Home | Metamath
Proof Explorer Theorem List (p. 73 of 464) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29181) |
Hilbert Space Explorer
(29182-30704) |
Users' Mathboxes
(30705-46395) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | isowe2 7201* | A weak form of isowe 7200 that does not need Replacement. (Contributed by Mario Carneiro, 18-Nov-2014.) |
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ ∀𝑥(𝐻 “ 𝑥) ∈ V) → (𝑆 We 𝐵 → 𝑅 We 𝐴)) | ||
Theorem | f1oiso 7202* | Any one-to-one onto function determines an isomorphism with an induced relation 𝑆. Proposition 6.33 of [TakeutiZaring] p. 34. (Contributed by NM, 30-Apr-2004.) |
⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ 𝑆 = {〈𝑧, 𝑤〉 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ((𝑧 = (𝐻‘𝑥) ∧ 𝑤 = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦)}) → 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵)) | ||
Theorem | f1oiso2 7203* | Any one-to-one onto function determines an isomorphism with an induced relation 𝑆. (Contributed by Mario Carneiro, 9-Mar-2013.) |
⊢ 𝑆 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (◡𝐻‘𝑥)𝑅(◡𝐻‘𝑦))} ⇒ ⊢ (𝐻:𝐴–1-1-onto→𝐵 → 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵)) | ||
Theorem | f1owe 7204* | Well-ordering of isomorphic relations. (Contributed by NM, 4-Mar-1997.) |
⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ (𝐹‘𝑥)𝑆(𝐹‘𝑦)} ⇒ ⊢ (𝐹:𝐴–1-1-onto→𝐵 → (𝑆 We 𝐵 → 𝑅 We 𝐴)) | ||
Theorem | weniso 7205 | A set-like well-ordering has no nontrivial automorphisms. (Contributed by Stefan O'Rear, 16-Nov-2014.) (Revised by Mario Carneiro, 25-Jun-2015.) |
⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) → 𝐹 = ( I ↾ 𝐴)) | ||
Theorem | weisoeq 7206 | Thus, there is at most one isomorphism between any two set-like well-ordered classes. Class version of wemoiso 7789. (Contributed by Mario Carneiro, 25-Jun-2015.) |
⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝐹 = 𝐺) | ||
Theorem | weisoeq2 7207 | Thus, there is at most one isomorphism between any two set-like well-ordered classes. Class version of wemoiso2 7790. (Contributed by Mario Carneiro, 25-Jun-2015.) |
⊢ (((𝑆 We 𝐵 ∧ 𝑆 Se 𝐵) ∧ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝐹 = 𝐺) | ||
Theorem | knatar 7208* | The Knaster-Tarski theorem says that every monotone function over a complete lattice has a (least) fixpoint. Here we specialize this theorem to the case when the lattice is the powerset lattice 𝒫 𝐴. (Contributed by Mario Carneiro, 11-Jun-2015.) |
⊢ 𝑋 = ∩ {𝑧 ∈ 𝒫 𝐴 ∣ (𝐹‘𝑧) ⊆ 𝑧} ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ (𝐹‘𝐴) ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥)) → (𝑋 ⊆ 𝐴 ∧ (𝐹‘𝑋) = 𝑋)) | ||
Theorem | canth 7209 | No set 𝐴 is equinumerous to its power set (Cantor's theorem), i.e., no function can map 𝐴 onto its power set. Compare Theorem 6B(b) of [Enderton] p. 132. For the equinumerosity version, see canth2 8866. Note that 𝐴 must be a set: this theorem does not hold when 𝐴 is too large to be a set; see ncanth 7210 for a counterexample. (Use nex 1804 if you want the form ¬ ∃𝑓𝑓:𝐴–onto→𝒫 𝐴.) (Contributed by NM, 7-Aug-1994.) (Proof shortened by Mario Carneiro, 7-Jun-2016.) |
⊢ 𝐴 ∈ V ⇒ ⊢ ¬ 𝐹:𝐴–onto→𝒫 𝐴 | ||
Theorem | ncanth 7210 |
Cantor's theorem fails for the universal class (which is not a set but a
proper class by vprc 5234). Specifically, the identity function maps
the
universe onto its power class. Compare canth 7209 that works for sets.
This failure comes from a limitation of the collection principle (which is necessary to avoid Russell's paradox ru 3710): 𝒫 V, being a class, cannot contain proper classes, so it is no larger than V, which is why the identity function "succeeds" in being surjective onto 𝒫 V (see pwv 4833). See also the remark in ru 3710 about NF, in which Cantor's theorem fails for sets that are "too large". This theorem gives some intuition behind that failure: in NF the universal class is a set, and it equals its own power set. (Contributed by NM, 29-Jun-2004.) (Proof shortened by BJ, 29-Dec-2023.) |
⊢ I :V–onto→𝒫 V | ||
Syntax | crio 7211 | Extend class notation with restricted description binder. |
class (℩𝑥 ∈ 𝐴 𝜑) | ||
Definition | df-riota 7212 | Define restricted description binder. In case there is no unique 𝑥 such that (𝑥 ∈ 𝐴 ∧ 𝜑) holds, it evaluates to the empty set. See also comments for df-iota 6376. (Contributed by NM, 15-Sep-2011.) (Revised by Mario Carneiro, 15-Oct-2016.) (Revised by NM, 2-Sep-2018.) |
⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | ||
Theorem | riotaeqdv 7213* | Formula-building deduction for iota. (Contributed by NM, 15-Sep-2011.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥 ∈ 𝐵 𝜓)) | ||
Theorem | riotabidv 7214* | Formula-building deduction for restricted iota. (Contributed by NM, 15-Sep-2011.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥 ∈ 𝐴 𝜒)) | ||
Theorem | riotaeqbidv 7215* | Equality deduction for restricted universal quantifier. (Contributed by NM, 15-Sep-2011.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥 ∈ 𝐵 𝜒)) | ||
Theorem | riotaex 7216 | Restricted iota is a set. (Contributed by NM, 15-Sep-2011.) |
⊢ (℩𝑥 ∈ 𝐴 𝜓) ∈ V | ||
Theorem | riotav 7217 | An iota restricted to the universe is unrestricted. (Contributed by NM, 18-Sep-2011.) |
⊢ (℩𝑥 ∈ V 𝜑) = (℩𝑥𝜑) | ||
Theorem | riotauni 7218 | Restricted iota in terms of class union. (Contributed by NM, 11-Oct-2011.) |
⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) = ∪ {𝑥 ∈ 𝐴 ∣ 𝜑}) | ||
Theorem | nfriota1 7219* | The abstraction variable in a restricted iota descriptor isn't free. (Contributed by NM, 12-Oct-2011.) (Revised by Mario Carneiro, 15-Oct-2016.) |
⊢ Ⅎ𝑥(℩𝑥 ∈ 𝐴 𝜑) | ||
Theorem | nfriotadw 7220* | Deduction version of nfriota 7225 with a disjoint variable condition, which contrary to nfriotad 7224 does not require ax-13 2372. (Contributed by NM, 18-Feb-2013.) (Revised by Gino Giotto, 26-Jan-2024.) |
⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝜓) & ⊢ (𝜑 → Ⅎ𝑥𝐴) ⇒ ⊢ (𝜑 → Ⅎ𝑥(℩𝑦 ∈ 𝐴 𝜓)) | ||
Theorem | cbvriotaw 7221* | Change bound variable in a restricted description binder. Version of cbvriota 7226 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by NM, 18-Mar-2013.) (Revised by Gino Giotto, 26-Jan-2024.) |
⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑦 ∈ 𝐴 𝜓) | ||
Theorem | cbvriotavw 7222* | Change bound variable in a restricted description binder. Version of cbvriotav 7227 with a disjoint variable condition, which requires fewer axioms . (Contributed by NM, 18-Mar-2013.) (Revised by Gino Giotto, 30-Sep-2024.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑦 ∈ 𝐴 𝜓) | ||
Theorem | cbvriotavwOLD 7223* | Obsolete version of cbvriotavw 7222 as of 30-Sep-2024. (Contributed by NM, 18-Mar-2013.) (Revised by Gino Giotto, 26-Jan-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑦 ∈ 𝐴 𝜓) | ||
Theorem | nfriotad 7224 | Deduction version of nfriota 7225. Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker nfriotadw 7220 when possible. (Contributed by NM, 18-Feb-2013.) (Revised by Mario Carneiro, 15-Oct-2016.) (New usage is discouraged.) |
⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝜓) & ⊢ (𝜑 → Ⅎ𝑥𝐴) ⇒ ⊢ (𝜑 → Ⅎ𝑥(℩𝑦 ∈ 𝐴 𝜓)) | ||
Theorem | nfriota 7225* | A variable not free in a wff remains so in a restricted iota descriptor. (Contributed by NM, 12-Oct-2011.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥(℩𝑦 ∈ 𝐴 𝜑) | ||
Theorem | cbvriota 7226* | Change bound variable in a restricted description binder. Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker cbvriotaw 7221 when possible. (Contributed by NM, 18-Mar-2013.) (Revised by Mario Carneiro, 15-Oct-2016.) (New usage is discouraged.) |
⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑦 ∈ 𝐴 𝜓) | ||
Theorem | cbvriotav 7227* | Change bound variable in a restricted description binder. Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker cbvriotavw 7222 when possible. (Contributed by NM, 18-Mar-2013.) (Revised by Mario Carneiro, 15-Oct-2016.) (New usage is discouraged.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑦 ∈ 𝐴 𝜓) | ||
Theorem | csbriota 7228* | Interchange class substitution and restricted description binder. (Contributed by NM, 24-Feb-2013.) (Revised by NM, 2-Sep-2018.) |
⊢ ⦋𝐴 / 𝑥⦌(℩𝑦 ∈ 𝐵 𝜑) = (℩𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑) | ||
Theorem | riotacl2 7229 | Membership law for "the unique element in 𝐴 such that 𝜑". (Contributed by NM, 21-Aug-2011.) (Revised by Mario Carneiro, 23-Dec-2016.) |
⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}) | ||
Theorem | riotacl 7230* | Closure of restricted iota. (Contributed by NM, 21-Aug-2011.) |
⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐴) | ||
Theorem | riotasbc 7231 | Substitution law for descriptions. Compare iotasbc 41926. (Contributed by NM, 23-Aug-2011.) (Proof shortened by Mario Carneiro, 24-Dec-2016.) |
⊢ (∃!𝑥 ∈ 𝐴 𝜑 → [(℩𝑥 ∈ 𝐴 𝜑) / 𝑥]𝜑) | ||
Theorem | riotabidva 7232* | Equivalent wff's yield equal restricted class abstractions (deduction form). (rabbidva 3402 analog.) (Contributed by NM, 17-Jan-2012.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥 ∈ 𝐴 𝜒)) | ||
Theorem | riotabiia 7233 | Equivalent wff's yield equal restricted iotas (inference form). (rabbiia 3396 analog.) (Contributed by NM, 16-Jan-2012.) |
⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥 ∈ 𝐴 𝜓) | ||
Theorem | riota1 7234* | Property of restricted iota. Compare iota1 6395. (Contributed by Mario Carneiro, 15-Oct-2016.) |
⊢ (∃!𝑥 ∈ 𝐴 𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (℩𝑥 ∈ 𝐴 𝜑) = 𝑥)) | ||
Theorem | riota1a 7235 | Property of iota. (Contributed by NM, 23-Aug-2011.) |
⊢ ((𝑥 ∈ 𝐴 ∧ ∃!𝑥 ∈ 𝐴 𝜑) → (𝜑 ↔ (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) = 𝑥)) | ||
Theorem | riota2df 7236* | A deduction version of riota2f 7237. (Contributed by NM, 17-Feb-2013.) (Revised by Mario Carneiro, 15-Oct-2016.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝐵) & ⊢ (𝜑 → Ⅎ𝑥𝜒) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → (𝜓 ↔ 𝜒)) ⇒ ⊢ ((𝜑 ∧ ∃!𝑥 ∈ 𝐴 𝜓) → (𝜒 ↔ (℩𝑥 ∈ 𝐴 𝜓) = 𝐵)) | ||
Theorem | riota2f 7237* | This theorem shows a condition that allows us to represent a descriptor with a class expression 𝐵. (Contributed by NM, 23-Aug-2011.) (Revised by Mario Carneiro, 15-Oct-2016.) |
⊢ Ⅎ𝑥𝐵 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐵 ∈ 𝐴 ∧ ∃!𝑥 ∈ 𝐴 𝜑) → (𝜓 ↔ (℩𝑥 ∈ 𝐴 𝜑) = 𝐵)) | ||
Theorem | riota2 7238* | This theorem shows a condition that allows us to represent a descriptor with a class expression 𝐵. (Contributed by NM, 23-Aug-2011.) (Revised by Mario Carneiro, 10-Dec-2016.) |
⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐵 ∈ 𝐴 ∧ ∃!𝑥 ∈ 𝐴 𝜑) → (𝜓 ↔ (℩𝑥 ∈ 𝐴 𝜑) = 𝐵)) | ||
Theorem | riotaeqimp 7239* | If two restricted iota descriptors for an equality are equal, then the terms of the equality are equal. (Contributed by AV, 6-Dec-2020.) |
⊢ 𝐼 = (℩𝑎 ∈ 𝑉 𝑋 = 𝐴) & ⊢ 𝐽 = (℩𝑎 ∈ 𝑉 𝑌 = 𝐴) & ⊢ (𝜑 → ∃!𝑎 ∈ 𝑉 𝑋 = 𝐴) & ⊢ (𝜑 → ∃!𝑎 ∈ 𝑉 𝑌 = 𝐴) ⇒ ⊢ ((𝜑 ∧ 𝐼 = 𝐽) → 𝑋 = 𝑌) | ||
Theorem | riotaprop 7240* | Properties of a restricted definite description operator. (Contributed by NM, 23-Nov-2013.) |
⊢ Ⅎ𝑥𝜓 & ⊢ 𝐵 = (℩𝑥 ∈ 𝐴 𝜑) & ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (𝐵 ∈ 𝐴 ∧ 𝜓)) | ||
Theorem | riota5f 7241* | A method for computing restricted iota. (Contributed by NM, 16-Apr-2013.) (Revised by Mario Carneiro, 15-Oct-2016.) |
⊢ (𝜑 → Ⅎ𝑥𝐵) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝑥 = 𝐵)) ⇒ ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = 𝐵) | ||
Theorem | riota5 7242* | A method for computing restricted iota. (Contributed by NM, 20-Oct-2011.) (Revised by Mario Carneiro, 6-Dec-2016.) |
⊢ (𝜑 → 𝐵 ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝑥 = 𝐵)) ⇒ ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = 𝐵) | ||
Theorem | riotass2 7243* | Restriction of a unique element to a smaller class. (Contributed by NM, 21-Aug-2011.) (Revised by NM, 22-Mar-2013.) |
⊢ (((𝐴 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐴 (𝜑 → 𝜓)) ∧ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃!𝑥 ∈ 𝐵 𝜓)) → (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥 ∈ 𝐵 𝜓)) | ||
Theorem | riotass 7244* | Restriction of a unique element to a smaller class. (Contributed by NM, 19-Oct-2005.) (Revised by Mario Carneiro, 24-Dec-2016.) |
⊢ ((𝐴 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝜑 ∧ ∃!𝑥 ∈ 𝐵 𝜑) → (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥 ∈ 𝐵 𝜑)) | ||
Theorem | moriotass 7245* | Restriction of a unique element to a smaller class. (Contributed by NM, 19-Feb-2006.) (Revised by NM, 16-Jun-2017.) |
⊢ ((𝐴 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐵 𝜑) → (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥 ∈ 𝐵 𝜑)) | ||
Theorem | snriota 7246 | A restricted class abstraction with a unique member can be expressed as a singleton. (Contributed by NM, 30-May-2006.) |
⊢ (∃!𝑥 ∈ 𝐴 𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜑} = {(℩𝑥 ∈ 𝐴 𝜑)}) | ||
Theorem | riotaxfrd 7247* | Change the variable 𝑥 in the expression for "the unique 𝑥 such that 𝜓 " to another variable 𝑦 contained in expression 𝐵. Use reuhypd 5337 to eliminate the last hypothesis. (Contributed by NM, 16-Jan-2012.) (Revised by Mario Carneiro, 15-Oct-2016.) |
⊢ Ⅎ𝑦𝐶 & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → 𝐵 ∈ 𝐴) & ⊢ ((𝜑 ∧ (℩𝑦 ∈ 𝐴 𝜒) ∈ 𝐴) → 𝐶 ∈ 𝐴) & ⊢ (𝑥 = 𝐵 → (𝜓 ↔ 𝜒)) & ⊢ (𝑦 = (℩𝑦 ∈ 𝐴 𝜒) → 𝐵 = 𝐶) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃!𝑦 ∈ 𝐴 𝑥 = 𝐵) ⇒ ⊢ ((𝜑 ∧ ∃!𝑥 ∈ 𝐴 𝜓) → (℩𝑥 ∈ 𝐴 𝜓) = 𝐶) | ||
Theorem | eusvobj2 7248* | Specify the same property in two ways when class 𝐵(𝑦) is single-valued. (Contributed by NM, 1-Nov-2010.) (Proof shortened by Mario Carneiro, 24-Dec-2016.) |
⊢ 𝐵 ∈ V ⇒ ⊢ (∃!𝑥∃𝑦 ∈ 𝐴 𝑥 = 𝐵 → (∃𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ ∀𝑦 ∈ 𝐴 𝑥 = 𝐵)) | ||
Theorem | eusvobj1 7249* | Specify the same object in two ways when class 𝐵(𝑦) is single-valued. (Contributed by NM, 1-Nov-2010.) (Proof shortened by Mario Carneiro, 19-Nov-2016.) |
⊢ 𝐵 ∈ V ⇒ ⊢ (∃!𝑥∃𝑦 ∈ 𝐴 𝑥 = 𝐵 → (℩𝑥∃𝑦 ∈ 𝐴 𝑥 = 𝐵) = (℩𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵)) | ||
Theorem | f1ofveu 7250* | There is one domain element for each value of a one-to-one onto function. (Contributed by NM, 26-May-2006.) |
⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵) → ∃!𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐶) | ||
Theorem | f1ocnvfv3 7251* | Value of the converse of a one-to-one onto function. (Contributed by NM, 26-May-2006.) (Proof shortened by Mario Carneiro, 24-Dec-2016.) |
⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵) → (◡𝐹‘𝐶) = (℩𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐶)) | ||
Theorem | riotaund 7252* | Restricted iota equals the empty set when not meaningful. (Contributed by NM, 16-Jan-2012.) (Revised by Mario Carneiro, 15-Oct-2016.) (Revised by NM, 13-Sep-2018.) |
⊢ (¬ ∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) = ∅) | ||
Theorem | riotassuni 7253* | The restricted iota class is limited in size by the base set. (Contributed by Mario Carneiro, 24-Dec-2016.) |
⊢ (℩𝑥 ∈ 𝐴 𝜑) ⊆ (𝒫 ∪ 𝐴 ∪ ∪ 𝐴) | ||
Theorem | riotaclb 7254* | Bidirectional closure of restricted iota when domain is not empty. (Contributed by NM, 28-Feb-2013.) (Revised by Mario Carneiro, 24-Dec-2016.) (Revised by NM, 13-Sep-2018.) |
⊢ (¬ ∅ ∈ 𝐴 → (∃!𝑥 ∈ 𝐴 𝜑 ↔ (℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐴)) | ||
Syntax | co 7255 | Extend class notation to include the value of an operation 𝐹 (such as +) for two arguments 𝐴 and 𝐵. Note that the syntax is simply three class symbols in a row surrounded by parentheses. Since operation values are the only possible class expressions consisting of three class expressions in a row surrounded by parentheses, the syntax is unambiguous. (For an example of how syntax could become ambiguous if we are not careful, see the comment in cneg 11136.) |
class (𝐴𝐹𝐵) | ||
Syntax | coprab 7256 | Extend class notation to include class abstraction (class builder) of nested ordered pairs. |
class {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} | ||
Syntax | cmpo 7257 | Extend the definition of a class to include maps-to notation for defining an operation via a rule. |
class (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | ||
Definition | df-ov 7258 | Define the value of an operation. Definition of operation value in [Enderton] p. 79. Note that the syntax is simply three class expressions in a row bracketed by parentheses. There are no restrictions of any kind on what those class expressions may be, although only certain kinds of class expressions - a binary operation 𝐹 and its arguments 𝐴 and 𝐵- will be useful for proving meaningful theorems. For example, if class 𝐹 is the operation + and arguments 𝐴 and 𝐵 are 3 and 2, the expression (3 + 2) can be proved to equal 5 (see 3p2e5 12054). This definition is well-defined, although not very meaningful, when classes 𝐴 and/or 𝐵 are proper classes (i.e. are not sets); see ovprc1 7294 and ovprc2 7295. On the other hand, we often find uses for this definition when 𝐹 is a proper class, such as +o in oav 8303. 𝐹 is normally equal to a class of nested ordered pairs of the form defined by df-oprab 7259. (Contributed by NM, 28-Feb-1995.) |
⊢ (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉) | ||
Definition | df-oprab 7259* | Define the class abstraction (class builder) of a collection of nested ordered pairs (for use in defining operations). This is a special case of Definition 4.16 of [TakeutiZaring] p. 14. Normally 𝑥, 𝑦, and 𝑧 are distinct, although the definition doesn't strictly require it. See df-ov 7258 for the value of an operation. The brace notation is called "class abstraction" by Quine; it is also called a "class builder" in the literature. The value of an operation given by a class abstraction is given by ovmpo 7411. (Contributed by NM, 12-Mar-1995.) |
⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {𝑤 ∣ ∃𝑥∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑)} | ||
Definition | df-mpo 7260* | Define maps-to notation for defining an operation via a rule. Read as "the operation defined by the map from 𝑥, 𝑦 (in 𝐴 × 𝐵) to 𝐶(𝑥, 𝑦)". An extension of df-mpt 5154 for two arguments. (Contributed by NM, 17-Feb-2008.) |
⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} | ||
Theorem | oveq 7261 | Equality theorem for operation value. (Contributed by NM, 28-Feb-1995.) |
⊢ (𝐹 = 𝐺 → (𝐴𝐹𝐵) = (𝐴𝐺𝐵)) | ||
Theorem | oveq1 7262 | Equality theorem for operation value. (Contributed by NM, 28-Feb-1995.) |
⊢ (𝐴 = 𝐵 → (𝐴𝐹𝐶) = (𝐵𝐹𝐶)) | ||
Theorem | oveq2 7263 | Equality theorem for operation value. (Contributed by NM, 28-Feb-1995.) |
⊢ (𝐴 = 𝐵 → (𝐶𝐹𝐴) = (𝐶𝐹𝐵)) | ||
Theorem | oveq12 7264 | Equality theorem for operation value. (Contributed by NM, 16-Jul-1995.) |
⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) | ||
Theorem | oveq1i 7265 | Equality inference for operation value. (Contributed by NM, 28-Feb-1995.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐴𝐹𝐶) = (𝐵𝐹𝐶) | ||
Theorem | oveq2i 7266 | Equality inference for operation value. (Contributed by NM, 28-Feb-1995.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐶𝐹𝐴) = (𝐶𝐹𝐵) | ||
Theorem | oveq12i 7267 | Equality inference for operation value. (Contributed by NM, 28-Feb-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
⊢ 𝐴 = 𝐵 & ⊢ 𝐶 = 𝐷 ⇒ ⊢ (𝐴𝐹𝐶) = (𝐵𝐹𝐷) | ||
Theorem | oveqi 7268 | Equality inference for operation value. (Contributed by NM, 24-Nov-2007.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐶𝐴𝐷) = (𝐶𝐵𝐷) | ||
Theorem | oveq123i 7269 | Equality inference for operation value. (Contributed by FL, 11-Jul-2010.) |
⊢ 𝐴 = 𝐶 & ⊢ 𝐵 = 𝐷 & ⊢ 𝐹 = 𝐺 ⇒ ⊢ (𝐴𝐹𝐵) = (𝐶𝐺𝐷) | ||
Theorem | oveq1d 7270 | Equality deduction for operation value. (Contributed by NM, 13-Mar-1995.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐴𝐹𝐶) = (𝐵𝐹𝐶)) | ||
Theorem | oveq2d 7271 | Equality deduction for operation value. (Contributed by NM, 13-Mar-1995.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐶𝐹𝐴) = (𝐶𝐹𝐵)) | ||
Theorem | oveqd 7272 | Equality deduction for operation value. (Contributed by NM, 9-Sep-2006.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐶𝐴𝐷) = (𝐶𝐵𝐷)) | ||
Theorem | oveq12d 7273 | Equality deduction for operation value. (Contributed by NM, 13-Mar-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) | ||
Theorem | oveqan12d 7274 | Equality deduction for operation value. (Contributed by NM, 10-Aug-1995.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜓 → 𝐶 = 𝐷) ⇒ ⊢ ((𝜑 ∧ 𝜓) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) | ||
Theorem | oveqan12rd 7275 | Equality deduction for operation value. (Contributed by NM, 10-Aug-1995.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜓 → 𝐶 = 𝐷) ⇒ ⊢ ((𝜓 ∧ 𝜑) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) | ||
Theorem | oveq123d 7276 | Equality deduction for operation value. (Contributed by FL, 22-Dec-2008.) |
⊢ (𝜑 → 𝐹 = 𝐺) & ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → (𝐴𝐹𝐶) = (𝐵𝐺𝐷)) | ||
Theorem | fvoveq1d 7277 | Equality deduction for nested function and operation value. (Contributed by AV, 23-Jul-2022.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐹‘(𝐴𝑂𝐶)) = (𝐹‘(𝐵𝑂𝐶))) | ||
Theorem | fvoveq1 7278 | Equality theorem for nested function and operation value. Closed form of fvoveq1d 7277. (Contributed by AV, 23-Jul-2022.) |
⊢ (𝐴 = 𝐵 → (𝐹‘(𝐴𝑂𝐶)) = (𝐹‘(𝐵𝑂𝐶))) | ||
Theorem | ovanraleqv 7279* | Equality theorem for a conjunction with an operation values within a restricted universal quantification. Technical theorem to be used to reduce the size of a significant number of proofs. (Contributed by AV, 13-Aug-2022.) |
⊢ (𝐵 = 𝑋 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐵 = 𝑋 → (∀𝑥 ∈ 𝑉 (𝜑 ∧ (𝐴 · 𝐵) = 𝐶) ↔ ∀𝑥 ∈ 𝑉 (𝜓 ∧ (𝐴 · 𝑋) = 𝐶))) | ||
Theorem | imbrov2fvoveq 7280 | Equality theorem for nested function and operation value in an implication for a binary relation. Technical theorem to be used to reduce the size of a significant number of proofs. (Contributed by AV, 17-Aug-2022.) |
⊢ (𝑋 = 𝑌 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝑋 = 𝑌 → ((𝜑 → (𝐹‘((𝐺‘𝑋) · 𝑂))𝑅𝐴) ↔ (𝜓 → (𝐹‘((𝐺‘𝑌) · 𝑂))𝑅𝐴))) | ||
Theorem | ovrspc2v 7281* | If an operation value is element of a class for all operands of two classes, then the operation value is an element of the class for specific operands of the two classes. (Contributed by Mario Carneiro, 6-Dec-2014.) |
⊢ (((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥𝐹𝑦) ∈ 𝐶) → (𝑋𝐹𝑌) ∈ 𝐶) | ||
Theorem | oveqrspc2v 7282* | Restricted specialization of operands, using implicit substitution. (Contributed by Mario Carneiro, 6-Dec-2014.) |
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝑥𝐹𝑦) = (𝑥𝐺𝑦)) ⇒ ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵)) → (𝑋𝐹𝑌) = (𝑋𝐺𝑌)) | ||
Theorem | oveqdr 7283 | Equality of two operations for any two operands. Useful in proofs using *propd theorems. (Contributed by Mario Carneiro, 29-Jun-2015.) |
⊢ (𝜑 → 𝐹 = 𝐺) ⇒ ⊢ ((𝜑 ∧ 𝜓) → (𝑥𝐹𝑦) = (𝑥𝐺𝑦)) | ||
Theorem | nfovd 7284 | Deduction version of bound-variable hypothesis builder nfov 7285. (Contributed by NM, 13-Dec-2005.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
⊢ (𝜑 → Ⅎ𝑥𝐴) & ⊢ (𝜑 → Ⅎ𝑥𝐹) & ⊢ (𝜑 → Ⅎ𝑥𝐵) ⇒ ⊢ (𝜑 → Ⅎ𝑥(𝐴𝐹𝐵)) | ||
Theorem | nfov 7285 | Bound-variable hypothesis builder for operation value. (Contributed by NM, 4-May-2004.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐹 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ Ⅎ𝑥(𝐴𝐹𝐵) | ||
Theorem | oprabidw 7286* | The law of concretion. Special case of Theorem 9.5 of [Quine] p. 61. Version of oprabid 7287 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by Mario Carneiro, 20-Mar-2013.) (Revised by Gino Giotto, 26-Jan-2024.) |
⊢ (〈〈𝑥, 𝑦〉, 𝑧〉 ∈ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ↔ 𝜑) | ||
Theorem | oprabid 7287 | The law of concretion. Special case of Theorem 9.5 of [Quine] p. 61. Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker oprabidw 7286 when possible. (Contributed by Mario Carneiro, 20-Mar-2013.) (New usage is discouraged.) |
⊢ (〈〈𝑥, 𝑦〉, 𝑧〉 ∈ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ↔ 𝜑) | ||
Theorem | ovex 7288 | The result of an operation is a set. (Contributed by NM, 13-Mar-1995.) |
⊢ (𝐴𝐹𝐵) ∈ V | ||
Theorem | ovexi 7289 | The result of an operation is a set. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ 𝐴 = (𝐵𝐹𝐶) ⇒ ⊢ 𝐴 ∈ V | ||
Theorem | ovexd 7290 | The result of an operation is a set. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ (𝜑 → (𝐴𝐹𝐵) ∈ V) | ||
Theorem | ovssunirn 7291 | The result of an operation value is always a subset of the union of the range. (Contributed by Mario Carneiro, 12-Jan-2017.) |
⊢ (𝑋𝐹𝑌) ⊆ ∪ ran 𝐹 | ||
Theorem | 0ov 7292 | Operation value of the empty set. (Contributed by AV, 15-May-2021.) |
⊢ (𝐴∅𝐵) = ∅ | ||
Theorem | ovprc 7293 | The value of an operation when the one of the arguments is a proper class. Note: this theorem is dependent on our particular definitions of operation value, function value, and ordered pair. (Contributed by Mario Carneiro, 26-Apr-2015.) |
⊢ Rel dom 𝐹 ⇒ ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐹𝐵) = ∅) | ||
Theorem | ovprc1 7294 | The value of an operation when the first argument is a proper class. (Contributed by NM, 16-Jun-2004.) |
⊢ Rel dom 𝐹 ⇒ ⊢ (¬ 𝐴 ∈ V → (𝐴𝐹𝐵) = ∅) | ||
Theorem | ovprc2 7295 | The value of an operation when the second argument is a proper class. (Contributed by Mario Carneiro, 26-Apr-2015.) |
⊢ Rel dom 𝐹 ⇒ ⊢ (¬ 𝐵 ∈ V → (𝐴𝐹𝐵) = ∅) | ||
Theorem | ovrcl 7296 | Reverse closure for an operation value. (Contributed by Mario Carneiro, 5-May-2015.) |
⊢ Rel dom 𝐹 ⇒ ⊢ (𝐶 ∈ (𝐴𝐹𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | ||
Theorem | csbov123 7297 | Move class substitution in and out of an operation. (Contributed by NM, 12-Nov-2005.) (Revised by NM, 23-Aug-2018.) |
⊢ ⦋𝐴 / 𝑥⦌(𝐵𝐹𝐶) = (⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝐹⦋𝐴 / 𝑥⦌𝐶) | ||
Theorem | csbov 7298* | Move class substitution in and out of an operation. (Contributed by NM, 23-Aug-2018.) |
⊢ ⦋𝐴 / 𝑥⦌(𝐵𝐹𝐶) = (𝐵⦋𝐴 / 𝑥⦌𝐹𝐶) | ||
Theorem | csbov12g 7299* | Move class substitution in and out of an operation. (Contributed by NM, 12-Nov-2005.) |
⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝐵𝐹𝐶) = (⦋𝐴 / 𝑥⦌𝐵𝐹⦋𝐴 / 𝑥⦌𝐶)) | ||
Theorem | csbov1g 7300* | Move class substitution in and out of an operation. (Contributed by NM, 12-Nov-2005.) |
⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝐵𝐹𝐶) = (⦋𝐴 / 𝑥⦌𝐵𝐹𝐶)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |