| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > shuni | Structured version Visualization version GIF version | ||
| Description: Two subspaces with trivial intersection have a unique decomposition of the elements of the subspace sum. (Contributed by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| shuni.1 | ⊢ (𝜑 → 𝐻 ∈ Sℋ ) |
| shuni.2 | ⊢ (𝜑 → 𝐾 ∈ Sℋ ) |
| shuni.3 | ⊢ (𝜑 → (𝐻 ∩ 𝐾) = 0ℋ) |
| shuni.4 | ⊢ (𝜑 → 𝐴 ∈ 𝐻) |
| shuni.5 | ⊢ (𝜑 → 𝐵 ∈ 𝐾) |
| shuni.6 | ⊢ (𝜑 → 𝐶 ∈ 𝐻) |
| shuni.7 | ⊢ (𝜑 → 𝐷 ∈ 𝐾) |
| shuni.8 | ⊢ (𝜑 → (𝐴 +ℎ 𝐵) = (𝐶 +ℎ 𝐷)) |
| Ref | Expression |
|---|---|
| shuni | ⊢ (𝜑 → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shuni.1 | . . . . . . 7 ⊢ (𝜑 → 𝐻 ∈ Sℋ ) | |
| 2 | shuni.4 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ 𝐻) | |
| 3 | shuni.6 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ 𝐻) | |
| 4 | shsubcl 31198 | . . . . . . 7 ⊢ ((𝐻 ∈ Sℋ ∧ 𝐴 ∈ 𝐻 ∧ 𝐶 ∈ 𝐻) → (𝐴 −ℎ 𝐶) ∈ 𝐻) | |
| 5 | 1, 2, 3, 4 | syl3anc 1373 | . . . . . 6 ⊢ (𝜑 → (𝐴 −ℎ 𝐶) ∈ 𝐻) |
| 6 | shuni.8 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 +ℎ 𝐵) = (𝐶 +ℎ 𝐷)) | |
| 7 | shel 31189 | . . . . . . . . . 10 ⊢ ((𝐻 ∈ Sℋ ∧ 𝐴 ∈ 𝐻) → 𝐴 ∈ ℋ) | |
| 8 | 1, 2, 7 | syl2anc 584 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ ℋ) |
| 9 | shuni.2 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐾 ∈ Sℋ ) | |
| 10 | shuni.5 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐵 ∈ 𝐾) | |
| 11 | shel 31189 | . . . . . . . . . 10 ⊢ ((𝐾 ∈ Sℋ ∧ 𝐵 ∈ 𝐾) → 𝐵 ∈ ℋ) | |
| 12 | 9, 10, 11 | syl2anc 584 | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ∈ ℋ) |
| 13 | shel 31189 | . . . . . . . . . 10 ⊢ ((𝐻 ∈ Sℋ ∧ 𝐶 ∈ 𝐻) → 𝐶 ∈ ℋ) | |
| 14 | 1, 3, 13 | syl2anc 584 | . . . . . . . . 9 ⊢ (𝜑 → 𝐶 ∈ ℋ) |
| 15 | shuni.7 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐷 ∈ 𝐾) | |
| 16 | shel 31189 | . . . . . . . . . 10 ⊢ ((𝐾 ∈ Sℋ ∧ 𝐷 ∈ 𝐾) → 𝐷 ∈ ℋ) | |
| 17 | 9, 15, 16 | syl2anc 584 | . . . . . . . . 9 ⊢ (𝜑 → 𝐷 ∈ ℋ) |
| 18 | hvaddsub4 31056 | . . . . . . . . 9 ⊢ (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 +ℎ 𝐵) = (𝐶 +ℎ 𝐷) ↔ (𝐴 −ℎ 𝐶) = (𝐷 −ℎ 𝐵))) | |
| 19 | 8, 12, 14, 17, 18 | syl22anc 838 | . . . . . . . 8 ⊢ (𝜑 → ((𝐴 +ℎ 𝐵) = (𝐶 +ℎ 𝐷) ↔ (𝐴 −ℎ 𝐶) = (𝐷 −ℎ 𝐵))) |
| 20 | 6, 19 | mpbid 232 | . . . . . . 7 ⊢ (𝜑 → (𝐴 −ℎ 𝐶) = (𝐷 −ℎ 𝐵)) |
| 21 | shsubcl 31198 | . . . . . . . 8 ⊢ ((𝐾 ∈ Sℋ ∧ 𝐷 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾) → (𝐷 −ℎ 𝐵) ∈ 𝐾) | |
| 22 | 9, 15, 10, 21 | syl3anc 1373 | . . . . . . 7 ⊢ (𝜑 → (𝐷 −ℎ 𝐵) ∈ 𝐾) |
| 23 | 20, 22 | eqeltrd 2831 | . . . . . 6 ⊢ (𝜑 → (𝐴 −ℎ 𝐶) ∈ 𝐾) |
| 24 | 5, 23 | elind 4150 | . . . . 5 ⊢ (𝜑 → (𝐴 −ℎ 𝐶) ∈ (𝐻 ∩ 𝐾)) |
| 25 | shuni.3 | . . . . 5 ⊢ (𝜑 → (𝐻 ∩ 𝐾) = 0ℋ) | |
| 26 | 24, 25 | eleqtrd 2833 | . . . 4 ⊢ (𝜑 → (𝐴 −ℎ 𝐶) ∈ 0ℋ) |
| 27 | elch0 31232 | . . . 4 ⊢ ((𝐴 −ℎ 𝐶) ∈ 0ℋ ↔ (𝐴 −ℎ 𝐶) = 0ℎ) | |
| 28 | 26, 27 | sylib 218 | . . 3 ⊢ (𝜑 → (𝐴 −ℎ 𝐶) = 0ℎ) |
| 29 | hvsubeq0 31046 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 −ℎ 𝐶) = 0ℎ ↔ 𝐴 = 𝐶)) | |
| 30 | 8, 14, 29 | syl2anc 584 | . . 3 ⊢ (𝜑 → ((𝐴 −ℎ 𝐶) = 0ℎ ↔ 𝐴 = 𝐶)) |
| 31 | 28, 30 | mpbid 232 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) |
| 32 | 20, 28 | eqtr3d 2768 | . . . 4 ⊢ (𝜑 → (𝐷 −ℎ 𝐵) = 0ℎ) |
| 33 | hvsubeq0 31046 | . . . . 5 ⊢ ((𝐷 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐷 −ℎ 𝐵) = 0ℎ ↔ 𝐷 = 𝐵)) | |
| 34 | 17, 12, 33 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ((𝐷 −ℎ 𝐵) = 0ℎ ↔ 𝐷 = 𝐵)) |
| 35 | 32, 34 | mpbid 232 | . . 3 ⊢ (𝜑 → 𝐷 = 𝐵) |
| 36 | 35 | eqcomd 2737 | . 2 ⊢ (𝜑 → 𝐵 = 𝐷) |
| 37 | 31, 36 | jca 511 | 1 ⊢ (𝜑 → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∩ cin 3901 (class class class)co 7346 ℋchba 30897 +ℎ cva 30898 0ℎc0v 30902 −ℎ cmv 30903 Sℋ csh 30906 0ℋc0h 30913 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-hilex 30977 ax-hfvadd 30978 ax-hvcom 30979 ax-hvass 30980 ax-hv0cl 30981 ax-hvaddid 30982 ax-hfvmul 30983 ax-hvmulid 30984 ax-hvmulass 30985 ax-hvdistr1 30986 ax-hvdistr2 30987 ax-hvmul0 30988 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-po 5524 df-so 5525 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-hvsub 30949 df-sh 31185 df-ch0 31231 |
| This theorem is referenced by: chocunii 31279 pjhthmo 31280 chscllem3 31617 |
| Copyright terms: Public domain | W3C validator |