MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  drsdir Structured version   Visualization version   GIF version

Theorem drsdir 18374
Description: Direction of a directed set. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Hypotheses
Ref Expression
isdrs.b 𝐵 = (Base‘𝐾)
isdrs.l = (le‘𝐾)
Assertion
Ref Expression
drsdir ((𝐾 ∈ Dirset ∧ 𝑋𝐵𝑌𝐵) → ∃𝑧𝐵 (𝑋 𝑧𝑌 𝑧))
Distinct variable groups:   𝑧,𝐾   𝑧,𝐵   𝑧,   𝑧,𝑋   𝑧,𝑌

Proof of Theorem drsdir
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isdrs.b . . . . 5 𝐵 = (Base‘𝐾)
2 isdrs.l . . . . 5 = (le‘𝐾)
31, 2isdrs 18373 . . . 4 (𝐾 ∈ Dirset ↔ (𝐾 ∈ Proset ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 𝑧𝑦 𝑧)))
43simp3bi 1147 . . 3 (𝐾 ∈ Dirset → ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 𝑧𝑦 𝑧))
5 breq1 5169 . . . . . 6 (𝑥 = 𝑋 → (𝑥 𝑧𝑋 𝑧))
65anbi1d 630 . . . . 5 (𝑥 = 𝑋 → ((𝑥 𝑧𝑦 𝑧) ↔ (𝑋 𝑧𝑦 𝑧)))
76rexbidv 3185 . . . 4 (𝑥 = 𝑋 → (∃𝑧𝐵 (𝑥 𝑧𝑦 𝑧) ↔ ∃𝑧𝐵 (𝑋 𝑧𝑦 𝑧)))
8 breq1 5169 . . . . . 6 (𝑦 = 𝑌 → (𝑦 𝑧𝑌 𝑧))
98anbi2d 629 . . . . 5 (𝑦 = 𝑌 → ((𝑋 𝑧𝑦 𝑧) ↔ (𝑋 𝑧𝑌 𝑧)))
109rexbidv 3185 . . . 4 (𝑦 = 𝑌 → (∃𝑧𝐵 (𝑋 𝑧𝑦 𝑧) ↔ ∃𝑧𝐵 (𝑋 𝑧𝑌 𝑧)))
117, 10rspc2v 3646 . . 3 ((𝑋𝐵𝑌𝐵) → (∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 𝑧𝑦 𝑧) → ∃𝑧𝐵 (𝑋 𝑧𝑌 𝑧)))
124, 11syl5com 31 . 2 (𝐾 ∈ Dirset → ((𝑋𝐵𝑌𝐵) → ∃𝑧𝐵 (𝑋 𝑧𝑌 𝑧)))
13123impib 1116 1 ((𝐾 ∈ Dirset ∧ 𝑋𝐵𝑌𝐵) → ∃𝑧𝐵 (𝑋 𝑧𝑌 𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  c0 4352   class class class wbr 5166  cfv 6575  Basecbs 17260  lecple 17320   Proset cproset 18365  Dirsetcdrs 18366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-nul 5324
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-iota 6527  df-fv 6583  df-drs 18368
This theorem is referenced by:  drsdirfi  18377
  Copyright terms: Public domain W3C validator