Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > ocnel | Structured version Visualization version GIF version |
Description: A nonzero vector in the complement of a subspace does not belong to the subspace. (Contributed by NM, 10-Apr-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ocnel | ⊢ ((𝐻 ∈ Sℋ ∧ 𝐴 ∈ (⊥‘𝐻) ∧ 𝐴 ≠ 0ℎ) → ¬ 𝐴 ∈ 𝐻) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3907 | . . . . . . 7 ⊢ (𝐴 ∈ (𝐻 ∩ (⊥‘𝐻)) ↔ (𝐴 ∈ 𝐻 ∧ 𝐴 ∈ (⊥‘𝐻))) | |
2 | ocin 29637 | . . . . . . . . 9 ⊢ (𝐻 ∈ Sℋ → (𝐻 ∩ (⊥‘𝐻)) = 0ℋ) | |
3 | 2 | eleq2d 2825 | . . . . . . . 8 ⊢ (𝐻 ∈ Sℋ → (𝐴 ∈ (𝐻 ∩ (⊥‘𝐻)) ↔ 𝐴 ∈ 0ℋ)) |
4 | 3 | biimpd 228 | . . . . . . 7 ⊢ (𝐻 ∈ Sℋ → (𝐴 ∈ (𝐻 ∩ (⊥‘𝐻)) → 𝐴 ∈ 0ℋ)) |
5 | 1, 4 | syl5bir 242 | . . . . . 6 ⊢ (𝐻 ∈ Sℋ → ((𝐴 ∈ 𝐻 ∧ 𝐴 ∈ (⊥‘𝐻)) → 𝐴 ∈ 0ℋ)) |
6 | 5 | expcomd 416 | . . . . 5 ⊢ (𝐻 ∈ Sℋ → (𝐴 ∈ (⊥‘𝐻) → (𝐴 ∈ 𝐻 → 𝐴 ∈ 0ℋ))) |
7 | 6 | imp 406 | . . . 4 ⊢ ((𝐻 ∈ Sℋ ∧ 𝐴 ∈ (⊥‘𝐻)) → (𝐴 ∈ 𝐻 → 𝐴 ∈ 0ℋ)) |
8 | elch0 29595 | . . . 4 ⊢ (𝐴 ∈ 0ℋ ↔ 𝐴 = 0ℎ) | |
9 | 7, 8 | syl6ib 250 | . . 3 ⊢ ((𝐻 ∈ Sℋ ∧ 𝐴 ∈ (⊥‘𝐻)) → (𝐴 ∈ 𝐻 → 𝐴 = 0ℎ)) |
10 | 9 | necon3ad 2957 | . 2 ⊢ ((𝐻 ∈ Sℋ ∧ 𝐴 ∈ (⊥‘𝐻)) → (𝐴 ≠ 0ℎ → ¬ 𝐴 ∈ 𝐻)) |
11 | 10 | 3impia 1115 | 1 ⊢ ((𝐻 ∈ Sℋ ∧ 𝐴 ∈ (⊥‘𝐻) ∧ 𝐴 ≠ 0ℎ) → ¬ 𝐴 ∈ 𝐻) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1541 ∈ wcel 2109 ≠ wne 2944 ∩ cin 3890 ‘cfv 6430 0ℎc0v 29265 Sℋ csh 29269 ⊥cort 29271 0ℋc0h 29276 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-hilex 29340 ax-hfvadd 29341 ax-hv0cl 29344 ax-hfvmul 29346 ax-hvmul0 29351 ax-hfi 29420 ax-his2 29424 ax-his3 29425 ax-his4 29426 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-po 5502 df-so 5503 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-ov 7271 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-pnf 10995 df-mnf 10996 df-ltxr 10998 df-sh 29548 df-oc 29593 df-ch0 29594 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |