HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shuni Structured version   Visualization version   GIF version

Theorem shuni 31281
Description: Two subspaces with trivial intersection have a unique decomposition of the elements of the subspace sum. (Contributed by Mario Carneiro, 15-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
shuni.1 (𝜑𝐻S )
shuni.2 (𝜑𝐾S )
shuni.3 (𝜑 → (𝐻𝐾) = 0)
shuni.4 (𝜑𝐴𝐻)
shuni.5 (𝜑𝐵𝐾)
shuni.6 (𝜑𝐶𝐻)
shuni.7 (𝜑𝐷𝐾)
shuni.8 (𝜑 → (𝐴 + 𝐵) = (𝐶 + 𝐷))
Assertion
Ref Expression
shuni (𝜑 → (𝐴 = 𝐶𝐵 = 𝐷))

Proof of Theorem shuni
StepHypRef Expression
1 shuni.1 . . . . . . 7 (𝜑𝐻S )
2 shuni.4 . . . . . . 7 (𝜑𝐴𝐻)
3 shuni.6 . . . . . . 7 (𝜑𝐶𝐻)
4 shsubcl 31201 . . . . . . 7 ((𝐻S𝐴𝐻𝐶𝐻) → (𝐴 𝐶) ∈ 𝐻)
51, 2, 3, 4syl3anc 1373 . . . . . 6 (𝜑 → (𝐴 𝐶) ∈ 𝐻)
6 shuni.8 . . . . . . . 8 (𝜑 → (𝐴 + 𝐵) = (𝐶 + 𝐷))
7 shel 31192 . . . . . . . . . 10 ((𝐻S𝐴𝐻) → 𝐴 ∈ ℋ)
81, 2, 7syl2anc 584 . . . . . . . . 9 (𝜑𝐴 ∈ ℋ)
9 shuni.2 . . . . . . . . . 10 (𝜑𝐾S )
10 shuni.5 . . . . . . . . . 10 (𝜑𝐵𝐾)
11 shel 31192 . . . . . . . . . 10 ((𝐾S𝐵𝐾) → 𝐵 ∈ ℋ)
129, 10, 11syl2anc 584 . . . . . . . . 9 (𝜑𝐵 ∈ ℋ)
13 shel 31192 . . . . . . . . . 10 ((𝐻S𝐶𝐻) → 𝐶 ∈ ℋ)
141, 3, 13syl2anc 584 . . . . . . . . 9 (𝜑𝐶 ∈ ℋ)
15 shuni.7 . . . . . . . . . 10 (𝜑𝐷𝐾)
16 shel 31192 . . . . . . . . . 10 ((𝐾S𝐷𝐾) → 𝐷 ∈ ℋ)
179, 15, 16syl2anc 584 . . . . . . . . 9 (𝜑𝐷 ∈ ℋ)
18 hvaddsub4 31059 . . . . . . . . 9 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 + 𝐵) = (𝐶 + 𝐷) ↔ (𝐴 𝐶) = (𝐷 𝐵)))
198, 12, 14, 17, 18syl22anc 838 . . . . . . . 8 (𝜑 → ((𝐴 + 𝐵) = (𝐶 + 𝐷) ↔ (𝐴 𝐶) = (𝐷 𝐵)))
206, 19mpbid 232 . . . . . . 7 (𝜑 → (𝐴 𝐶) = (𝐷 𝐵))
21 shsubcl 31201 . . . . . . . 8 ((𝐾S𝐷𝐾𝐵𝐾) → (𝐷 𝐵) ∈ 𝐾)
229, 15, 10, 21syl3anc 1373 . . . . . . 7 (𝜑 → (𝐷 𝐵) ∈ 𝐾)
2320, 22eqeltrd 2834 . . . . . 6 (𝜑 → (𝐴 𝐶) ∈ 𝐾)
245, 23elind 4175 . . . . 5 (𝜑 → (𝐴 𝐶) ∈ (𝐻𝐾))
25 shuni.3 . . . . 5 (𝜑 → (𝐻𝐾) = 0)
2624, 25eleqtrd 2836 . . . 4 (𝜑 → (𝐴 𝐶) ∈ 0)
27 elch0 31235 . . . 4 ((𝐴 𝐶) ∈ 0 ↔ (𝐴 𝐶) = 0)
2826, 27sylib 218 . . 3 (𝜑 → (𝐴 𝐶) = 0)
29 hvsubeq0 31049 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 𝐶) = 0𝐴 = 𝐶))
308, 14, 29syl2anc 584 . . 3 (𝜑 → ((𝐴 𝐶) = 0𝐴 = 𝐶))
3128, 30mpbid 232 . 2 (𝜑𝐴 = 𝐶)
3220, 28eqtr3d 2772 . . . 4 (𝜑 → (𝐷 𝐵) = 0)
33 hvsubeq0 31049 . . . . 5 ((𝐷 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐷 𝐵) = 0𝐷 = 𝐵))
3417, 12, 33syl2anc 584 . . . 4 (𝜑 → ((𝐷 𝐵) = 0𝐷 = 𝐵))
3532, 34mpbid 232 . . 3 (𝜑𝐷 = 𝐵)
3635eqcomd 2741 . 2 (𝜑𝐵 = 𝐷)
3731, 36jca 511 1 (𝜑 → (𝐴 = 𝐶𝐵 = 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  cin 3925  (class class class)co 7405  chba 30900   + cva 30901  0c0v 30905   cmv 30906   S csh 30909  0c0h 30916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-hilex 30980  ax-hfvadd 30981  ax-hvcom 30982  ax-hvass 30983  ax-hv0cl 30984  ax-hvaddid 30985  ax-hfvmul 30986  ax-hvmulid 30987  ax-hvmulass 30988  ax-hvdistr1 30989  ax-hvdistr2 30990  ax-hvmul0 30991
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-po 5561  df-so 5562  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-hvsub 30952  df-sh 31188  df-ch0 31234
This theorem is referenced by:  chocunii  31282  pjhthmo  31283  chscllem3  31620
  Copyright terms: Public domain W3C validator