![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > ocnel | Structured version Visualization version GIF version |
Description: A nonzero vector in the complement of a subspace does not belong to the subspace. (Contributed by NM, 10-Apr-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ocnel | ⊢ ((𝐻 ∈ Sℋ ∧ 𝐴 ∈ (⊥‘𝐻) ∧ 𝐴 ≠ 0ℎ) → ¬ 𝐴 ∈ 𝐻) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3963 | . . . . . . 7 ⊢ (𝐴 ∈ (𝐻 ∩ (⊥‘𝐻)) ↔ (𝐴 ∈ 𝐻 ∧ 𝐴 ∈ (⊥‘𝐻))) | |
2 | ocin 30536 | . . . . . . . . 9 ⊢ (𝐻 ∈ Sℋ → (𝐻 ∩ (⊥‘𝐻)) = 0ℋ) | |
3 | 2 | eleq2d 2819 | . . . . . . . 8 ⊢ (𝐻 ∈ Sℋ → (𝐴 ∈ (𝐻 ∩ (⊥‘𝐻)) ↔ 𝐴 ∈ 0ℋ)) |
4 | 3 | biimpd 228 | . . . . . . 7 ⊢ (𝐻 ∈ Sℋ → (𝐴 ∈ (𝐻 ∩ (⊥‘𝐻)) → 𝐴 ∈ 0ℋ)) |
5 | 1, 4 | biimtrrid 242 | . . . . . 6 ⊢ (𝐻 ∈ Sℋ → ((𝐴 ∈ 𝐻 ∧ 𝐴 ∈ (⊥‘𝐻)) → 𝐴 ∈ 0ℋ)) |
6 | 5 | expcomd 417 | . . . . 5 ⊢ (𝐻 ∈ Sℋ → (𝐴 ∈ (⊥‘𝐻) → (𝐴 ∈ 𝐻 → 𝐴 ∈ 0ℋ))) |
7 | 6 | imp 407 | . . . 4 ⊢ ((𝐻 ∈ Sℋ ∧ 𝐴 ∈ (⊥‘𝐻)) → (𝐴 ∈ 𝐻 → 𝐴 ∈ 0ℋ)) |
8 | elch0 30494 | . . . 4 ⊢ (𝐴 ∈ 0ℋ ↔ 𝐴 = 0ℎ) | |
9 | 7, 8 | imbitrdi 250 | . . 3 ⊢ ((𝐻 ∈ Sℋ ∧ 𝐴 ∈ (⊥‘𝐻)) → (𝐴 ∈ 𝐻 → 𝐴 = 0ℎ)) |
10 | 9 | necon3ad 2953 | . 2 ⊢ ((𝐻 ∈ Sℋ ∧ 𝐴 ∈ (⊥‘𝐻)) → (𝐴 ≠ 0ℎ → ¬ 𝐴 ∈ 𝐻)) |
11 | 10 | 3impia 1117 | 1 ⊢ ((𝐻 ∈ Sℋ ∧ 𝐴 ∈ (⊥‘𝐻) ∧ 𝐴 ≠ 0ℎ) → ¬ 𝐴 ∈ 𝐻) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ≠ wne 2940 ∩ cin 3946 ‘cfv 6540 0ℎc0v 30164 Sℋ csh 30168 ⊥cort 30170 0ℋc0h 30175 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-hilex 30239 ax-hfvadd 30240 ax-hv0cl 30243 ax-hfvmul 30245 ax-hvmul0 30250 ax-hfi 30319 ax-his2 30323 ax-his3 30324 ax-his4 30325 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-po 5587 df-so 5588 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7408 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-ltxr 11249 df-sh 30447 df-oc 30492 df-ch0 30493 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |