HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shuni Structured version   Visualization version   GIF version

Theorem shuni 29083
Description: Two subspaces with trivial intersection have a unique decomposition of the elements of the subspace sum. (Contributed by Mario Carneiro, 15-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
shuni.1 (𝜑𝐻S )
shuni.2 (𝜑𝐾S )
shuni.3 (𝜑 → (𝐻𝐾) = 0)
shuni.4 (𝜑𝐴𝐻)
shuni.5 (𝜑𝐵𝐾)
shuni.6 (𝜑𝐶𝐻)
shuni.7 (𝜑𝐷𝐾)
shuni.8 (𝜑 → (𝐴 + 𝐵) = (𝐶 + 𝐷))
Assertion
Ref Expression
shuni (𝜑 → (𝐴 = 𝐶𝐵 = 𝐷))

Proof of Theorem shuni
StepHypRef Expression
1 shuni.1 . . . . . . 7 (𝜑𝐻S )
2 shuni.4 . . . . . . 7 (𝜑𝐴𝐻)
3 shuni.6 . . . . . . 7 (𝜑𝐶𝐻)
4 shsubcl 29003 . . . . . . 7 ((𝐻S𝐴𝐻𝐶𝐻) → (𝐴 𝐶) ∈ 𝐻)
51, 2, 3, 4syl3anc 1368 . . . . . 6 (𝜑 → (𝐴 𝐶) ∈ 𝐻)
6 shuni.8 . . . . . . . 8 (𝜑 → (𝐴 + 𝐵) = (𝐶 + 𝐷))
7 shel 28994 . . . . . . . . . 10 ((𝐻S𝐴𝐻) → 𝐴 ∈ ℋ)
81, 2, 7syl2anc 587 . . . . . . . . 9 (𝜑𝐴 ∈ ℋ)
9 shuni.2 . . . . . . . . . 10 (𝜑𝐾S )
10 shuni.5 . . . . . . . . . 10 (𝜑𝐵𝐾)
11 shel 28994 . . . . . . . . . 10 ((𝐾S𝐵𝐾) → 𝐵 ∈ ℋ)
129, 10, 11syl2anc 587 . . . . . . . . 9 (𝜑𝐵 ∈ ℋ)
13 shel 28994 . . . . . . . . . 10 ((𝐻S𝐶𝐻) → 𝐶 ∈ ℋ)
141, 3, 13syl2anc 587 . . . . . . . . 9 (𝜑𝐶 ∈ ℋ)
15 shuni.7 . . . . . . . . . 10 (𝜑𝐷𝐾)
16 shel 28994 . . . . . . . . . 10 ((𝐾S𝐷𝐾) → 𝐷 ∈ ℋ)
179, 15, 16syl2anc 587 . . . . . . . . 9 (𝜑𝐷 ∈ ℋ)
18 hvaddsub4 28861 . . . . . . . . 9 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 + 𝐵) = (𝐶 + 𝐷) ↔ (𝐴 𝐶) = (𝐷 𝐵)))
198, 12, 14, 17, 18syl22anc 837 . . . . . . . 8 (𝜑 → ((𝐴 + 𝐵) = (𝐶 + 𝐷) ↔ (𝐴 𝐶) = (𝐷 𝐵)))
206, 19mpbid 235 . . . . . . 7 (𝜑 → (𝐴 𝐶) = (𝐷 𝐵))
21 shsubcl 29003 . . . . . . . 8 ((𝐾S𝐷𝐾𝐵𝐾) → (𝐷 𝐵) ∈ 𝐾)
229, 15, 10, 21syl3anc 1368 . . . . . . 7 (𝜑 → (𝐷 𝐵) ∈ 𝐾)
2320, 22eqeltrd 2890 . . . . . 6 (𝜑 → (𝐴 𝐶) ∈ 𝐾)
245, 23elind 4121 . . . . 5 (𝜑 → (𝐴 𝐶) ∈ (𝐻𝐾))
25 shuni.3 . . . . 5 (𝜑 → (𝐻𝐾) = 0)
2624, 25eleqtrd 2892 . . . 4 (𝜑 → (𝐴 𝐶) ∈ 0)
27 elch0 29037 . . . 4 ((𝐴 𝐶) ∈ 0 ↔ (𝐴 𝐶) = 0)
2826, 27sylib 221 . . 3 (𝜑 → (𝐴 𝐶) = 0)
29 hvsubeq0 28851 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 𝐶) = 0𝐴 = 𝐶))
308, 14, 29syl2anc 587 . . 3 (𝜑 → ((𝐴 𝐶) = 0𝐴 = 𝐶))
3128, 30mpbid 235 . 2 (𝜑𝐴 = 𝐶)
3220, 28eqtr3d 2835 . . . 4 (𝜑 → (𝐷 𝐵) = 0)
33 hvsubeq0 28851 . . . . 5 ((𝐷 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐷 𝐵) = 0𝐷 = 𝐵))
3417, 12, 33syl2anc 587 . . . 4 (𝜑 → ((𝐷 𝐵) = 0𝐷 = 𝐵))
3532, 34mpbid 235 . . 3 (𝜑𝐷 = 𝐵)
3635eqcomd 2804 . 2 (𝜑𝐵 = 𝐷)
3731, 36jca 515 1 (𝜑 → (𝐴 = 𝐶𝐵 = 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  cin 3880  (class class class)co 7135  chba 28702   + cva 28703  0c0v 28707   cmv 28708   S csh 28711  0c0h 28718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-hilex 28782  ax-hfvadd 28783  ax-hvcom 28784  ax-hvass 28785  ax-hv0cl 28786  ax-hvaddid 28787  ax-hfvmul 28788  ax-hvmulid 28789  ax-hvmulass 28790  ax-hvdistr1 28791  ax-hvdistr2 28792  ax-hvmul0 28793
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-po 5438  df-so 5439  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-hvsub 28754  df-sh 28990  df-ch0 29036
This theorem is referenced by:  chocunii  29084  pjhthmo  29085  chscllem3  29422
  Copyright terms: Public domain W3C validator