MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  drsdir Structured version   Visualization version   GIF version

Theorem drsdir 18208
Description: Direction of a directed set. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Hypotheses
Ref Expression
isdrs.b 𝐵 = (Base‘𝐾)
isdrs.l = (le‘𝐾)
Assertion
Ref Expression
drsdir ((𝐾 ∈ Dirset ∧ 𝑋𝐵𝑌𝐵) → ∃𝑧𝐵 (𝑋 𝑧𝑌 𝑧))
Distinct variable groups:   𝑧,𝐾   𝑧,𝐵   𝑧,   𝑧,𝑋   𝑧,𝑌

Proof of Theorem drsdir
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isdrs.b . . . . 5 𝐵 = (Base‘𝐾)
2 isdrs.l . . . . 5 = (le‘𝐾)
31, 2isdrs 18207 . . . 4 (𝐾 ∈ Dirset ↔ (𝐾 ∈ Proset ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 𝑧𝑦 𝑧)))
43simp3bi 1147 . . 3 (𝐾 ∈ Dirset → ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 𝑧𝑦 𝑧))
5 breq1 5092 . . . . . 6 (𝑥 = 𝑋 → (𝑥 𝑧𝑋 𝑧))
65anbi1d 631 . . . . 5 (𝑥 = 𝑋 → ((𝑥 𝑧𝑦 𝑧) ↔ (𝑋 𝑧𝑦 𝑧)))
76rexbidv 3156 . . . 4 (𝑥 = 𝑋 → (∃𝑧𝐵 (𝑥 𝑧𝑦 𝑧) ↔ ∃𝑧𝐵 (𝑋 𝑧𝑦 𝑧)))
8 breq1 5092 . . . . . 6 (𝑦 = 𝑌 → (𝑦 𝑧𝑌 𝑧))
98anbi2d 630 . . . . 5 (𝑦 = 𝑌 → ((𝑋 𝑧𝑦 𝑧) ↔ (𝑋 𝑧𝑌 𝑧)))
109rexbidv 3156 . . . 4 (𝑦 = 𝑌 → (∃𝑧𝐵 (𝑋 𝑧𝑦 𝑧) ↔ ∃𝑧𝐵 (𝑋 𝑧𝑌 𝑧)))
117, 10rspc2v 3583 . . 3 ((𝑋𝐵𝑌𝐵) → (∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 𝑧𝑦 𝑧) → ∃𝑧𝐵 (𝑋 𝑧𝑌 𝑧)))
124, 11syl5com 31 . 2 (𝐾 ∈ Dirset → ((𝑋𝐵𝑌𝐵) → ∃𝑧𝐵 (𝑋 𝑧𝑌 𝑧)))
13123impib 1116 1 ((𝐾 ∈ Dirset ∧ 𝑋𝐵𝑌𝐵) → ∃𝑧𝐵 (𝑋 𝑧𝑌 𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056  c0 4280   class class class wbr 5089  cfv 6481  Basecbs 17120  lecple 17168   Proset cproset 18198  Dirsetcdrs 18199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-nul 5242
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-iota 6437  df-fv 6489  df-drs 18201
This theorem is referenced by:  drsdirfi  18211
  Copyright terms: Public domain W3C validator