![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > drsdir | Structured version Visualization version GIF version |
Description: Direction of a directed set. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
Ref | Expression |
---|---|
isdrs.b | ⊢ 𝐵 = (Base‘𝐾) |
isdrs.l | ⊢ ≤ = (le‘𝐾) |
Ref | Expression |
---|---|
drsdir | ⊢ ((𝐾 ∈ Dirset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ∃𝑧 ∈ 𝐵 (𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isdrs.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
2 | isdrs.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
3 | 1, 2 | isdrs 18368 | . . . 4 ⊢ (𝐾 ∈ Dirset ↔ (𝐾 ∈ Proset ∧ 𝐵 ≠ ∅ ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 (𝑥 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧))) |
4 | 3 | simp3bi 1148 | . . 3 ⊢ (𝐾 ∈ Dirset → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 (𝑥 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧)) |
5 | breq1 5154 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝑥 ≤ 𝑧 ↔ 𝑋 ≤ 𝑧)) | |
6 | 5 | anbi1d 631 | . . . . 5 ⊢ (𝑥 = 𝑋 → ((𝑥 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧) ↔ (𝑋 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧))) |
7 | 6 | rexbidv 3179 | . . . 4 ⊢ (𝑥 = 𝑋 → (∃𝑧 ∈ 𝐵 (𝑥 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧) ↔ ∃𝑧 ∈ 𝐵 (𝑋 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧))) |
8 | breq1 5154 | . . . . . 6 ⊢ (𝑦 = 𝑌 → (𝑦 ≤ 𝑧 ↔ 𝑌 ≤ 𝑧)) | |
9 | 8 | anbi2d 630 | . . . . 5 ⊢ (𝑦 = 𝑌 → ((𝑋 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧) ↔ (𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧))) |
10 | 9 | rexbidv 3179 | . . . 4 ⊢ (𝑦 = 𝑌 → (∃𝑧 ∈ 𝐵 (𝑋 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧) ↔ ∃𝑧 ∈ 𝐵 (𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧))) |
11 | 7, 10 | rspc2v 3636 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 (𝑥 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧) → ∃𝑧 ∈ 𝐵 (𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧))) |
12 | 4, 11 | syl5com 31 | . 2 ⊢ (𝐾 ∈ Dirset → ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ∃𝑧 ∈ 𝐵 (𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧))) |
13 | 12 | 3impib 1117 | 1 ⊢ ((𝐾 ∈ Dirset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ∃𝑧 ∈ 𝐵 (𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1539 ∈ wcel 2108 ≠ wne 2940 ∀wral 3061 ∃wrex 3070 ∅c0 4342 class class class wbr 5151 ‘cfv 6569 Basecbs 17254 lecple 17314 Proset cproset 18359 Dirsetcdrs 18360 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-nul 5315 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-sbc 3795 df-dif 3969 df-un 3971 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-br 5152 df-iota 6522 df-fv 6577 df-drs 18362 |
This theorem is referenced by: drsdirfi 18372 |
Copyright terms: Public domain | W3C validator |