MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  drsdir Structured version   Visualization version   GIF version

Theorem drsdir 17935
Description: Direction of a directed set. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Hypotheses
Ref Expression
isdrs.b 𝐵 = (Base‘𝐾)
isdrs.l = (le‘𝐾)
Assertion
Ref Expression
drsdir ((𝐾 ∈ Dirset ∧ 𝑋𝐵𝑌𝐵) → ∃𝑧𝐵 (𝑋 𝑧𝑌 𝑧))
Distinct variable groups:   𝑧,𝐾   𝑧,𝐵   𝑧,   𝑧,𝑋   𝑧,𝑌

Proof of Theorem drsdir
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isdrs.b . . . . 5 𝐵 = (Base‘𝐾)
2 isdrs.l . . . . 5 = (le‘𝐾)
31, 2isdrs 17934 . . . 4 (𝐾 ∈ Dirset ↔ (𝐾 ∈ Proset ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 𝑧𝑦 𝑧)))
43simp3bi 1145 . . 3 (𝐾 ∈ Dirset → ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 𝑧𝑦 𝑧))
5 breq1 5073 . . . . . 6 (𝑥 = 𝑋 → (𝑥 𝑧𝑋 𝑧))
65anbi1d 629 . . . . 5 (𝑥 = 𝑋 → ((𝑥 𝑧𝑦 𝑧) ↔ (𝑋 𝑧𝑦 𝑧)))
76rexbidv 3225 . . . 4 (𝑥 = 𝑋 → (∃𝑧𝐵 (𝑥 𝑧𝑦 𝑧) ↔ ∃𝑧𝐵 (𝑋 𝑧𝑦 𝑧)))
8 breq1 5073 . . . . . 6 (𝑦 = 𝑌 → (𝑦 𝑧𝑌 𝑧))
98anbi2d 628 . . . . 5 (𝑦 = 𝑌 → ((𝑋 𝑧𝑦 𝑧) ↔ (𝑋 𝑧𝑌 𝑧)))
109rexbidv 3225 . . . 4 (𝑦 = 𝑌 → (∃𝑧𝐵 (𝑋 𝑧𝑦 𝑧) ↔ ∃𝑧𝐵 (𝑋 𝑧𝑌 𝑧)))
117, 10rspc2v 3562 . . 3 ((𝑋𝐵𝑌𝐵) → (∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 𝑧𝑦 𝑧) → ∃𝑧𝐵 (𝑋 𝑧𝑌 𝑧)))
124, 11syl5com 31 . 2 (𝐾 ∈ Dirset → ((𝑋𝐵𝑌𝐵) → ∃𝑧𝐵 (𝑋 𝑧𝑌 𝑧)))
13123impib 1114 1 ((𝐾 ∈ Dirset ∧ 𝑋𝐵𝑌𝐵) → ∃𝑧𝐵 (𝑋 𝑧𝑌 𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  c0 4253   class class class wbr 5070  cfv 6418  Basecbs 16840  lecple 16895   Proset cproset 17926  Dirsetcdrs 17927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-nul 5225
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426  df-drs 17929
This theorem is referenced by:  drsdirfi  17938
  Copyright terms: Public domain W3C validator