Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > shuni | Structured version Visualization version GIF version |
Description: Two subspaces with trivial intersection have a unique decomposition of the elements of the subspace sum. (Contributed by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
shuni.1 | ⊢ (𝜑 → 𝐻 ∈ Sℋ ) |
shuni.2 | ⊢ (𝜑 → 𝐾 ∈ Sℋ ) |
shuni.3 | ⊢ (𝜑 → (𝐻 ∩ 𝐾) = 0ℋ) |
shuni.4 | ⊢ (𝜑 → 𝐴 ∈ 𝐻) |
shuni.5 | ⊢ (𝜑 → 𝐵 ∈ 𝐾) |
shuni.6 | ⊢ (𝜑 → 𝐶 ∈ 𝐻) |
shuni.7 | ⊢ (𝜑 → 𝐷 ∈ 𝐾) |
shuni.8 | ⊢ (𝜑 → (𝐴 +ℎ 𝐵) = (𝐶 +ℎ 𝐷)) |
Ref | Expression |
---|---|
shuni | ⊢ (𝜑 → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | shuni.1 | . . . . . . 7 ⊢ (𝜑 → 𝐻 ∈ Sℋ ) | |
2 | shuni.4 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ 𝐻) | |
3 | shuni.6 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ 𝐻) | |
4 | shsubcl 29483 | . . . . . . 7 ⊢ ((𝐻 ∈ Sℋ ∧ 𝐴 ∈ 𝐻 ∧ 𝐶 ∈ 𝐻) → (𝐴 −ℎ 𝐶) ∈ 𝐻) | |
5 | 1, 2, 3, 4 | syl3anc 1369 | . . . . . 6 ⊢ (𝜑 → (𝐴 −ℎ 𝐶) ∈ 𝐻) |
6 | shuni.8 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 +ℎ 𝐵) = (𝐶 +ℎ 𝐷)) | |
7 | shel 29474 | . . . . . . . . . 10 ⊢ ((𝐻 ∈ Sℋ ∧ 𝐴 ∈ 𝐻) → 𝐴 ∈ ℋ) | |
8 | 1, 2, 7 | syl2anc 583 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ ℋ) |
9 | shuni.2 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐾 ∈ Sℋ ) | |
10 | shuni.5 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐵 ∈ 𝐾) | |
11 | shel 29474 | . . . . . . . . . 10 ⊢ ((𝐾 ∈ Sℋ ∧ 𝐵 ∈ 𝐾) → 𝐵 ∈ ℋ) | |
12 | 9, 10, 11 | syl2anc 583 | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ∈ ℋ) |
13 | shel 29474 | . . . . . . . . . 10 ⊢ ((𝐻 ∈ Sℋ ∧ 𝐶 ∈ 𝐻) → 𝐶 ∈ ℋ) | |
14 | 1, 3, 13 | syl2anc 583 | . . . . . . . . 9 ⊢ (𝜑 → 𝐶 ∈ ℋ) |
15 | shuni.7 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐷 ∈ 𝐾) | |
16 | shel 29474 | . . . . . . . . . 10 ⊢ ((𝐾 ∈ Sℋ ∧ 𝐷 ∈ 𝐾) → 𝐷 ∈ ℋ) | |
17 | 9, 15, 16 | syl2anc 583 | . . . . . . . . 9 ⊢ (𝜑 → 𝐷 ∈ ℋ) |
18 | hvaddsub4 29341 | . . . . . . . . 9 ⊢ (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 +ℎ 𝐵) = (𝐶 +ℎ 𝐷) ↔ (𝐴 −ℎ 𝐶) = (𝐷 −ℎ 𝐵))) | |
19 | 8, 12, 14, 17, 18 | syl22anc 835 | . . . . . . . 8 ⊢ (𝜑 → ((𝐴 +ℎ 𝐵) = (𝐶 +ℎ 𝐷) ↔ (𝐴 −ℎ 𝐶) = (𝐷 −ℎ 𝐵))) |
20 | 6, 19 | mpbid 231 | . . . . . . 7 ⊢ (𝜑 → (𝐴 −ℎ 𝐶) = (𝐷 −ℎ 𝐵)) |
21 | shsubcl 29483 | . . . . . . . 8 ⊢ ((𝐾 ∈ Sℋ ∧ 𝐷 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾) → (𝐷 −ℎ 𝐵) ∈ 𝐾) | |
22 | 9, 15, 10, 21 | syl3anc 1369 | . . . . . . 7 ⊢ (𝜑 → (𝐷 −ℎ 𝐵) ∈ 𝐾) |
23 | 20, 22 | eqeltrd 2839 | . . . . . 6 ⊢ (𝜑 → (𝐴 −ℎ 𝐶) ∈ 𝐾) |
24 | 5, 23 | elind 4124 | . . . . 5 ⊢ (𝜑 → (𝐴 −ℎ 𝐶) ∈ (𝐻 ∩ 𝐾)) |
25 | shuni.3 | . . . . 5 ⊢ (𝜑 → (𝐻 ∩ 𝐾) = 0ℋ) | |
26 | 24, 25 | eleqtrd 2841 | . . . 4 ⊢ (𝜑 → (𝐴 −ℎ 𝐶) ∈ 0ℋ) |
27 | elch0 29517 | . . . 4 ⊢ ((𝐴 −ℎ 𝐶) ∈ 0ℋ ↔ (𝐴 −ℎ 𝐶) = 0ℎ) | |
28 | 26, 27 | sylib 217 | . . 3 ⊢ (𝜑 → (𝐴 −ℎ 𝐶) = 0ℎ) |
29 | hvsubeq0 29331 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 −ℎ 𝐶) = 0ℎ ↔ 𝐴 = 𝐶)) | |
30 | 8, 14, 29 | syl2anc 583 | . . 3 ⊢ (𝜑 → ((𝐴 −ℎ 𝐶) = 0ℎ ↔ 𝐴 = 𝐶)) |
31 | 28, 30 | mpbid 231 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) |
32 | 20, 28 | eqtr3d 2780 | . . . 4 ⊢ (𝜑 → (𝐷 −ℎ 𝐵) = 0ℎ) |
33 | hvsubeq0 29331 | . . . . 5 ⊢ ((𝐷 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐷 −ℎ 𝐵) = 0ℎ ↔ 𝐷 = 𝐵)) | |
34 | 17, 12, 33 | syl2anc 583 | . . . 4 ⊢ (𝜑 → ((𝐷 −ℎ 𝐵) = 0ℎ ↔ 𝐷 = 𝐵)) |
35 | 32, 34 | mpbid 231 | . . 3 ⊢ (𝜑 → 𝐷 = 𝐵) |
36 | 35 | eqcomd 2744 | . 2 ⊢ (𝜑 → 𝐵 = 𝐷) |
37 | 31, 36 | jca 511 | 1 ⊢ (𝜑 → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∩ cin 3882 (class class class)co 7255 ℋchba 29182 +ℎ cva 29183 0ℎc0v 29187 −ℎ cmv 29188 Sℋ csh 29191 0ℋc0h 29198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-hilex 29262 ax-hfvadd 29263 ax-hvcom 29264 ax-hvass 29265 ax-hv0cl 29266 ax-hvaddid 29267 ax-hfvmul 29268 ax-hvmulid 29269 ax-hvmulass 29270 ax-hvdistr1 29271 ax-hvdistr2 29272 ax-hvmul0 29273 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-hvsub 29234 df-sh 29470 df-ch0 29516 |
This theorem is referenced by: chocunii 29564 pjhthmo 29565 chscllem3 29902 |
Copyright terms: Public domain | W3C validator |