𝐴 = [𝑢]𝑅))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 dom cdm 5631 ↾ cres 5633 Rel wrel 5636 [cec 8646 / cqs 8647 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-xp 5637 df-rel 5638 df-cnv 5639 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-ec 8650 df-qs 8654 |
| This theorem is referenced by: disjdmqsss 38767 |
| Copyright terms: Public domain | W3C validator |