![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > drsdir | Structured version Visualization version GIF version |
Description: Direction of a directed set. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
Ref | Expression |
---|---|
isdrs.b | ⊢ 𝐵 = (Base‘𝐾) |
isdrs.l | ⊢ ≤ = (le‘𝐾) |
Ref | Expression |
---|---|
drsdir | ⊢ ((𝐾 ∈ Dirset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ∃𝑧 ∈ 𝐵 (𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isdrs.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
2 | isdrs.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
3 | 1, 2 | isdrs 18373 | . . . 4 ⊢ (𝐾 ∈ Dirset ↔ (𝐾 ∈ Proset ∧ 𝐵 ≠ ∅ ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 (𝑥 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧))) |
4 | 3 | simp3bi 1147 | . . 3 ⊢ (𝐾 ∈ Dirset → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 (𝑥 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧)) |
5 | breq1 5169 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝑥 ≤ 𝑧 ↔ 𝑋 ≤ 𝑧)) | |
6 | 5 | anbi1d 630 | . . . . 5 ⊢ (𝑥 = 𝑋 → ((𝑥 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧) ↔ (𝑋 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧))) |
7 | 6 | rexbidv 3185 | . . . 4 ⊢ (𝑥 = 𝑋 → (∃𝑧 ∈ 𝐵 (𝑥 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧) ↔ ∃𝑧 ∈ 𝐵 (𝑋 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧))) |
8 | breq1 5169 | . . . . . 6 ⊢ (𝑦 = 𝑌 → (𝑦 ≤ 𝑧 ↔ 𝑌 ≤ 𝑧)) | |
9 | 8 | anbi2d 629 | . . . . 5 ⊢ (𝑦 = 𝑌 → ((𝑋 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧) ↔ (𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧))) |
10 | 9 | rexbidv 3185 | . . . 4 ⊢ (𝑦 = 𝑌 → (∃𝑧 ∈ 𝐵 (𝑋 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧) ↔ ∃𝑧 ∈ 𝐵 (𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧))) |
11 | 7, 10 | rspc2v 3646 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 (𝑥 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧) → ∃𝑧 ∈ 𝐵 (𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧))) |
12 | 4, 11 | syl5com 31 | . 2 ⊢ (𝐾 ∈ Dirset → ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ∃𝑧 ∈ 𝐵 (𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧))) |
13 | 12 | 3impib 1116 | 1 ⊢ ((𝐾 ∈ Dirset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ∃𝑧 ∈ 𝐵 (𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∀wral 3067 ∃wrex 3076 ∅c0 4352 class class class wbr 5166 ‘cfv 6575 Basecbs 17260 lecple 17320 Proset cproset 18365 Dirsetcdrs 18366 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-nul 5324 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6527 df-fv 6583 df-drs 18368 |
This theorem is referenced by: drsdirfi 18377 |
Copyright terms: Public domain | W3C validator |