![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > choc1 | Structured version Visualization version GIF version |
Description: The orthocomplement of the unit subspace is the zero subspace. Does not require Axiom of Choice. (Contributed by NM, 24-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
choc1 | ⊢ (⊥‘ ℋ) = 0ℋ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | helsh 30930 | . . . . . . 7 ⊢ ℋ ∈ Sℋ | |
2 | shocel 30967 | . . . . . . 7 ⊢ ( ℋ ∈ Sℋ → (𝑥 ∈ (⊥‘ ℋ) ↔ (𝑥 ∈ ℋ ∧ ∀𝑦 ∈ ℋ (𝑥 ·ih 𝑦) = 0))) | |
3 | 1, 2 | ax-mp 5 | . . . . . 6 ⊢ (𝑥 ∈ (⊥‘ ℋ) ↔ (𝑥 ∈ ℋ ∧ ∀𝑦 ∈ ℋ (𝑥 ·ih 𝑦) = 0)) |
4 | 3 | simprbi 496 | . . . . 5 ⊢ (𝑥 ∈ (⊥‘ ℋ) → ∀𝑦 ∈ ℋ (𝑥 ·ih 𝑦) = 0) |
5 | shocss 30971 | . . . . . . . 8 ⊢ ( ℋ ∈ Sℋ → (⊥‘ ℋ) ⊆ ℋ) | |
6 | 1, 5 | ax-mp 5 | . . . . . . 7 ⊢ (⊥‘ ℋ) ⊆ ℋ |
7 | 6 | sseli 3978 | . . . . . 6 ⊢ (𝑥 ∈ (⊥‘ ℋ) → 𝑥 ∈ ℋ) |
8 | hial0 30787 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → (∀𝑦 ∈ ℋ (𝑥 ·ih 𝑦) = 0 ↔ 𝑥 = 0ℎ)) | |
9 | 7, 8 | syl 17 | . . . . 5 ⊢ (𝑥 ∈ (⊥‘ ℋ) → (∀𝑦 ∈ ℋ (𝑥 ·ih 𝑦) = 0 ↔ 𝑥 = 0ℎ)) |
10 | 4, 9 | mpbid 231 | . . . 4 ⊢ (𝑥 ∈ (⊥‘ ℋ) → 𝑥 = 0ℎ) |
11 | elch0 30939 | . . . 4 ⊢ (𝑥 ∈ 0ℋ ↔ 𝑥 = 0ℎ) | |
12 | 10, 11 | sylibr 233 | . . 3 ⊢ (𝑥 ∈ (⊥‘ ℋ) → 𝑥 ∈ 0ℋ) |
13 | 12 | ssriv 3986 | . 2 ⊢ (⊥‘ ℋ) ⊆ 0ℋ |
14 | h0elsh 30941 | . . . 4 ⊢ 0ℋ ∈ Sℋ | |
15 | shococss 30979 | . . . 4 ⊢ (0ℋ ∈ Sℋ → 0ℋ ⊆ (⊥‘(⊥‘0ℋ))) | |
16 | 14, 15 | ax-mp 5 | . . 3 ⊢ 0ℋ ⊆ (⊥‘(⊥‘0ℋ)) |
17 | choc0 31011 | . . . 4 ⊢ (⊥‘0ℋ) = ℋ | |
18 | 17 | fveq2i 6894 | . . 3 ⊢ (⊥‘(⊥‘0ℋ)) = (⊥‘ ℋ) |
19 | 16, 18 | sseqtri 4018 | . 2 ⊢ 0ℋ ⊆ (⊥‘ ℋ) |
20 | 13, 19 | eqssi 3998 | 1 ⊢ (⊥‘ ℋ) = 0ℋ |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ∀wral 3060 ⊆ wss 3948 ‘cfv 6543 (class class class)co 7412 0cc0 11116 ℋchba 30604 ·ih csp 30607 0ℎc0v 30609 Sℋ csh 30613 ⊥cort 30615 0ℋc0h 30620 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 ax-pre-sup 11194 ax-addf 11195 ax-mulf 11196 ax-hilex 30684 ax-hfvadd 30685 ax-hvcom 30686 ax-hvass 30687 ax-hv0cl 30688 ax-hvaddid 30689 ax-hfvmul 30690 ax-hvmulid 30691 ax-hvmulass 30692 ax-hvdistr1 30693 ax-hvdistr2 30694 ax-hvmul0 30695 ax-hfi 30764 ax-his1 30767 ax-his2 30768 ax-his3 30769 ax-his4 30770 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-er 8709 df-map 8828 df-pm 8829 df-en 8946 df-dom 8947 df-sdom 8948 df-sup 9443 df-inf 9444 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-div 11879 df-nn 12220 df-2 12282 df-3 12283 df-4 12284 df-n0 12480 df-z 12566 df-uz 12830 df-q 12940 df-rp 12982 df-xneg 13099 df-xadd 13100 df-xmul 13101 df-icc 13338 df-seq 13974 df-exp 14035 df-cj 15053 df-re 15054 df-im 15055 df-sqrt 15189 df-abs 15190 df-topgen 17396 df-psmet 21224 df-xmet 21225 df-met 21226 df-bl 21227 df-mopn 21228 df-top 22715 df-topon 22732 df-bases 22768 df-lm 23052 df-haus 23138 df-grpo 30178 df-gid 30179 df-ginv 30180 df-gdiv 30181 df-ablo 30230 df-vc 30244 df-nv 30277 df-va 30280 df-ba 30281 df-sm 30282 df-0v 30283 df-vs 30284 df-nmcv 30285 df-ims 30286 df-hnorm 30653 df-hvsub 30656 df-hlim 30657 df-sh 30892 df-ch 30906 df-oc 30937 df-ch0 30938 |
This theorem is referenced by: ho0val 31435 st0 31934 |
Copyright terms: Public domain | W3C validator |