![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > ocnel | Structured version Visualization version GIF version |
Description: A nonzero vector in the complement of a subspace does not belong to the subspace. (Contributed by NM, 10-Apr-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ocnel | ⊢ ((𝐻 ∈ Sℋ ∧ 𝐴 ∈ (⊥‘𝐻) ∧ 𝐴 ≠ 0ℎ) → ¬ 𝐴 ∈ 𝐻) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3963 | . . . . . . 7 ⊢ (𝐴 ∈ (𝐻 ∩ (⊥‘𝐻)) ↔ (𝐴 ∈ 𝐻 ∧ 𝐴 ∈ (⊥‘𝐻))) | |
2 | ocin 31105 | . . . . . . . . 9 ⊢ (𝐻 ∈ Sℋ → (𝐻 ∩ (⊥‘𝐻)) = 0ℋ) | |
3 | 2 | eleq2d 2815 | . . . . . . . 8 ⊢ (𝐻 ∈ Sℋ → (𝐴 ∈ (𝐻 ∩ (⊥‘𝐻)) ↔ 𝐴 ∈ 0ℋ)) |
4 | 3 | biimpd 228 | . . . . . . 7 ⊢ (𝐻 ∈ Sℋ → (𝐴 ∈ (𝐻 ∩ (⊥‘𝐻)) → 𝐴 ∈ 0ℋ)) |
5 | 1, 4 | biimtrrid 242 | . . . . . 6 ⊢ (𝐻 ∈ Sℋ → ((𝐴 ∈ 𝐻 ∧ 𝐴 ∈ (⊥‘𝐻)) → 𝐴 ∈ 0ℋ)) |
6 | 5 | expcomd 416 | . . . . 5 ⊢ (𝐻 ∈ Sℋ → (𝐴 ∈ (⊥‘𝐻) → (𝐴 ∈ 𝐻 → 𝐴 ∈ 0ℋ))) |
7 | 6 | imp 406 | . . . 4 ⊢ ((𝐻 ∈ Sℋ ∧ 𝐴 ∈ (⊥‘𝐻)) → (𝐴 ∈ 𝐻 → 𝐴 ∈ 0ℋ)) |
8 | elch0 31063 | . . . 4 ⊢ (𝐴 ∈ 0ℋ ↔ 𝐴 = 0ℎ) | |
9 | 7, 8 | imbitrdi 250 | . . 3 ⊢ ((𝐻 ∈ Sℋ ∧ 𝐴 ∈ (⊥‘𝐻)) → (𝐴 ∈ 𝐻 → 𝐴 = 0ℎ)) |
10 | 9 | necon3ad 2950 | . 2 ⊢ ((𝐻 ∈ Sℋ ∧ 𝐴 ∈ (⊥‘𝐻)) → (𝐴 ≠ 0ℎ → ¬ 𝐴 ∈ 𝐻)) |
11 | 10 | 3impia 1115 | 1 ⊢ ((𝐻 ∈ Sℋ ∧ 𝐴 ∈ (⊥‘𝐻) ∧ 𝐴 ≠ 0ℎ) → ¬ 𝐴 ∈ 𝐻) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 ≠ wne 2937 ∩ cin 3946 ‘cfv 6548 0ℎc0v 30733 Sℋ csh 30737 ⊥cort 30739 0ℋc0h 30744 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-hilex 30808 ax-hfvadd 30809 ax-hv0cl 30812 ax-hfvmul 30814 ax-hvmul0 30819 ax-hfi 30888 ax-his2 30892 ax-his3 30893 ax-his4 30894 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-po 5590 df-so 5591 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-ov 7423 df-er 8724 df-en 8964 df-dom 8965 df-sdom 8966 df-pnf 11280 df-mnf 11281 df-ltxr 11283 df-sh 31016 df-oc 31061 df-ch0 31062 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |