HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  ocnel Structured version   Visualization version   GIF version

Theorem ocnel 31227
Description: A nonzero vector in the complement of a subspace does not belong to the subspace. (Contributed by NM, 10-Apr-2006.) (New usage is discouraged.)
Assertion
Ref Expression
ocnel ((𝐻S𝐴 ∈ (⊥‘𝐻) ∧ 𝐴 ≠ 0) → ¬ 𝐴𝐻)

Proof of Theorem ocnel
StepHypRef Expression
1 elin 3930 . . . . . . 7 (𝐴 ∈ (𝐻 ∩ (⊥‘𝐻)) ↔ (𝐴𝐻𝐴 ∈ (⊥‘𝐻)))
2 ocin 31225 . . . . . . . . 9 (𝐻S → (𝐻 ∩ (⊥‘𝐻)) = 0)
32eleq2d 2814 . . . . . . . 8 (𝐻S → (𝐴 ∈ (𝐻 ∩ (⊥‘𝐻)) ↔ 𝐴 ∈ 0))
43biimpd 229 . . . . . . 7 (𝐻S → (𝐴 ∈ (𝐻 ∩ (⊥‘𝐻)) → 𝐴 ∈ 0))
51, 4biimtrrid 243 . . . . . 6 (𝐻S → ((𝐴𝐻𝐴 ∈ (⊥‘𝐻)) → 𝐴 ∈ 0))
65expcomd 416 . . . . 5 (𝐻S → (𝐴 ∈ (⊥‘𝐻) → (𝐴𝐻𝐴 ∈ 0)))
76imp 406 . . . 4 ((𝐻S𝐴 ∈ (⊥‘𝐻)) → (𝐴𝐻𝐴 ∈ 0))
8 elch0 31183 . . . 4 (𝐴 ∈ 0𝐴 = 0)
97, 8imbitrdi 251 . . 3 ((𝐻S𝐴 ∈ (⊥‘𝐻)) → (𝐴𝐻𝐴 = 0))
109necon3ad 2938 . 2 ((𝐻S𝐴 ∈ (⊥‘𝐻)) → (𝐴 ≠ 0 → ¬ 𝐴𝐻))
11103impia 1117 1 ((𝐻S𝐴 ∈ (⊥‘𝐻) ∧ 𝐴 ≠ 0) → ¬ 𝐴𝐻)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  cin 3913  cfv 6511  0c0v 30853   S csh 30857  cort 30859  0c0h 30864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-hilex 30928  ax-hfvadd 30929  ax-hv0cl 30932  ax-hfvmul 30934  ax-hvmul0 30939  ax-hfi 31008  ax-his2 31012  ax-his3 31013  ax-his4 31014
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-po 5546  df-so 5547  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-ltxr 11213  df-sh 31136  df-oc 31181  df-ch0 31182
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator