HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  choc1 Structured version   Visualization version   GIF version

Theorem choc1 31260
Description: The orthocomplement of the unit subspace is the zero subspace. Does not require Axiom of Choice. (Contributed by NM, 24-Oct-1999.) (New usage is discouraged.)
Assertion
Ref Expression
choc1 (⊥‘ ℋ) = 0

Proof of Theorem choc1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 helsh 31178 . . . . . . 7 ℋ ∈ S
2 shocel 31215 . . . . . . 7 ( ℋ ∈ S → (𝑥 ∈ (⊥‘ ℋ) ↔ (𝑥 ∈ ℋ ∧ ∀𝑦 ∈ ℋ (𝑥 ·ih 𝑦) = 0)))
31, 2ax-mp 5 . . . . . 6 (𝑥 ∈ (⊥‘ ℋ) ↔ (𝑥 ∈ ℋ ∧ ∀𝑦 ∈ ℋ (𝑥 ·ih 𝑦) = 0))
43simprbi 495 . . . . 5 (𝑥 ∈ (⊥‘ ℋ) → ∀𝑦 ∈ ℋ (𝑥 ·ih 𝑦) = 0)
5 shocss 31219 . . . . . . . 8 ( ℋ ∈ S → (⊥‘ ℋ) ⊆ ℋ)
61, 5ax-mp 5 . . . . . . 7 (⊥‘ ℋ) ⊆ ℋ
76sseli 3975 . . . . . 6 (𝑥 ∈ (⊥‘ ℋ) → 𝑥 ∈ ℋ)
8 hial0 31035 . . . . . 6 (𝑥 ∈ ℋ → (∀𝑦 ∈ ℋ (𝑥 ·ih 𝑦) = 0 ↔ 𝑥 = 0))
97, 8syl 17 . . . . 5 (𝑥 ∈ (⊥‘ ℋ) → (∀𝑦 ∈ ℋ (𝑥 ·ih 𝑦) = 0 ↔ 𝑥 = 0))
104, 9mpbid 231 . . . 4 (𝑥 ∈ (⊥‘ ℋ) → 𝑥 = 0)
11 elch0 31187 . . . 4 (𝑥 ∈ 0𝑥 = 0)
1210, 11sylibr 233 . . 3 (𝑥 ∈ (⊥‘ ℋ) → 𝑥 ∈ 0)
1312ssriv 3983 . 2 (⊥‘ ℋ) ⊆ 0
14 h0elsh 31189 . . . 4 0S
15 shococss 31227 . . . 4 (0S → 0 ⊆ (⊥‘(⊥‘0)))
1614, 15ax-mp 5 . . 3 0 ⊆ (⊥‘(⊥‘0))
17 choc0 31259 . . . 4 (⊥‘0) = ℋ
1817fveq2i 6904 . . 3 (⊥‘(⊥‘0)) = (⊥‘ ℋ)
1916, 18sseqtri 4016 . 2 0 ⊆ (⊥‘ ℋ)
2013, 19eqssi 3996 1 (⊥‘ ℋ) = 0
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 394   = wceq 1534  wcel 2099  wral 3051  wss 3947  cfv 6554  (class class class)co 7424  0cc0 11158  chba 30852   ·ih csp 30855  0c0v 30857   S csh 30861  cort 30863  0c0h 30868
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235  ax-pre-sup 11236  ax-addf 11237  ax-mulf 11238  ax-hilex 30932  ax-hfvadd 30933  ax-hvcom 30934  ax-hvass 30935  ax-hv0cl 30936  ax-hvaddid 30937  ax-hfvmul 30938  ax-hvmulid 30939  ax-hvmulass 30940  ax-hvdistr1 30941  ax-hvdistr2 30942  ax-hvmul0 30943  ax-hfi 31012  ax-his1 31015  ax-his2 31016  ax-his3 31017  ax-his4 31018
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-1st 8003  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-er 8734  df-map 8857  df-pm 8858  df-en 8975  df-dom 8976  df-sdom 8977  df-sup 9485  df-inf 9486  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-div 11922  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-n0 12525  df-z 12611  df-uz 12875  df-q 12985  df-rp 13029  df-xneg 13146  df-xadd 13147  df-xmul 13148  df-icc 13385  df-seq 14022  df-exp 14082  df-cj 15104  df-re 15105  df-im 15106  df-sqrt 15240  df-abs 15241  df-topgen 17458  df-psmet 21335  df-xmet 21336  df-met 21337  df-bl 21338  df-mopn 21339  df-top 22887  df-topon 22904  df-bases 22940  df-lm 23224  df-haus 23310  df-grpo 30426  df-gid 30427  df-ginv 30428  df-gdiv 30429  df-ablo 30478  df-vc 30492  df-nv 30525  df-va 30528  df-ba 30529  df-sm 30530  df-0v 30531  df-vs 30532  df-nmcv 30533  df-ims 30534  df-hnorm 30901  df-hvsub 30904  df-hlim 30905  df-sh 31140  df-ch 31154  df-oc 31185  df-ch0 31186
This theorem is referenced by:  ho0val  31683  st0  32182
  Copyright terms: Public domain W3C validator