| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > shuni | Structured version Visualization version GIF version | ||
| Description: Two subspaces with trivial intersection have a unique decomposition of the elements of the subspace sum. (Contributed by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| shuni.1 | ⊢ (𝜑 → 𝐻 ∈ Sℋ ) |
| shuni.2 | ⊢ (𝜑 → 𝐾 ∈ Sℋ ) |
| shuni.3 | ⊢ (𝜑 → (𝐻 ∩ 𝐾) = 0ℋ) |
| shuni.4 | ⊢ (𝜑 → 𝐴 ∈ 𝐻) |
| shuni.5 | ⊢ (𝜑 → 𝐵 ∈ 𝐾) |
| shuni.6 | ⊢ (𝜑 → 𝐶 ∈ 𝐻) |
| shuni.7 | ⊢ (𝜑 → 𝐷 ∈ 𝐾) |
| shuni.8 | ⊢ (𝜑 → (𝐴 +ℎ 𝐵) = (𝐶 +ℎ 𝐷)) |
| Ref | Expression |
|---|---|
| shuni | ⊢ (𝜑 → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shuni.1 | . . . . . . 7 ⊢ (𝜑 → 𝐻 ∈ Sℋ ) | |
| 2 | shuni.4 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ 𝐻) | |
| 3 | shuni.6 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ 𝐻) | |
| 4 | shsubcl 31149 | . . . . . . 7 ⊢ ((𝐻 ∈ Sℋ ∧ 𝐴 ∈ 𝐻 ∧ 𝐶 ∈ 𝐻) → (𝐴 −ℎ 𝐶) ∈ 𝐻) | |
| 5 | 1, 2, 3, 4 | syl3anc 1373 | . . . . . 6 ⊢ (𝜑 → (𝐴 −ℎ 𝐶) ∈ 𝐻) |
| 6 | shuni.8 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 +ℎ 𝐵) = (𝐶 +ℎ 𝐷)) | |
| 7 | shel 31140 | . . . . . . . . . 10 ⊢ ((𝐻 ∈ Sℋ ∧ 𝐴 ∈ 𝐻) → 𝐴 ∈ ℋ) | |
| 8 | 1, 2, 7 | syl2anc 584 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ ℋ) |
| 9 | shuni.2 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐾 ∈ Sℋ ) | |
| 10 | shuni.5 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐵 ∈ 𝐾) | |
| 11 | shel 31140 | . . . . . . . . . 10 ⊢ ((𝐾 ∈ Sℋ ∧ 𝐵 ∈ 𝐾) → 𝐵 ∈ ℋ) | |
| 12 | 9, 10, 11 | syl2anc 584 | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ∈ ℋ) |
| 13 | shel 31140 | . . . . . . . . . 10 ⊢ ((𝐻 ∈ Sℋ ∧ 𝐶 ∈ 𝐻) → 𝐶 ∈ ℋ) | |
| 14 | 1, 3, 13 | syl2anc 584 | . . . . . . . . 9 ⊢ (𝜑 → 𝐶 ∈ ℋ) |
| 15 | shuni.7 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐷 ∈ 𝐾) | |
| 16 | shel 31140 | . . . . . . . . . 10 ⊢ ((𝐾 ∈ Sℋ ∧ 𝐷 ∈ 𝐾) → 𝐷 ∈ ℋ) | |
| 17 | 9, 15, 16 | syl2anc 584 | . . . . . . . . 9 ⊢ (𝜑 → 𝐷 ∈ ℋ) |
| 18 | hvaddsub4 31007 | . . . . . . . . 9 ⊢ (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 +ℎ 𝐵) = (𝐶 +ℎ 𝐷) ↔ (𝐴 −ℎ 𝐶) = (𝐷 −ℎ 𝐵))) | |
| 19 | 8, 12, 14, 17, 18 | syl22anc 838 | . . . . . . . 8 ⊢ (𝜑 → ((𝐴 +ℎ 𝐵) = (𝐶 +ℎ 𝐷) ↔ (𝐴 −ℎ 𝐶) = (𝐷 −ℎ 𝐵))) |
| 20 | 6, 19 | mpbid 232 | . . . . . . 7 ⊢ (𝜑 → (𝐴 −ℎ 𝐶) = (𝐷 −ℎ 𝐵)) |
| 21 | shsubcl 31149 | . . . . . . . 8 ⊢ ((𝐾 ∈ Sℋ ∧ 𝐷 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾) → (𝐷 −ℎ 𝐵) ∈ 𝐾) | |
| 22 | 9, 15, 10, 21 | syl3anc 1373 | . . . . . . 7 ⊢ (𝜑 → (𝐷 −ℎ 𝐵) ∈ 𝐾) |
| 23 | 20, 22 | eqeltrd 2828 | . . . . . 6 ⊢ (𝜑 → (𝐴 −ℎ 𝐶) ∈ 𝐾) |
| 24 | 5, 23 | elind 4163 | . . . . 5 ⊢ (𝜑 → (𝐴 −ℎ 𝐶) ∈ (𝐻 ∩ 𝐾)) |
| 25 | shuni.3 | . . . . 5 ⊢ (𝜑 → (𝐻 ∩ 𝐾) = 0ℋ) | |
| 26 | 24, 25 | eleqtrd 2830 | . . . 4 ⊢ (𝜑 → (𝐴 −ℎ 𝐶) ∈ 0ℋ) |
| 27 | elch0 31183 | . . . 4 ⊢ ((𝐴 −ℎ 𝐶) ∈ 0ℋ ↔ (𝐴 −ℎ 𝐶) = 0ℎ) | |
| 28 | 26, 27 | sylib 218 | . . 3 ⊢ (𝜑 → (𝐴 −ℎ 𝐶) = 0ℎ) |
| 29 | hvsubeq0 30997 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 −ℎ 𝐶) = 0ℎ ↔ 𝐴 = 𝐶)) | |
| 30 | 8, 14, 29 | syl2anc 584 | . . 3 ⊢ (𝜑 → ((𝐴 −ℎ 𝐶) = 0ℎ ↔ 𝐴 = 𝐶)) |
| 31 | 28, 30 | mpbid 232 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) |
| 32 | 20, 28 | eqtr3d 2766 | . . . 4 ⊢ (𝜑 → (𝐷 −ℎ 𝐵) = 0ℎ) |
| 33 | hvsubeq0 30997 | . . . . 5 ⊢ ((𝐷 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐷 −ℎ 𝐵) = 0ℎ ↔ 𝐷 = 𝐵)) | |
| 34 | 17, 12, 33 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ((𝐷 −ℎ 𝐵) = 0ℎ ↔ 𝐷 = 𝐵)) |
| 35 | 32, 34 | mpbid 232 | . . 3 ⊢ (𝜑 → 𝐷 = 𝐵) |
| 36 | 35 | eqcomd 2735 | . 2 ⊢ (𝜑 → 𝐵 = 𝐷) |
| 37 | 31, 36 | jca 511 | 1 ⊢ (𝜑 → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∩ cin 3913 (class class class)co 7387 ℋchba 30848 +ℎ cva 30849 0ℎc0v 30853 −ℎ cmv 30854 Sℋ csh 30857 0ℋc0h 30864 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-hilex 30928 ax-hfvadd 30929 ax-hvcom 30930 ax-hvass 30931 ax-hv0cl 30932 ax-hvaddid 30933 ax-hfvmul 30934 ax-hvmulid 30935 ax-hvmulass 30936 ax-hvdistr1 30937 ax-hvdistr2 30938 ax-hvmul0 30939 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-hvsub 30900 df-sh 31136 df-ch0 31182 |
| This theorem is referenced by: chocunii 31230 pjhthmo 31231 chscllem3 31568 |
| Copyright terms: Public domain | W3C validator |