HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  ocnel Structured version   Visualization version   GIF version

Theorem ocnel 30538
Description: A nonzero vector in the complement of a subspace does not belong to the subspace. (Contributed by NM, 10-Apr-2006.) (New usage is discouraged.)
Assertion
Ref Expression
ocnel ((𝐻S𝐴 ∈ (⊥‘𝐻) ∧ 𝐴 ≠ 0) → ¬ 𝐴𝐻)

Proof of Theorem ocnel
StepHypRef Expression
1 elin 3963 . . . . . . 7 (𝐴 ∈ (𝐻 ∩ (⊥‘𝐻)) ↔ (𝐴𝐻𝐴 ∈ (⊥‘𝐻)))
2 ocin 30536 . . . . . . . . 9 (𝐻S → (𝐻 ∩ (⊥‘𝐻)) = 0)
32eleq2d 2819 . . . . . . . 8 (𝐻S → (𝐴 ∈ (𝐻 ∩ (⊥‘𝐻)) ↔ 𝐴 ∈ 0))
43biimpd 228 . . . . . . 7 (𝐻S → (𝐴 ∈ (𝐻 ∩ (⊥‘𝐻)) → 𝐴 ∈ 0))
51, 4biimtrrid 242 . . . . . 6 (𝐻S → ((𝐴𝐻𝐴 ∈ (⊥‘𝐻)) → 𝐴 ∈ 0))
65expcomd 417 . . . . 5 (𝐻S → (𝐴 ∈ (⊥‘𝐻) → (𝐴𝐻𝐴 ∈ 0)))
76imp 407 . . . 4 ((𝐻S𝐴 ∈ (⊥‘𝐻)) → (𝐴𝐻𝐴 ∈ 0))
8 elch0 30494 . . . 4 (𝐴 ∈ 0𝐴 = 0)
97, 8imbitrdi 250 . . 3 ((𝐻S𝐴 ∈ (⊥‘𝐻)) → (𝐴𝐻𝐴 = 0))
109necon3ad 2953 . 2 ((𝐻S𝐴 ∈ (⊥‘𝐻)) → (𝐴 ≠ 0 → ¬ 𝐴𝐻))
11103impia 1117 1 ((𝐻S𝐴 ∈ (⊥‘𝐻) ∧ 𝐴 ≠ 0) → ¬ 𝐴𝐻)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2940  cin 3946  cfv 6540  0c0v 30164   S csh 30168  cort 30170  0c0h 30175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-hilex 30239  ax-hfvadd 30240  ax-hv0cl 30243  ax-hfvmul 30245  ax-hvmul0 30250  ax-hfi 30319  ax-his2 30323  ax-his3 30324  ax-his4 30325
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-po 5587  df-so 5588  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7408  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11246  df-mnf 11247  df-ltxr 11249  df-sh 30447  df-oc 30492  df-ch0 30493
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator