![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > shuni | Structured version Visualization version GIF version |
Description: Two subspaces with trivial intersection have a unique decomposition of the elements of the subspace sum. (Contributed by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
shuni.1 | ⊢ (𝜑 → 𝐻 ∈ Sℋ ) |
shuni.2 | ⊢ (𝜑 → 𝐾 ∈ Sℋ ) |
shuni.3 | ⊢ (𝜑 → (𝐻 ∩ 𝐾) = 0ℋ) |
shuni.4 | ⊢ (𝜑 → 𝐴 ∈ 𝐻) |
shuni.5 | ⊢ (𝜑 → 𝐵 ∈ 𝐾) |
shuni.6 | ⊢ (𝜑 → 𝐶 ∈ 𝐻) |
shuni.7 | ⊢ (𝜑 → 𝐷 ∈ 𝐾) |
shuni.8 | ⊢ (𝜑 → (𝐴 +ℎ 𝐵) = (𝐶 +ℎ 𝐷)) |
Ref | Expression |
---|---|
shuni | ⊢ (𝜑 → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | shuni.1 | . . . . . . 7 ⊢ (𝜑 → 𝐻 ∈ Sℋ ) | |
2 | shuni.4 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ 𝐻) | |
3 | shuni.6 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ 𝐻) | |
4 | shsubcl 30741 | . . . . . . 7 ⊢ ((𝐻 ∈ Sℋ ∧ 𝐴 ∈ 𝐻 ∧ 𝐶 ∈ 𝐻) → (𝐴 −ℎ 𝐶) ∈ 𝐻) | |
5 | 1, 2, 3, 4 | syl3anc 1370 | . . . . . 6 ⊢ (𝜑 → (𝐴 −ℎ 𝐶) ∈ 𝐻) |
6 | shuni.8 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 +ℎ 𝐵) = (𝐶 +ℎ 𝐷)) | |
7 | shel 30732 | . . . . . . . . . 10 ⊢ ((𝐻 ∈ Sℋ ∧ 𝐴 ∈ 𝐻) → 𝐴 ∈ ℋ) | |
8 | 1, 2, 7 | syl2anc 583 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ ℋ) |
9 | shuni.2 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐾 ∈ Sℋ ) | |
10 | shuni.5 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐵 ∈ 𝐾) | |
11 | shel 30732 | . . . . . . . . . 10 ⊢ ((𝐾 ∈ Sℋ ∧ 𝐵 ∈ 𝐾) → 𝐵 ∈ ℋ) | |
12 | 9, 10, 11 | syl2anc 583 | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ∈ ℋ) |
13 | shel 30732 | . . . . . . . . . 10 ⊢ ((𝐻 ∈ Sℋ ∧ 𝐶 ∈ 𝐻) → 𝐶 ∈ ℋ) | |
14 | 1, 3, 13 | syl2anc 583 | . . . . . . . . 9 ⊢ (𝜑 → 𝐶 ∈ ℋ) |
15 | shuni.7 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐷 ∈ 𝐾) | |
16 | shel 30732 | . . . . . . . . . 10 ⊢ ((𝐾 ∈ Sℋ ∧ 𝐷 ∈ 𝐾) → 𝐷 ∈ ℋ) | |
17 | 9, 15, 16 | syl2anc 583 | . . . . . . . . 9 ⊢ (𝜑 → 𝐷 ∈ ℋ) |
18 | hvaddsub4 30599 | . . . . . . . . 9 ⊢ (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 +ℎ 𝐵) = (𝐶 +ℎ 𝐷) ↔ (𝐴 −ℎ 𝐶) = (𝐷 −ℎ 𝐵))) | |
19 | 8, 12, 14, 17, 18 | syl22anc 836 | . . . . . . . 8 ⊢ (𝜑 → ((𝐴 +ℎ 𝐵) = (𝐶 +ℎ 𝐷) ↔ (𝐴 −ℎ 𝐶) = (𝐷 −ℎ 𝐵))) |
20 | 6, 19 | mpbid 231 | . . . . . . 7 ⊢ (𝜑 → (𝐴 −ℎ 𝐶) = (𝐷 −ℎ 𝐵)) |
21 | shsubcl 30741 | . . . . . . . 8 ⊢ ((𝐾 ∈ Sℋ ∧ 𝐷 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾) → (𝐷 −ℎ 𝐵) ∈ 𝐾) | |
22 | 9, 15, 10, 21 | syl3anc 1370 | . . . . . . 7 ⊢ (𝜑 → (𝐷 −ℎ 𝐵) ∈ 𝐾) |
23 | 20, 22 | eqeltrd 2832 | . . . . . 6 ⊢ (𝜑 → (𝐴 −ℎ 𝐶) ∈ 𝐾) |
24 | 5, 23 | elind 4194 | . . . . 5 ⊢ (𝜑 → (𝐴 −ℎ 𝐶) ∈ (𝐻 ∩ 𝐾)) |
25 | shuni.3 | . . . . 5 ⊢ (𝜑 → (𝐻 ∩ 𝐾) = 0ℋ) | |
26 | 24, 25 | eleqtrd 2834 | . . . 4 ⊢ (𝜑 → (𝐴 −ℎ 𝐶) ∈ 0ℋ) |
27 | elch0 30775 | . . . 4 ⊢ ((𝐴 −ℎ 𝐶) ∈ 0ℋ ↔ (𝐴 −ℎ 𝐶) = 0ℎ) | |
28 | 26, 27 | sylib 217 | . . 3 ⊢ (𝜑 → (𝐴 −ℎ 𝐶) = 0ℎ) |
29 | hvsubeq0 30589 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 −ℎ 𝐶) = 0ℎ ↔ 𝐴 = 𝐶)) | |
30 | 8, 14, 29 | syl2anc 583 | . . 3 ⊢ (𝜑 → ((𝐴 −ℎ 𝐶) = 0ℎ ↔ 𝐴 = 𝐶)) |
31 | 28, 30 | mpbid 231 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) |
32 | 20, 28 | eqtr3d 2773 | . . . 4 ⊢ (𝜑 → (𝐷 −ℎ 𝐵) = 0ℎ) |
33 | hvsubeq0 30589 | . . . . 5 ⊢ ((𝐷 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐷 −ℎ 𝐵) = 0ℎ ↔ 𝐷 = 𝐵)) | |
34 | 17, 12, 33 | syl2anc 583 | . . . 4 ⊢ (𝜑 → ((𝐷 −ℎ 𝐵) = 0ℎ ↔ 𝐷 = 𝐵)) |
35 | 32, 34 | mpbid 231 | . . 3 ⊢ (𝜑 → 𝐷 = 𝐵) |
36 | 35 | eqcomd 2737 | . 2 ⊢ (𝜑 → 𝐵 = 𝐷) |
37 | 31, 36 | jca 511 | 1 ⊢ (𝜑 → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ∩ cin 3947 (class class class)co 7412 ℋchba 30440 +ℎ cva 30441 0ℎc0v 30445 −ℎ cmv 30446 Sℋ csh 30449 0ℋc0h 30456 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7728 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 ax-hilex 30520 ax-hfvadd 30521 ax-hvcom 30522 ax-hvass 30523 ax-hv0cl 30524 ax-hvaddid 30525 ax-hfvmul 30526 ax-hvmulid 30527 ax-hvmulass 30528 ax-hvdistr1 30529 ax-hvdistr2 30530 ax-hvmul0 30531 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-er 8706 df-en 8943 df-dom 8944 df-sdom 8945 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-div 11877 df-hvsub 30492 df-sh 30728 df-ch0 30774 |
This theorem is referenced by: chocunii 30822 pjhthmo 30823 chscllem3 31160 |
Copyright terms: Public domain | W3C validator |