| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > ocnel | Structured version Visualization version GIF version | ||
| Description: A nonzero vector in the complement of a subspace does not belong to the subspace. (Contributed by NM, 10-Apr-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ocnel | ⊢ ((𝐻 ∈ Sℋ ∧ 𝐴 ∈ (⊥‘𝐻) ∧ 𝐴 ≠ 0ℎ) → ¬ 𝐴 ∈ 𝐻) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin 3921 | . . . . . . 7 ⊢ (𝐴 ∈ (𝐻 ∩ (⊥‘𝐻)) ↔ (𝐴 ∈ 𝐻 ∧ 𝐴 ∈ (⊥‘𝐻))) | |
| 2 | ocin 31259 | . . . . . . . . 9 ⊢ (𝐻 ∈ Sℋ → (𝐻 ∩ (⊥‘𝐻)) = 0ℋ) | |
| 3 | 2 | eleq2d 2814 | . . . . . . . 8 ⊢ (𝐻 ∈ Sℋ → (𝐴 ∈ (𝐻 ∩ (⊥‘𝐻)) ↔ 𝐴 ∈ 0ℋ)) |
| 4 | 3 | biimpd 229 | . . . . . . 7 ⊢ (𝐻 ∈ Sℋ → (𝐴 ∈ (𝐻 ∩ (⊥‘𝐻)) → 𝐴 ∈ 0ℋ)) |
| 5 | 1, 4 | biimtrrid 243 | . . . . . 6 ⊢ (𝐻 ∈ Sℋ → ((𝐴 ∈ 𝐻 ∧ 𝐴 ∈ (⊥‘𝐻)) → 𝐴 ∈ 0ℋ)) |
| 6 | 5 | expcomd 416 | . . . . 5 ⊢ (𝐻 ∈ Sℋ → (𝐴 ∈ (⊥‘𝐻) → (𝐴 ∈ 𝐻 → 𝐴 ∈ 0ℋ))) |
| 7 | 6 | imp 406 | . . . 4 ⊢ ((𝐻 ∈ Sℋ ∧ 𝐴 ∈ (⊥‘𝐻)) → (𝐴 ∈ 𝐻 → 𝐴 ∈ 0ℋ)) |
| 8 | elch0 31217 | . . . 4 ⊢ (𝐴 ∈ 0ℋ ↔ 𝐴 = 0ℎ) | |
| 9 | 7, 8 | imbitrdi 251 | . . 3 ⊢ ((𝐻 ∈ Sℋ ∧ 𝐴 ∈ (⊥‘𝐻)) → (𝐴 ∈ 𝐻 → 𝐴 = 0ℎ)) |
| 10 | 9 | necon3ad 2938 | . 2 ⊢ ((𝐻 ∈ Sℋ ∧ 𝐴 ∈ (⊥‘𝐻)) → (𝐴 ≠ 0ℎ → ¬ 𝐴 ∈ 𝐻)) |
| 11 | 10 | 3impia 1117 | 1 ⊢ ((𝐻 ∈ Sℋ ∧ 𝐴 ∈ (⊥‘𝐻) ∧ 𝐴 ≠ 0ℎ) → ¬ 𝐴 ∈ 𝐻) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∩ cin 3904 ‘cfv 6486 0ℎc0v 30887 Sℋ csh 30891 ⊥cort 30893 0ℋc0h 30898 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-hilex 30962 ax-hfvadd 30963 ax-hv0cl 30966 ax-hfvmul 30968 ax-hvmul0 30973 ax-hfi 31042 ax-his2 31046 ax-his3 31047 ax-his4 31048 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-po 5531 df-so 5532 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-ltxr 11173 df-sh 31170 df-oc 31215 df-ch0 31216 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |