![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnvsn0 | Structured version Visualization version GIF version |
Description: The converse of the singleton of the empty set is empty. (Contributed by Mario Carneiro, 30-Aug-2015.) |
Ref | Expression |
---|---|
cnvsn0 | ⊢ ◡{∅} = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfdm4 5552 | . . 3 ⊢ dom {∅} = ran ◡{∅} | |
2 | dmsn0 5847 | . . 3 ⊢ dom {∅} = ∅ | |
3 | 1, 2 | eqtr3i 2851 | . 2 ⊢ ran ◡{∅} = ∅ |
4 | relcnv 5748 | . . 3 ⊢ Rel ◡{∅} | |
5 | relrn0 5620 | . . 3 ⊢ (Rel ◡{∅} → (◡{∅} = ∅ ↔ ran ◡{∅} = ∅)) | |
6 | 4, 5 | ax-mp 5 | . 2 ⊢ (◡{∅} = ∅ ↔ ran ◡{∅} = ∅) |
7 | 3, 6 | mpbir 223 | 1 ⊢ ◡{∅} = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 = wceq 1656 ∅c0 4146 {csn 4399 ◡ccnv 5345 dom cdm 5346 ran crn 5347 Rel wrel 5351 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5007 ax-nul 5015 ax-pr 5129 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-rab 3126 df-v 3416 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-sn 4400 df-pr 4402 df-op 4406 df-br 4876 df-opab 4938 df-xp 5352 df-rel 5353 df-cnv 5354 df-dm 5356 df-rn 5357 |
This theorem is referenced by: opswap 5867 brtpos0 7629 tpostpos 7642 |
Copyright terms: Public domain | W3C validator |