MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvsn0 Structured version   Visualization version   GIF version

Theorem cnvsn0 6210
Description: The converse of the singleton of the empty set is empty. (Contributed by Mario Carneiro, 30-Aug-2015.)
Assertion
Ref Expression
cnvsn0 {∅} = ∅

Proof of Theorem cnvsn0
StepHypRef Expression
1 dfdm4 5896 . . 3 dom {∅} = ran {∅}
2 dmsn0 6209 . . 3 dom {∅} = ∅
31, 2eqtr3i 2763 . 2 ran {∅} = ∅
4 relcnv 6104 . . 3 Rel {∅}
5 relrn0 5969 . . 3 (Rel {∅} → ({∅} = ∅ ↔ ran {∅} = ∅))
64, 5ax-mp 5 . 2 ({∅} = ∅ ↔ ran {∅} = ∅)
73, 6mpbir 230 1 {∅} = ∅
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1542  c0 4323  {csn 4629  ccnv 5676  dom cdm 5677  ran crn 5678  Rel wrel 5682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2942  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5150  df-opab 5212  df-xp 5683  df-rel 5684  df-cnv 5685  df-dm 5687  df-rn 5688
This theorem is referenced by:  opswap  6229  brtpos0  8218  tpostpos  8231
  Copyright terms: Public domain W3C validator