Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > choc1 | Structured version Visualization version GIF version |
Description: The orthocomplement of the unit subspace is the zero subspace. Does not require Axiom of Choice. (Contributed by NM, 24-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
choc1 | ⊢ (⊥‘ ℋ) = 0ℋ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | helsh 29508 | . . . . . . 7 ⊢ ℋ ∈ Sℋ | |
2 | shocel 29545 | . . . . . . 7 ⊢ ( ℋ ∈ Sℋ → (𝑥 ∈ (⊥‘ ℋ) ↔ (𝑥 ∈ ℋ ∧ ∀𝑦 ∈ ℋ (𝑥 ·ih 𝑦) = 0))) | |
3 | 1, 2 | ax-mp 5 | . . . . . 6 ⊢ (𝑥 ∈ (⊥‘ ℋ) ↔ (𝑥 ∈ ℋ ∧ ∀𝑦 ∈ ℋ (𝑥 ·ih 𝑦) = 0)) |
4 | 3 | simprbi 496 | . . . . 5 ⊢ (𝑥 ∈ (⊥‘ ℋ) → ∀𝑦 ∈ ℋ (𝑥 ·ih 𝑦) = 0) |
5 | shocss 29549 | . . . . . . . 8 ⊢ ( ℋ ∈ Sℋ → (⊥‘ ℋ) ⊆ ℋ) | |
6 | 1, 5 | ax-mp 5 | . . . . . . 7 ⊢ (⊥‘ ℋ) ⊆ ℋ |
7 | 6 | sseli 3913 | . . . . . 6 ⊢ (𝑥 ∈ (⊥‘ ℋ) → 𝑥 ∈ ℋ) |
8 | hial0 29365 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → (∀𝑦 ∈ ℋ (𝑥 ·ih 𝑦) = 0 ↔ 𝑥 = 0ℎ)) | |
9 | 7, 8 | syl 17 | . . . . 5 ⊢ (𝑥 ∈ (⊥‘ ℋ) → (∀𝑦 ∈ ℋ (𝑥 ·ih 𝑦) = 0 ↔ 𝑥 = 0ℎ)) |
10 | 4, 9 | mpbid 231 | . . . 4 ⊢ (𝑥 ∈ (⊥‘ ℋ) → 𝑥 = 0ℎ) |
11 | elch0 29517 | . . . 4 ⊢ (𝑥 ∈ 0ℋ ↔ 𝑥 = 0ℎ) | |
12 | 10, 11 | sylibr 233 | . . 3 ⊢ (𝑥 ∈ (⊥‘ ℋ) → 𝑥 ∈ 0ℋ) |
13 | 12 | ssriv 3921 | . 2 ⊢ (⊥‘ ℋ) ⊆ 0ℋ |
14 | h0elsh 29519 | . . . 4 ⊢ 0ℋ ∈ Sℋ | |
15 | shococss 29557 | . . . 4 ⊢ (0ℋ ∈ Sℋ → 0ℋ ⊆ (⊥‘(⊥‘0ℋ))) | |
16 | 14, 15 | ax-mp 5 | . . 3 ⊢ 0ℋ ⊆ (⊥‘(⊥‘0ℋ)) |
17 | choc0 29589 | . . . 4 ⊢ (⊥‘0ℋ) = ℋ | |
18 | 17 | fveq2i 6759 | . . 3 ⊢ (⊥‘(⊥‘0ℋ)) = (⊥‘ ℋ) |
19 | 16, 18 | sseqtri 3953 | . 2 ⊢ 0ℋ ⊆ (⊥‘ ℋ) |
20 | 13, 19 | eqssi 3933 | 1 ⊢ (⊥‘ ℋ) = 0ℋ |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ⊆ wss 3883 ‘cfv 6418 (class class class)co 7255 0cc0 10802 ℋchba 29182 ·ih csp 29185 0ℎc0v 29187 Sℋ csh 29191 ⊥cort 29193 0ℋc0h 29198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 ax-addf 10881 ax-mulf 10882 ax-hilex 29262 ax-hfvadd 29263 ax-hvcom 29264 ax-hvass 29265 ax-hv0cl 29266 ax-hvaddid 29267 ax-hfvmul 29268 ax-hvmulid 29269 ax-hvmulass 29270 ax-hvdistr1 29271 ax-hvdistr2 29272 ax-hvmul0 29273 ax-hfi 29342 ax-his1 29345 ax-his2 29346 ax-his3 29347 ax-his4 29348 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-map 8575 df-pm 8576 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-inf 9132 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-n0 12164 df-z 12250 df-uz 12512 df-q 12618 df-rp 12660 df-xneg 12777 df-xadd 12778 df-xmul 12779 df-icc 13015 df-seq 13650 df-exp 13711 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-topgen 17071 df-psmet 20502 df-xmet 20503 df-met 20504 df-bl 20505 df-mopn 20506 df-top 21951 df-topon 21968 df-bases 22004 df-lm 22288 df-haus 22374 df-grpo 28756 df-gid 28757 df-ginv 28758 df-gdiv 28759 df-ablo 28808 df-vc 28822 df-nv 28855 df-va 28858 df-ba 28859 df-sm 28860 df-0v 28861 df-vs 28862 df-nmcv 28863 df-ims 28864 df-hnorm 29231 df-hvsub 29234 df-hlim 29235 df-sh 29470 df-ch 29484 df-oc 29515 df-ch0 29516 |
This theorem is referenced by: ho0val 30013 st0 30512 |
Copyright terms: Public domain | W3C validator |