MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  drsdir Structured version   Visualization version   GIF version

Theorem drsdir 18269
Description: Direction of a directed set. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Hypotheses
Ref Expression
isdrs.b 𝐵 = (Base‘𝐾)
isdrs.l = (le‘𝐾)
Assertion
Ref Expression
drsdir ((𝐾 ∈ Dirset ∧ 𝑋𝐵𝑌𝐵) → ∃𝑧𝐵 (𝑋 𝑧𝑌 𝑧))
Distinct variable groups:   𝑧,𝐾   𝑧,𝐵   𝑧,   𝑧,𝑋   𝑧,𝑌

Proof of Theorem drsdir
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isdrs.b . . . . 5 𝐵 = (Base‘𝐾)
2 isdrs.l . . . . 5 = (le‘𝐾)
31, 2isdrs 18268 . . . 4 (𝐾 ∈ Dirset ↔ (𝐾 ∈ Proset ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 𝑧𝑦 𝑧)))
43simp3bi 1147 . . 3 (𝐾 ∈ Dirset → ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 𝑧𝑦 𝑧))
5 breq1 5112 . . . . . 6 (𝑥 = 𝑋 → (𝑥 𝑧𝑋 𝑧))
65anbi1d 631 . . . . 5 (𝑥 = 𝑋 → ((𝑥 𝑧𝑦 𝑧) ↔ (𝑋 𝑧𝑦 𝑧)))
76rexbidv 3158 . . . 4 (𝑥 = 𝑋 → (∃𝑧𝐵 (𝑥 𝑧𝑦 𝑧) ↔ ∃𝑧𝐵 (𝑋 𝑧𝑦 𝑧)))
8 breq1 5112 . . . . . 6 (𝑦 = 𝑌 → (𝑦 𝑧𝑌 𝑧))
98anbi2d 630 . . . . 5 (𝑦 = 𝑌 → ((𝑋 𝑧𝑦 𝑧) ↔ (𝑋 𝑧𝑌 𝑧)))
109rexbidv 3158 . . . 4 (𝑦 = 𝑌 → (∃𝑧𝐵 (𝑋 𝑧𝑦 𝑧) ↔ ∃𝑧𝐵 (𝑋 𝑧𝑌 𝑧)))
117, 10rspc2v 3602 . . 3 ((𝑋𝐵𝑌𝐵) → (∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 𝑧𝑦 𝑧) → ∃𝑧𝐵 (𝑋 𝑧𝑌 𝑧)))
124, 11syl5com 31 . 2 (𝐾 ∈ Dirset → ((𝑋𝐵𝑌𝐵) → ∃𝑧𝐵 (𝑋 𝑧𝑌 𝑧)))
13123impib 1116 1 ((𝐾 ∈ Dirset ∧ 𝑋𝐵𝑌𝐵) → ∃𝑧𝐵 (𝑋 𝑧𝑌 𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  c0 4298   class class class wbr 5109  cfv 6513  Basecbs 17185  lecple 17233   Proset cproset 18259  Dirsetcdrs 18260
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-nul 5263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3756  df-dif 3919  df-un 3921  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-iota 6466  df-fv 6521  df-drs 18262
This theorem is referenced by:  drsdirfi  18272
  Copyright terms: Public domain W3C validator