![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnvsn0 | Structured version Visualization version GIF version |
Description: The converse of the singleton of the empty set is empty. (Contributed by Mario Carneiro, 30-Aug-2015.) |
Ref | Expression |
---|---|
cnvsn0 | ⊢ ◡{∅} = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfdm4 5920 | . . 3 ⊢ dom {∅} = ran ◡{∅} | |
2 | dmsn0 6240 | . . 3 ⊢ dom {∅} = ∅ | |
3 | 1, 2 | eqtr3i 2770 | . 2 ⊢ ran ◡{∅} = ∅ |
4 | relcnv 6134 | . . 3 ⊢ Rel ◡{∅} | |
5 | relrn0 5995 | . . 3 ⊢ (Rel ◡{∅} → (◡{∅} = ∅ ↔ ran ◡{∅} = ∅)) | |
6 | 4, 5 | ax-mp 5 | . 2 ⊢ (◡{∅} = ∅ ↔ ran ◡{∅} = ∅) |
7 | 3, 6 | mpbir 231 | 1 ⊢ ◡{∅} = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ∅c0 4352 {csn 4648 ◡ccnv 5699 dom cdm 5700 ran crn 5701 Rel wrel 5705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-cnv 5708 df-dm 5710 df-rn 5711 |
This theorem is referenced by: opswap 6260 brtpos0 8274 tpostpos 8287 |
Copyright terms: Public domain | W3C validator |