Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > drsdir | Structured version Visualization version GIF version |
Description: Direction of a directed set. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
Ref | Expression |
---|---|
isdrs.b | ⊢ 𝐵 = (Base‘𝐾) |
isdrs.l | ⊢ ≤ = (le‘𝐾) |
Ref | Expression |
---|---|
drsdir | ⊢ ((𝐾 ∈ Dirset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ∃𝑧 ∈ 𝐵 (𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isdrs.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
2 | isdrs.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
3 | 1, 2 | isdrs 17934 | . . . 4 ⊢ (𝐾 ∈ Dirset ↔ (𝐾 ∈ Proset ∧ 𝐵 ≠ ∅ ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 (𝑥 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧))) |
4 | 3 | simp3bi 1145 | . . 3 ⊢ (𝐾 ∈ Dirset → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 (𝑥 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧)) |
5 | breq1 5073 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝑥 ≤ 𝑧 ↔ 𝑋 ≤ 𝑧)) | |
6 | 5 | anbi1d 629 | . . . . 5 ⊢ (𝑥 = 𝑋 → ((𝑥 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧) ↔ (𝑋 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧))) |
7 | 6 | rexbidv 3225 | . . . 4 ⊢ (𝑥 = 𝑋 → (∃𝑧 ∈ 𝐵 (𝑥 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧) ↔ ∃𝑧 ∈ 𝐵 (𝑋 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧))) |
8 | breq1 5073 | . . . . . 6 ⊢ (𝑦 = 𝑌 → (𝑦 ≤ 𝑧 ↔ 𝑌 ≤ 𝑧)) | |
9 | 8 | anbi2d 628 | . . . . 5 ⊢ (𝑦 = 𝑌 → ((𝑋 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧) ↔ (𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧))) |
10 | 9 | rexbidv 3225 | . . . 4 ⊢ (𝑦 = 𝑌 → (∃𝑧 ∈ 𝐵 (𝑋 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧) ↔ ∃𝑧 ∈ 𝐵 (𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧))) |
11 | 7, 10 | rspc2v 3562 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 (𝑥 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧) → ∃𝑧 ∈ 𝐵 (𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧))) |
12 | 4, 11 | syl5com 31 | . 2 ⊢ (𝐾 ∈ Dirset → ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ∃𝑧 ∈ 𝐵 (𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧))) |
13 | 12 | 3impib 1114 | 1 ⊢ ((𝐾 ∈ Dirset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ∃𝑧 ∈ 𝐵 (𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∀wral 3063 ∃wrex 3064 ∅c0 4253 class class class wbr 5070 ‘cfv 6418 Basecbs 16840 lecple 16895 Proset cproset 17926 Dirsetcdrs 17927 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-nul 5225 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-drs 17929 |
This theorem is referenced by: drsdirfi 17938 |
Copyright terms: Public domain | W3C validator |