HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shuni Structured version   Visualization version   GIF version

Theorem shuni 29641
Description: Two subspaces with trivial intersection have a unique decomposition of the elements of the subspace sum. (Contributed by Mario Carneiro, 15-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
shuni.1 (𝜑𝐻S )
shuni.2 (𝜑𝐾S )
shuni.3 (𝜑 → (𝐻𝐾) = 0)
shuni.4 (𝜑𝐴𝐻)
shuni.5 (𝜑𝐵𝐾)
shuni.6 (𝜑𝐶𝐻)
shuni.7 (𝜑𝐷𝐾)
shuni.8 (𝜑 → (𝐴 + 𝐵) = (𝐶 + 𝐷))
Assertion
Ref Expression
shuni (𝜑 → (𝐴 = 𝐶𝐵 = 𝐷))

Proof of Theorem shuni
StepHypRef Expression
1 shuni.1 . . . . . . 7 (𝜑𝐻S )
2 shuni.4 . . . . . . 7 (𝜑𝐴𝐻)
3 shuni.6 . . . . . . 7 (𝜑𝐶𝐻)
4 shsubcl 29561 . . . . . . 7 ((𝐻S𝐴𝐻𝐶𝐻) → (𝐴 𝐶) ∈ 𝐻)
51, 2, 3, 4syl3anc 1369 . . . . . 6 (𝜑 → (𝐴 𝐶) ∈ 𝐻)
6 shuni.8 . . . . . . . 8 (𝜑 → (𝐴 + 𝐵) = (𝐶 + 𝐷))
7 shel 29552 . . . . . . . . . 10 ((𝐻S𝐴𝐻) → 𝐴 ∈ ℋ)
81, 2, 7syl2anc 583 . . . . . . . . 9 (𝜑𝐴 ∈ ℋ)
9 shuni.2 . . . . . . . . . 10 (𝜑𝐾S )
10 shuni.5 . . . . . . . . . 10 (𝜑𝐵𝐾)
11 shel 29552 . . . . . . . . . 10 ((𝐾S𝐵𝐾) → 𝐵 ∈ ℋ)
129, 10, 11syl2anc 583 . . . . . . . . 9 (𝜑𝐵 ∈ ℋ)
13 shel 29552 . . . . . . . . . 10 ((𝐻S𝐶𝐻) → 𝐶 ∈ ℋ)
141, 3, 13syl2anc 583 . . . . . . . . 9 (𝜑𝐶 ∈ ℋ)
15 shuni.7 . . . . . . . . . 10 (𝜑𝐷𝐾)
16 shel 29552 . . . . . . . . . 10 ((𝐾S𝐷𝐾) → 𝐷 ∈ ℋ)
179, 15, 16syl2anc 583 . . . . . . . . 9 (𝜑𝐷 ∈ ℋ)
18 hvaddsub4 29419 . . . . . . . . 9 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 + 𝐵) = (𝐶 + 𝐷) ↔ (𝐴 𝐶) = (𝐷 𝐵)))
198, 12, 14, 17, 18syl22anc 835 . . . . . . . 8 (𝜑 → ((𝐴 + 𝐵) = (𝐶 + 𝐷) ↔ (𝐴 𝐶) = (𝐷 𝐵)))
206, 19mpbid 231 . . . . . . 7 (𝜑 → (𝐴 𝐶) = (𝐷 𝐵))
21 shsubcl 29561 . . . . . . . 8 ((𝐾S𝐷𝐾𝐵𝐾) → (𝐷 𝐵) ∈ 𝐾)
229, 15, 10, 21syl3anc 1369 . . . . . . 7 (𝜑 → (𝐷 𝐵) ∈ 𝐾)
2320, 22eqeltrd 2840 . . . . . 6 (𝜑 → (𝐴 𝐶) ∈ 𝐾)
245, 23elind 4132 . . . . 5 (𝜑 → (𝐴 𝐶) ∈ (𝐻𝐾))
25 shuni.3 . . . . 5 (𝜑 → (𝐻𝐾) = 0)
2624, 25eleqtrd 2842 . . . 4 (𝜑 → (𝐴 𝐶) ∈ 0)
27 elch0 29595 . . . 4 ((𝐴 𝐶) ∈ 0 ↔ (𝐴 𝐶) = 0)
2826, 27sylib 217 . . 3 (𝜑 → (𝐴 𝐶) = 0)
29 hvsubeq0 29409 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 𝐶) = 0𝐴 = 𝐶))
308, 14, 29syl2anc 583 . . 3 (𝜑 → ((𝐴 𝐶) = 0𝐴 = 𝐶))
3128, 30mpbid 231 . 2 (𝜑𝐴 = 𝐶)
3220, 28eqtr3d 2781 . . . 4 (𝜑 → (𝐷 𝐵) = 0)
33 hvsubeq0 29409 . . . . 5 ((𝐷 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐷 𝐵) = 0𝐷 = 𝐵))
3417, 12, 33syl2anc 583 . . . 4 (𝜑 → ((𝐷 𝐵) = 0𝐷 = 𝐵))
3532, 34mpbid 231 . . 3 (𝜑𝐷 = 𝐵)
3635eqcomd 2745 . 2 (𝜑𝐵 = 𝐷)
3731, 36jca 511 1 (𝜑 → (𝐴 = 𝐶𝐵 = 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1541  wcel 2109  cin 3890  (class class class)co 7268  chba 29260   + cva 29261  0c0v 29265   cmv 29266   S csh 29269  0c0h 29276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932  ax-hilex 29340  ax-hfvadd 29341  ax-hvcom 29342  ax-hvass 29343  ax-hv0cl 29344  ax-hvaddid 29345  ax-hfvmul 29346  ax-hvmulid 29347  ax-hvmulass 29348  ax-hvdistr1 29349  ax-hvdistr2 29350  ax-hvmul0 29351
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-po 5502  df-so 5503  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-er 8472  df-en 8708  df-dom 8709  df-sdom 8710  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-div 11616  df-hvsub 29312  df-sh 29548  df-ch0 29594
This theorem is referenced by:  chocunii  29642  pjhthmo  29643  chscllem3  29980
  Copyright terms: Public domain W3C validator