| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnvsn0 | Structured version Visualization version GIF version | ||
| Description: The converse of the singleton of the empty set is empty. (Contributed by Mario Carneiro, 30-Aug-2015.) |
| Ref | Expression |
|---|---|
| cnvsn0 | ⊢ ◡{∅} = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfdm4 5875 | . . 3 ⊢ dom {∅} = ran ◡{∅} | |
| 2 | dmsn0 6198 | . . 3 ⊢ dom {∅} = ∅ | |
| 3 | 1, 2 | eqtr3i 2760 | . 2 ⊢ ran ◡{∅} = ∅ |
| 4 | relcnv 6091 | . . 3 ⊢ Rel ◡{∅} | |
| 5 | relrn0 5952 | . . 3 ⊢ (Rel ◡{∅} → (◡{∅} = ∅ ↔ ran ◡{∅} = ∅)) | |
| 6 | 4, 5 | ax-mp 5 | . 2 ⊢ (◡{∅} = ∅ ↔ ran ◡{∅} = ∅) |
| 7 | 3, 6 | mpbir 231 | 1 ⊢ ◡{∅} = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∅c0 4308 {csn 4601 ◡ccnv 5653 dom cdm 5654 ran crn 5655 Rel wrel 5659 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-xp 5660 df-rel 5661 df-cnv 5662 df-dm 5664 df-rn 5665 |
| This theorem is referenced by: opswap 6218 brtpos0 8232 tpostpos 8245 dftpos5 48849 |
| Copyright terms: Public domain | W3C validator |