HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cdj3lem1 Structured version   Visualization version   GIF version

Theorem cdj3lem1 32378
Description: A property of "𝐴 and 𝐵 are completely disjoint subspaces." Part of Lemma 5 of [Holland] p. 1520. (Contributed by NM, 23-May-2005.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdj1.1 𝐴S
cdj1.2 𝐵S
Assertion
Ref Expression
cdj3lem1 (∃𝑥 ∈ ℝ (0 < 𝑥 ∧ ∀𝑦𝐴𝑧𝐵 ((norm𝑦) + (norm𝑧)) ≤ (𝑥 · (norm‘(𝑦 + 𝑧)))) → (𝐴𝐵) = 0)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧

Proof of Theorem cdj3lem1
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 elin 3919 . . . . . . . . . . . 12 (𝑤 ∈ (𝐴𝐵) ↔ (𝑤𝐴𝑤𝐵))
2 cdj1.2 . . . . . . . . . . . . . 14 𝐵S
3 neg1cn 12113 . . . . . . . . . . . . . 14 -1 ∈ ℂ
4 shmulcl 31162 . . . . . . . . . . . . . 14 ((𝐵S ∧ -1 ∈ ℂ ∧ 𝑤𝐵) → (-1 · 𝑤) ∈ 𝐵)
52, 3, 4mp3an12 1453 . . . . . . . . . . . . 13 (𝑤𝐵 → (-1 · 𝑤) ∈ 𝐵)
65anim2i 617 . . . . . . . . . . . 12 ((𝑤𝐴𝑤𝐵) → (𝑤𝐴 ∧ (-1 · 𝑤) ∈ 𝐵))
71, 6sylbi 217 . . . . . . . . . . 11 (𝑤 ∈ (𝐴𝐵) → (𝑤𝐴 ∧ (-1 · 𝑤) ∈ 𝐵))
8 fveq2 6822 . . . . . . . . . . . . . 14 (𝑦 = 𝑤 → (norm𝑦) = (norm𝑤))
98oveq1d 7364 . . . . . . . . . . . . 13 (𝑦 = 𝑤 → ((norm𝑦) + (norm𝑧)) = ((norm𝑤) + (norm𝑧)))
10 fvoveq1 7372 . . . . . . . . . . . . . 14 (𝑦 = 𝑤 → (norm‘(𝑦 + 𝑧)) = (norm‘(𝑤 + 𝑧)))
1110oveq2d 7365 . . . . . . . . . . . . 13 (𝑦 = 𝑤 → (𝑥 · (norm‘(𝑦 + 𝑧))) = (𝑥 · (norm‘(𝑤 + 𝑧))))
129, 11breq12d 5105 . . . . . . . . . . . 12 (𝑦 = 𝑤 → (((norm𝑦) + (norm𝑧)) ≤ (𝑥 · (norm‘(𝑦 + 𝑧))) ↔ ((norm𝑤) + (norm𝑧)) ≤ (𝑥 · (norm‘(𝑤 + 𝑧)))))
13 fveq2 6822 . . . . . . . . . . . . . 14 (𝑧 = (-1 · 𝑤) → (norm𝑧) = (norm‘(-1 · 𝑤)))
1413oveq2d 7365 . . . . . . . . . . . . 13 (𝑧 = (-1 · 𝑤) → ((norm𝑤) + (norm𝑧)) = ((norm𝑤) + (norm‘(-1 · 𝑤))))
15 oveq2 7357 . . . . . . . . . . . . . . 15 (𝑧 = (-1 · 𝑤) → (𝑤 + 𝑧) = (𝑤 + (-1 · 𝑤)))
1615fveq2d 6826 . . . . . . . . . . . . . 14 (𝑧 = (-1 · 𝑤) → (norm‘(𝑤 + 𝑧)) = (norm‘(𝑤 + (-1 · 𝑤))))
1716oveq2d 7365 . . . . . . . . . . . . 13 (𝑧 = (-1 · 𝑤) → (𝑥 · (norm‘(𝑤 + 𝑧))) = (𝑥 · (norm‘(𝑤 + (-1 · 𝑤)))))
1814, 17breq12d 5105 . . . . . . . . . . . 12 (𝑧 = (-1 · 𝑤) → (((norm𝑤) + (norm𝑧)) ≤ (𝑥 · (norm‘(𝑤 + 𝑧))) ↔ ((norm𝑤) + (norm‘(-1 · 𝑤))) ≤ (𝑥 · (norm‘(𝑤 + (-1 · 𝑤))))))
1912, 18rspc2v 3588 . . . . . . . . . . 11 ((𝑤𝐴 ∧ (-1 · 𝑤) ∈ 𝐵) → (∀𝑦𝐴𝑧𝐵 ((norm𝑦) + (norm𝑧)) ≤ (𝑥 · (norm‘(𝑦 + 𝑧))) → ((norm𝑤) + (norm‘(-1 · 𝑤))) ≤ (𝑥 · (norm‘(𝑤 + (-1 · 𝑤))))))
207, 19syl 17 . . . . . . . . . 10 (𝑤 ∈ (𝐴𝐵) → (∀𝑦𝐴𝑧𝐵 ((norm𝑦) + (norm𝑧)) ≤ (𝑥 · (norm‘(𝑦 + 𝑧))) → ((norm𝑤) + (norm‘(-1 · 𝑤))) ≤ (𝑥 · (norm‘(𝑤 + (-1 · 𝑤))))))
2120adantl 481 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝑤 ∈ (𝐴𝐵)) → (∀𝑦𝐴𝑧𝐵 ((norm𝑦) + (norm𝑧)) ≤ (𝑥 · (norm‘(𝑦 + 𝑧))) → ((norm𝑤) + (norm‘(-1 · 𝑤))) ≤ (𝑥 · (norm‘(𝑤 + (-1 · 𝑤))))))
22 cdj1.1 . . . . . . . . . . . 12 𝐴S
2322, 2shincli 31306 . . . . . . . . . . 11 (𝐴𝐵) ∈ S
2423sheli 31158 . . . . . . . . . 10 (𝑤 ∈ (𝐴𝐵) → 𝑤 ∈ ℋ)
25 normneg 31088 . . . . . . . . . . . . . . 15 (𝑤 ∈ ℋ → (norm‘(-1 · 𝑤)) = (norm𝑤))
2625oveq2d 7365 . . . . . . . . . . . . . 14 (𝑤 ∈ ℋ → ((norm𝑤) + (norm‘(-1 · 𝑤))) = ((norm𝑤) + (norm𝑤)))
27 normcl 31069 . . . . . . . . . . . . . . . 16 (𝑤 ∈ ℋ → (norm𝑤) ∈ ℝ)
2827recnd 11143 . . . . . . . . . . . . . . 15 (𝑤 ∈ ℋ → (norm𝑤) ∈ ℂ)
29282timesd 12367 . . . . . . . . . . . . . 14 (𝑤 ∈ ℋ → (2 · (norm𝑤)) = ((norm𝑤) + (norm𝑤)))
3026, 29eqtr4d 2767 . . . . . . . . . . . . 13 (𝑤 ∈ ℋ → ((norm𝑤) + (norm‘(-1 · 𝑤))) = (2 · (norm𝑤)))
3130adantl 481 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝑤 ∈ ℋ) → ((norm𝑤) + (norm‘(-1 · 𝑤))) = (2 · (norm𝑤)))
32 hvnegid 30971 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ ℋ → (𝑤 + (-1 · 𝑤)) = 0)
3332fveq2d 6826 . . . . . . . . . . . . . . . 16 (𝑤 ∈ ℋ → (norm‘(𝑤 + (-1 · 𝑤))) = (norm‘0))
34 norm0 31072 . . . . . . . . . . . . . . . 16 (norm‘0) = 0
3533, 34eqtrdi 2780 . . . . . . . . . . . . . . 15 (𝑤 ∈ ℋ → (norm‘(𝑤 + (-1 · 𝑤))) = 0)
3635oveq2d 7365 . . . . . . . . . . . . . 14 (𝑤 ∈ ℋ → (𝑥 · (norm‘(𝑤 + (-1 · 𝑤)))) = (𝑥 · 0))
37 recn 11099 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
3837mul01d 11315 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → (𝑥 · 0) = 0)
3936, 38sylan9eqr 2786 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 𝑤 ∈ ℋ) → (𝑥 · (norm‘(𝑤 + (-1 · 𝑤)))) = 0)
40 2t0e0 12292 . . . . . . . . . . . . 13 (2 · 0) = 0
4139, 40eqtr4di 2782 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝑤 ∈ ℋ) → (𝑥 · (norm‘(𝑤 + (-1 · 𝑤)))) = (2 · 0))
4231, 41breq12d 5105 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑤 ∈ ℋ) → (((norm𝑤) + (norm‘(-1 · 𝑤))) ≤ (𝑥 · (norm‘(𝑤 + (-1 · 𝑤)))) ↔ (2 · (norm𝑤)) ≤ (2 · 0)))
43 0re 11117 . . . . . . . . . . . . . . 15 0 ∈ ℝ
44 letri3 11201 . . . . . . . . . . . . . . 15 (((norm𝑤) ∈ ℝ ∧ 0 ∈ ℝ) → ((norm𝑤) = 0 ↔ ((norm𝑤) ≤ 0 ∧ 0 ≤ (norm𝑤))))
4527, 43, 44sylancl 586 . . . . . . . . . . . . . 14 (𝑤 ∈ ℋ → ((norm𝑤) = 0 ↔ ((norm𝑤) ≤ 0 ∧ 0 ≤ (norm𝑤))))
46 normge0 31070 . . . . . . . . . . . . . . 15 (𝑤 ∈ ℋ → 0 ≤ (norm𝑤))
4746biantrud 531 . . . . . . . . . . . . . 14 (𝑤 ∈ ℋ → ((norm𝑤) ≤ 0 ↔ ((norm𝑤) ≤ 0 ∧ 0 ≤ (norm𝑤))))
48 2re 12202 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ
49 2pos 12231 . . . . . . . . . . . . . . . . 17 0 < 2
5048, 49pm3.2i 470 . . . . . . . . . . . . . . . 16 (2 ∈ ℝ ∧ 0 < 2)
51 lemul2 11977 . . . . . . . . . . . . . . . 16 (((norm𝑤) ∈ ℝ ∧ 0 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((norm𝑤) ≤ 0 ↔ (2 · (norm𝑤)) ≤ (2 · 0)))
5243, 50, 51mp3an23 1455 . . . . . . . . . . . . . . 15 ((norm𝑤) ∈ ℝ → ((norm𝑤) ≤ 0 ↔ (2 · (norm𝑤)) ≤ (2 · 0)))
5327, 52syl 17 . . . . . . . . . . . . . 14 (𝑤 ∈ ℋ → ((norm𝑤) ≤ 0 ↔ (2 · (norm𝑤)) ≤ (2 · 0)))
5445, 47, 533bitr2rd 308 . . . . . . . . . . . . 13 (𝑤 ∈ ℋ → ((2 · (norm𝑤)) ≤ (2 · 0) ↔ (norm𝑤) = 0))
55 norm-i 31073 . . . . . . . . . . . . 13 (𝑤 ∈ ℋ → ((norm𝑤) = 0 ↔ 𝑤 = 0))
5654, 55bitrd 279 . . . . . . . . . . . 12 (𝑤 ∈ ℋ → ((2 · (norm𝑤)) ≤ (2 · 0) ↔ 𝑤 = 0))
5756adantl 481 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑤 ∈ ℋ) → ((2 · (norm𝑤)) ≤ (2 · 0) ↔ 𝑤 = 0))
5842, 57bitrd 279 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑤 ∈ ℋ) → (((norm𝑤) + (norm‘(-1 · 𝑤))) ≤ (𝑥 · (norm‘(𝑤 + (-1 · 𝑤)))) ↔ 𝑤 = 0))
5924, 58sylan2 593 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝑤 ∈ (𝐴𝐵)) → (((norm𝑤) + (norm‘(-1 · 𝑤))) ≤ (𝑥 · (norm‘(𝑤 + (-1 · 𝑤)))) ↔ 𝑤 = 0))
6021, 59sylibd 239 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑤 ∈ (𝐴𝐵)) → (∀𝑦𝐴𝑧𝐵 ((norm𝑦) + (norm𝑧)) ≤ (𝑥 · (norm‘(𝑦 + 𝑧))) → 𝑤 = 0))
6160impancom 451 . . . . . . 7 ((𝑥 ∈ ℝ ∧ ∀𝑦𝐴𝑧𝐵 ((norm𝑦) + (norm𝑧)) ≤ (𝑥 · (norm‘(𝑦 + 𝑧)))) → (𝑤 ∈ (𝐴𝐵) → 𝑤 = 0))
62 elch0 31198 . . . . . . 7 (𝑤 ∈ 0𝑤 = 0)
6361, 62imbitrrdi 252 . . . . . 6 ((𝑥 ∈ ℝ ∧ ∀𝑦𝐴𝑧𝐵 ((norm𝑦) + (norm𝑧)) ≤ (𝑥 · (norm‘(𝑦 + 𝑧)))) → (𝑤 ∈ (𝐴𝐵) → 𝑤 ∈ 0))
6463ssrdv 3941 . . . . 5 ((𝑥 ∈ ℝ ∧ ∀𝑦𝐴𝑧𝐵 ((norm𝑦) + (norm𝑧)) ≤ (𝑥 · (norm‘(𝑦 + 𝑧)))) → (𝐴𝐵) ⊆ 0)
6564ex 412 . . . 4 (𝑥 ∈ ℝ → (∀𝑦𝐴𝑧𝐵 ((norm𝑦) + (norm𝑧)) ≤ (𝑥 · (norm‘(𝑦 + 𝑧))) → (𝐴𝐵) ⊆ 0))
66 shle0 31386 . . . . 5 ((𝐴𝐵) ∈ S → ((𝐴𝐵) ⊆ 0 ↔ (𝐴𝐵) = 0))
6723, 66ax-mp 5 . . . 4 ((𝐴𝐵) ⊆ 0 ↔ (𝐴𝐵) = 0)
6865, 67imbitrdi 251 . . 3 (𝑥 ∈ ℝ → (∀𝑦𝐴𝑧𝐵 ((norm𝑦) + (norm𝑧)) ≤ (𝑥 · (norm‘(𝑦 + 𝑧))) → (𝐴𝐵) = 0))
6968adantld 490 . 2 (𝑥 ∈ ℝ → ((0 < 𝑥 ∧ ∀𝑦𝐴𝑧𝐵 ((norm𝑦) + (norm𝑧)) ≤ (𝑥 · (norm‘(𝑦 + 𝑧)))) → (𝐴𝐵) = 0))
7069rexlimiv 3123 1 (∃𝑥 ∈ ℝ (0 < 𝑥 ∧ ∀𝑦𝐴𝑧𝐵 ((norm𝑦) + (norm𝑧)) ≤ (𝑥 · (norm‘(𝑦 + 𝑧)))) → (𝐴𝐵) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  cin 3902  wss 3903   class class class wbr 5092  cfv 6482  (class class class)co 7349  cc 11007  cr 11008  0cc0 11009  1c1 11010   + caddc 11012   · cmul 11014   < clt 11149  cle 11150  -cneg 11348  2c2 12183  chba 30863   + cva 30864   · csm 30865  normcno 30867  0c0v 30868   S csh 30872  0c0h 30879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-hilex 30943  ax-hfvadd 30944  ax-hvcom 30945  ax-hv0cl 30947  ax-hvaddid 30948  ax-hfvmul 30949  ax-hvmulid 30950  ax-hvmulass 30951  ax-hvdistr1 30952  ax-hvdistr2 30953  ax-hvmul0 30954  ax-hfi 31023  ax-his1 31026  ax-his3 31028  ax-his4 31029
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-sup 9332  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-hnorm 30912  df-hvsub 30915  df-sh 31151  df-ch0 31197
This theorem is referenced by:  cdj3lem2b  32381  cdj3i  32385
  Copyright terms: Public domain W3C validator