| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnvsn0 | Structured version Visualization version GIF version | ||
| Description: The converse of the singleton of the empty set is empty. (Contributed by Mario Carneiro, 30-Aug-2015.) |
| Ref | Expression |
|---|---|
| cnvsn0 | ⊢ ◡{∅} = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfdm4 5862 | . . 3 ⊢ dom {∅} = ran ◡{∅} | |
| 2 | dmsn0 6185 | . . 3 ⊢ dom {∅} = ∅ | |
| 3 | 1, 2 | eqtr3i 2755 | . 2 ⊢ ran ◡{∅} = ∅ |
| 4 | relcnv 6078 | . . 3 ⊢ Rel ◡{∅} | |
| 5 | relrn0 5939 | . . 3 ⊢ (Rel ◡{∅} → (◡{∅} = ∅ ↔ ran ◡{∅} = ∅)) | |
| 6 | 4, 5 | ax-mp 5 | . 2 ⊢ (◡{∅} = ∅ ↔ ran ◡{∅} = ∅) |
| 7 | 3, 6 | mpbir 231 | 1 ⊢ ◡{∅} = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∅c0 4299 {csn 4592 ◡ccnv 5640 dom cdm 5641 ran crn 5642 Rel wrel 5646 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-rel 5648 df-cnv 5649 df-dm 5651 df-rn 5652 |
| This theorem is referenced by: opswap 6205 brtpos0 8215 tpostpos 8228 dftpos5 48866 |
| Copyright terms: Public domain | W3C validator |