MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  drsdir Structured version   Visualization version   GIF version

Theorem drsdir 18285
Description: Direction of a directed set. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Hypotheses
Ref Expression
isdrs.b 𝐵 = (Base‘𝐾)
isdrs.l = (le‘𝐾)
Assertion
Ref Expression
drsdir ((𝐾 ∈ Dirset ∧ 𝑋𝐵𝑌𝐵) → ∃𝑧𝐵 (𝑋 𝑧𝑌 𝑧))
Distinct variable groups:   𝑧,𝐾   𝑧,𝐵   𝑧,   𝑧,𝑋   𝑧,𝑌

Proof of Theorem drsdir
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isdrs.b . . . . 5 𝐵 = (Base‘𝐾)
2 isdrs.l . . . . 5 = (le‘𝐾)
31, 2isdrs 18284 . . . 4 (𝐾 ∈ Dirset ↔ (𝐾 ∈ Proset ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 𝑧𝑦 𝑧)))
43simp3bi 1145 . . 3 (𝐾 ∈ Dirset → ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 𝑧𝑦 𝑧))
5 breq1 5145 . . . . . 6 (𝑥 = 𝑋 → (𝑥 𝑧𝑋 𝑧))
65anbi1d 629 . . . . 5 (𝑥 = 𝑋 → ((𝑥 𝑧𝑦 𝑧) ↔ (𝑋 𝑧𝑦 𝑧)))
76rexbidv 3173 . . . 4 (𝑥 = 𝑋 → (∃𝑧𝐵 (𝑥 𝑧𝑦 𝑧) ↔ ∃𝑧𝐵 (𝑋 𝑧𝑦 𝑧)))
8 breq1 5145 . . . . . 6 (𝑦 = 𝑌 → (𝑦 𝑧𝑌 𝑧))
98anbi2d 628 . . . . 5 (𝑦 = 𝑌 → ((𝑋 𝑧𝑦 𝑧) ↔ (𝑋 𝑧𝑌 𝑧)))
109rexbidv 3173 . . . 4 (𝑦 = 𝑌 → (∃𝑧𝐵 (𝑋 𝑧𝑦 𝑧) ↔ ∃𝑧𝐵 (𝑋 𝑧𝑌 𝑧)))
117, 10rspc2v 3618 . . 3 ((𝑋𝐵𝑌𝐵) → (∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 𝑧𝑦 𝑧) → ∃𝑧𝐵 (𝑋 𝑧𝑌 𝑧)))
124, 11syl5com 31 . 2 (𝐾 ∈ Dirset → ((𝑋𝐵𝑌𝐵) → ∃𝑧𝐵 (𝑋 𝑧𝑌 𝑧)))
13123impib 1114 1 ((𝐾 ∈ Dirset ∧ 𝑋𝐵𝑌𝐵) → ∃𝑧𝐵 (𝑋 𝑧𝑌 𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1534  wcel 2099  wne 2935  wral 3056  wrex 3065  c0 4318   class class class wbr 5142  cfv 6542  Basecbs 17171  lecple 17231   Proset cproset 18276  Dirsetcdrs 18277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2698  ax-nul 5300
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2705  df-cleq 2719  df-clel 2805  df-ne 2936  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-sbc 3775  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-iota 6494  df-fv 6550  df-drs 18279
This theorem is referenced by:  drsdirfi  18288
  Copyright terms: Public domain W3C validator