![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > shuni | Structured version Visualization version GIF version |
Description: Two subspaces with trivial intersection have a unique decomposition of the elements of the subspace sum. (Contributed by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
shuni.1 | ⊢ (𝜑 → 𝐻 ∈ Sℋ ) |
shuni.2 | ⊢ (𝜑 → 𝐾 ∈ Sℋ ) |
shuni.3 | ⊢ (𝜑 → (𝐻 ∩ 𝐾) = 0ℋ) |
shuni.4 | ⊢ (𝜑 → 𝐴 ∈ 𝐻) |
shuni.5 | ⊢ (𝜑 → 𝐵 ∈ 𝐾) |
shuni.6 | ⊢ (𝜑 → 𝐶 ∈ 𝐻) |
shuni.7 | ⊢ (𝜑 → 𝐷 ∈ 𝐾) |
shuni.8 | ⊢ (𝜑 → (𝐴 +ℎ 𝐵) = (𝐶 +ℎ 𝐷)) |
Ref | Expression |
---|---|
shuni | ⊢ (𝜑 → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | shuni.1 | . . . . . . 7 ⊢ (𝜑 → 𝐻 ∈ Sℋ ) | |
2 | shuni.4 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ 𝐻) | |
3 | shuni.6 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ 𝐻) | |
4 | shsubcl 31249 | . . . . . . 7 ⊢ ((𝐻 ∈ Sℋ ∧ 𝐴 ∈ 𝐻 ∧ 𝐶 ∈ 𝐻) → (𝐴 −ℎ 𝐶) ∈ 𝐻) | |
5 | 1, 2, 3, 4 | syl3anc 1370 | . . . . . 6 ⊢ (𝜑 → (𝐴 −ℎ 𝐶) ∈ 𝐻) |
6 | shuni.8 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 +ℎ 𝐵) = (𝐶 +ℎ 𝐷)) | |
7 | shel 31240 | . . . . . . . . . 10 ⊢ ((𝐻 ∈ Sℋ ∧ 𝐴 ∈ 𝐻) → 𝐴 ∈ ℋ) | |
8 | 1, 2, 7 | syl2anc 584 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ ℋ) |
9 | shuni.2 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐾 ∈ Sℋ ) | |
10 | shuni.5 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐵 ∈ 𝐾) | |
11 | shel 31240 | . . . . . . . . . 10 ⊢ ((𝐾 ∈ Sℋ ∧ 𝐵 ∈ 𝐾) → 𝐵 ∈ ℋ) | |
12 | 9, 10, 11 | syl2anc 584 | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ∈ ℋ) |
13 | shel 31240 | . . . . . . . . . 10 ⊢ ((𝐻 ∈ Sℋ ∧ 𝐶 ∈ 𝐻) → 𝐶 ∈ ℋ) | |
14 | 1, 3, 13 | syl2anc 584 | . . . . . . . . 9 ⊢ (𝜑 → 𝐶 ∈ ℋ) |
15 | shuni.7 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐷 ∈ 𝐾) | |
16 | shel 31240 | . . . . . . . . . 10 ⊢ ((𝐾 ∈ Sℋ ∧ 𝐷 ∈ 𝐾) → 𝐷 ∈ ℋ) | |
17 | 9, 15, 16 | syl2anc 584 | . . . . . . . . 9 ⊢ (𝜑 → 𝐷 ∈ ℋ) |
18 | hvaddsub4 31107 | . . . . . . . . 9 ⊢ (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 +ℎ 𝐵) = (𝐶 +ℎ 𝐷) ↔ (𝐴 −ℎ 𝐶) = (𝐷 −ℎ 𝐵))) | |
19 | 8, 12, 14, 17, 18 | syl22anc 839 | . . . . . . . 8 ⊢ (𝜑 → ((𝐴 +ℎ 𝐵) = (𝐶 +ℎ 𝐷) ↔ (𝐴 −ℎ 𝐶) = (𝐷 −ℎ 𝐵))) |
20 | 6, 19 | mpbid 232 | . . . . . . 7 ⊢ (𝜑 → (𝐴 −ℎ 𝐶) = (𝐷 −ℎ 𝐵)) |
21 | shsubcl 31249 | . . . . . . . 8 ⊢ ((𝐾 ∈ Sℋ ∧ 𝐷 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾) → (𝐷 −ℎ 𝐵) ∈ 𝐾) | |
22 | 9, 15, 10, 21 | syl3anc 1370 | . . . . . . 7 ⊢ (𝜑 → (𝐷 −ℎ 𝐵) ∈ 𝐾) |
23 | 20, 22 | eqeltrd 2839 | . . . . . 6 ⊢ (𝜑 → (𝐴 −ℎ 𝐶) ∈ 𝐾) |
24 | 5, 23 | elind 4210 | . . . . 5 ⊢ (𝜑 → (𝐴 −ℎ 𝐶) ∈ (𝐻 ∩ 𝐾)) |
25 | shuni.3 | . . . . 5 ⊢ (𝜑 → (𝐻 ∩ 𝐾) = 0ℋ) | |
26 | 24, 25 | eleqtrd 2841 | . . . 4 ⊢ (𝜑 → (𝐴 −ℎ 𝐶) ∈ 0ℋ) |
27 | elch0 31283 | . . . 4 ⊢ ((𝐴 −ℎ 𝐶) ∈ 0ℋ ↔ (𝐴 −ℎ 𝐶) = 0ℎ) | |
28 | 26, 27 | sylib 218 | . . 3 ⊢ (𝜑 → (𝐴 −ℎ 𝐶) = 0ℎ) |
29 | hvsubeq0 31097 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 −ℎ 𝐶) = 0ℎ ↔ 𝐴 = 𝐶)) | |
30 | 8, 14, 29 | syl2anc 584 | . . 3 ⊢ (𝜑 → ((𝐴 −ℎ 𝐶) = 0ℎ ↔ 𝐴 = 𝐶)) |
31 | 28, 30 | mpbid 232 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) |
32 | 20, 28 | eqtr3d 2777 | . . . 4 ⊢ (𝜑 → (𝐷 −ℎ 𝐵) = 0ℎ) |
33 | hvsubeq0 31097 | . . . . 5 ⊢ ((𝐷 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐷 −ℎ 𝐵) = 0ℎ ↔ 𝐷 = 𝐵)) | |
34 | 17, 12, 33 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ((𝐷 −ℎ 𝐵) = 0ℎ ↔ 𝐷 = 𝐵)) |
35 | 32, 34 | mpbid 232 | . . 3 ⊢ (𝜑 → 𝐷 = 𝐵) |
36 | 35 | eqcomd 2741 | . 2 ⊢ (𝜑 → 𝐵 = 𝐷) |
37 | 31, 36 | jca 511 | 1 ⊢ (𝜑 → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∩ cin 3962 (class class class)co 7431 ℋchba 30948 +ℎ cva 30949 0ℎc0v 30953 −ℎ cmv 30954 Sℋ csh 30957 0ℋc0h 30964 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-hilex 31028 ax-hfvadd 31029 ax-hvcom 31030 ax-hvass 31031 ax-hv0cl 31032 ax-hvaddid 31033 ax-hfvmul 31034 ax-hvmulid 31035 ax-hvmulass 31036 ax-hvdistr1 31037 ax-hvdistr2 31038 ax-hvmul0 31039 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-po 5597 df-so 5598 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-hvsub 31000 df-sh 31236 df-ch0 31282 |
This theorem is referenced by: chocunii 31330 pjhthmo 31331 chscllem3 31668 |
Copyright terms: Public domain | W3C validator |