Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > pjoc1i | Structured version Visualization version GIF version |
Description: Projection of a vector in the orthocomplement of the projection subspace. (Contributed by NM, 27-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pjop.1 | ⊢ 𝐻 ∈ Cℋ |
pjop.2 | ⊢ 𝐴 ∈ ℋ |
Ref | Expression |
---|---|
pjoc1i | ⊢ (𝐴 ∈ 𝐻 ↔ ((projℎ‘(⊥‘𝐻))‘𝐴) = 0ℎ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pjop.1 | . . . . . . . 8 ⊢ 𝐻 ∈ Cℋ | |
2 | pjop.2 | . . . . . . . 8 ⊢ 𝐴 ∈ ℋ | |
3 | 1, 2 | pjopi 29836 | . . . . . . 7 ⊢ ((projℎ‘(⊥‘𝐻))‘𝐴) = (𝐴 −ℎ ((projℎ‘𝐻)‘𝐴)) |
4 | 1 | chshii 29634 | . . . . . . . 8 ⊢ 𝐻 ∈ Sℋ |
5 | 1, 2 | pjclii 29828 | . . . . . . . 8 ⊢ ((projℎ‘𝐻)‘𝐴) ∈ 𝐻 |
6 | shsubcl 29627 | . . . . . . . 8 ⊢ ((𝐻 ∈ Sℋ ∧ 𝐴 ∈ 𝐻 ∧ ((projℎ‘𝐻)‘𝐴) ∈ 𝐻) → (𝐴 −ℎ ((projℎ‘𝐻)‘𝐴)) ∈ 𝐻) | |
7 | 4, 5, 6 | mp3an13 1452 | . . . . . . 7 ⊢ (𝐴 ∈ 𝐻 → (𝐴 −ℎ ((projℎ‘𝐻)‘𝐴)) ∈ 𝐻) |
8 | 3, 7 | eqeltrid 2841 | . . . . . 6 ⊢ (𝐴 ∈ 𝐻 → ((projℎ‘(⊥‘𝐻))‘𝐴) ∈ 𝐻) |
9 | 1 | choccli 29714 | . . . . . . 7 ⊢ (⊥‘𝐻) ∈ Cℋ |
10 | 9, 2 | pjclii 29828 | . . . . . 6 ⊢ ((projℎ‘(⊥‘𝐻))‘𝐴) ∈ (⊥‘𝐻) |
11 | 8, 10 | jctir 522 | . . . . 5 ⊢ (𝐴 ∈ 𝐻 → (((projℎ‘(⊥‘𝐻))‘𝐴) ∈ 𝐻 ∧ ((projℎ‘(⊥‘𝐻))‘𝐴) ∈ (⊥‘𝐻))) |
12 | elin 3908 | . . . . 5 ⊢ (((projℎ‘(⊥‘𝐻))‘𝐴) ∈ (𝐻 ∩ (⊥‘𝐻)) ↔ (((projℎ‘(⊥‘𝐻))‘𝐴) ∈ 𝐻 ∧ ((projℎ‘(⊥‘𝐻))‘𝐴) ∈ (⊥‘𝐻))) | |
13 | 11, 12 | sylibr 233 | . . . 4 ⊢ (𝐴 ∈ 𝐻 → ((projℎ‘(⊥‘𝐻))‘𝐴) ∈ (𝐻 ∩ (⊥‘𝐻))) |
14 | ocin 29703 | . . . . 5 ⊢ (𝐻 ∈ Sℋ → (𝐻 ∩ (⊥‘𝐻)) = 0ℋ) | |
15 | 4, 14 | ax-mp 5 | . . . 4 ⊢ (𝐻 ∩ (⊥‘𝐻)) = 0ℋ |
16 | 13, 15 | eleqtrdi 2847 | . . 3 ⊢ (𝐴 ∈ 𝐻 → ((projℎ‘(⊥‘𝐻))‘𝐴) ∈ 0ℋ) |
17 | elch0 29661 | . . 3 ⊢ (((projℎ‘(⊥‘𝐻))‘𝐴) ∈ 0ℋ ↔ ((projℎ‘(⊥‘𝐻))‘𝐴) = 0ℎ) | |
18 | 16, 17 | sylib 217 | . 2 ⊢ (𝐴 ∈ 𝐻 → ((projℎ‘(⊥‘𝐻))‘𝐴) = 0ℎ) |
19 | 1, 2 | pjpji 29831 | . . . . 5 ⊢ 𝐴 = (((projℎ‘𝐻)‘𝐴) +ℎ ((projℎ‘(⊥‘𝐻))‘𝐴)) |
20 | oveq2 7315 | . . . . 5 ⊢ (((projℎ‘(⊥‘𝐻))‘𝐴) = 0ℎ → (((projℎ‘𝐻)‘𝐴) +ℎ ((projℎ‘(⊥‘𝐻))‘𝐴)) = (((projℎ‘𝐻)‘𝐴) +ℎ 0ℎ)) | |
21 | 19, 20 | eqtrid 2788 | . . . 4 ⊢ (((projℎ‘(⊥‘𝐻))‘𝐴) = 0ℎ → 𝐴 = (((projℎ‘𝐻)‘𝐴) +ℎ 0ℎ)) |
22 | 1, 2 | pjhclii 29829 | . . . . 5 ⊢ ((projℎ‘𝐻)‘𝐴) ∈ ℋ |
23 | ax-hvaddid 29411 | . . . . 5 ⊢ (((projℎ‘𝐻)‘𝐴) ∈ ℋ → (((projℎ‘𝐻)‘𝐴) +ℎ 0ℎ) = ((projℎ‘𝐻)‘𝐴)) | |
24 | 22, 23 | ax-mp 5 | . . . 4 ⊢ (((projℎ‘𝐻)‘𝐴) +ℎ 0ℎ) = ((projℎ‘𝐻)‘𝐴) |
25 | 21, 24 | eqtrdi 2792 | . . 3 ⊢ (((projℎ‘(⊥‘𝐻))‘𝐴) = 0ℎ → 𝐴 = ((projℎ‘𝐻)‘𝐴)) |
26 | 25, 5 | eqeltrdi 2845 | . 2 ⊢ (((projℎ‘(⊥‘𝐻))‘𝐴) = 0ℎ → 𝐴 ∈ 𝐻) |
27 | 18, 26 | impbii 208 | 1 ⊢ (𝐴 ∈ 𝐻 ↔ ((projℎ‘(⊥‘𝐻))‘𝐴) = 0ℎ) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 = wceq 1539 ∈ wcel 2104 ∩ cin 3891 ‘cfv 6458 (class class class)co 7307 ℋchba 29326 +ℎ cva 29327 0ℎc0v 29331 −ℎ cmv 29332 Sℋ csh 29335 Cℋ cch 29336 ⊥cort 29337 0ℋc0h 29342 projℎcpjh 29344 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-inf2 9443 ax-cc 10237 ax-cnex 10973 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 ax-pre-mulgt0 10994 ax-pre-sup 10995 ax-addf 10996 ax-mulf 10997 ax-hilex 29406 ax-hfvadd 29407 ax-hvcom 29408 ax-hvass 29409 ax-hv0cl 29410 ax-hvaddid 29411 ax-hfvmul 29412 ax-hvmulid 29413 ax-hvmulass 29414 ax-hvdistr1 29415 ax-hvdistr2 29416 ax-hvmul0 29417 ax-hfi 29486 ax-his1 29489 ax-his2 29490 ax-his3 29491 ax-his4 29492 ax-hcompl 29609 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3285 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-tp 4570 df-op 4572 df-uni 4845 df-int 4887 df-iun 4933 df-iin 4934 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-se 5556 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-isom 6467 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-of 7565 df-om 7745 df-1st 7863 df-2nd 7864 df-supp 8009 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-2o 8329 df-oadd 8332 df-omul 8333 df-er 8529 df-map 8648 df-pm 8649 df-ixp 8717 df-en 8765 df-dom 8766 df-sdom 8767 df-fin 8768 df-fsupp 9173 df-fi 9214 df-sup 9245 df-inf 9246 df-oi 9313 df-card 9741 df-acn 9744 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-sub 11253 df-neg 11254 df-div 11679 df-nn 12020 df-2 12082 df-3 12083 df-4 12084 df-5 12085 df-6 12086 df-7 12087 df-8 12088 df-9 12089 df-n0 12280 df-z 12366 df-dec 12484 df-uz 12629 df-q 12735 df-rp 12777 df-xneg 12894 df-xadd 12895 df-xmul 12896 df-ioo 13129 df-ico 13131 df-icc 13132 df-fz 13286 df-fzo 13429 df-fl 13558 df-seq 13768 df-exp 13829 df-hash 14091 df-cj 14855 df-re 14856 df-im 14857 df-sqrt 14991 df-abs 14992 df-clim 15242 df-rlim 15243 df-sum 15443 df-struct 16893 df-sets 16910 df-slot 16928 df-ndx 16940 df-base 16958 df-ress 16987 df-plusg 17020 df-mulr 17021 df-starv 17022 df-sca 17023 df-vsca 17024 df-ip 17025 df-tset 17026 df-ple 17027 df-ds 17029 df-unif 17030 df-hom 17031 df-cco 17032 df-rest 17178 df-topn 17179 df-0g 17197 df-gsum 17198 df-topgen 17199 df-pt 17200 df-prds 17203 df-xrs 17258 df-qtop 17263 df-imas 17264 df-xps 17266 df-mre 17340 df-mrc 17341 df-acs 17343 df-mgm 18371 df-sgrp 18420 df-mnd 18431 df-submnd 18476 df-mulg 18746 df-cntz 18968 df-cmn 19433 df-psmet 20634 df-xmet 20635 df-met 20636 df-bl 20637 df-mopn 20638 df-fbas 20639 df-fg 20640 df-cnfld 20643 df-top 22088 df-topon 22105 df-topsp 22127 df-bases 22141 df-cld 22215 df-ntr 22216 df-cls 22217 df-nei 22294 df-cn 22423 df-cnp 22424 df-lm 22425 df-haus 22511 df-tx 22758 df-hmeo 22951 df-fil 23042 df-fm 23134 df-flim 23135 df-flf 23136 df-xms 23518 df-ms 23519 df-tms 23520 df-cfil 24464 df-cau 24465 df-cmet 24466 df-grpo 28900 df-gid 28901 df-ginv 28902 df-gdiv 28903 df-ablo 28952 df-vc 28966 df-nv 28999 df-va 29002 df-ba 29003 df-sm 29004 df-0v 29005 df-vs 29006 df-nmcv 29007 df-ims 29008 df-dip 29108 df-ssp 29129 df-ph 29220 df-cbn 29270 df-hnorm 29375 df-hba 29376 df-hvsub 29378 df-hlim 29379 df-hcau 29380 df-sh 29614 df-ch 29628 df-oc 29659 df-ch0 29660 df-shs 29715 df-pjh 29802 |
This theorem is referenced by: pjchi 29839 pjoc1 29841 pjoc2i 29845 pjneli 30130 |
Copyright terms: Public domain | W3C validator |