HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cdj3lem1 Structured version   Visualization version   GIF version

Theorem cdj3lem1 30138
Description: A property of "𝐴 and 𝐵 are completely disjoint subspaces." Part of Lemma 5 of [Holland] p. 1520. (Contributed by NM, 23-May-2005.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdj1.1 𝐴S
cdj1.2 𝐵S
Assertion
Ref Expression
cdj3lem1 (∃𝑥 ∈ ℝ (0 < 𝑥 ∧ ∀𝑦𝐴𝑧𝐵 ((norm𝑦) + (norm𝑧)) ≤ (𝑥 · (norm‘(𝑦 + 𝑧)))) → (𝐴𝐵) = 0)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧

Proof of Theorem cdj3lem1
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 elin 4166 . . . . . . . . . . . 12 (𝑤 ∈ (𝐴𝐵) ↔ (𝑤𝐴𝑤𝐵))
2 cdj1.2 . . . . . . . . . . . . . 14 𝐵S
3 neg1cn 11739 . . . . . . . . . . . . . 14 -1 ∈ ℂ
4 shmulcl 28922 . . . . . . . . . . . . . 14 ((𝐵S ∧ -1 ∈ ℂ ∧ 𝑤𝐵) → (-1 · 𝑤) ∈ 𝐵)
52, 3, 4mp3an12 1442 . . . . . . . . . . . . 13 (𝑤𝐵 → (-1 · 𝑤) ∈ 𝐵)
65anim2i 616 . . . . . . . . . . . 12 ((𝑤𝐴𝑤𝐵) → (𝑤𝐴 ∧ (-1 · 𝑤) ∈ 𝐵))
71, 6sylbi 218 . . . . . . . . . . 11 (𝑤 ∈ (𝐴𝐵) → (𝑤𝐴 ∧ (-1 · 𝑤) ∈ 𝐵))
8 fveq2 6663 . . . . . . . . . . . . . 14 (𝑦 = 𝑤 → (norm𝑦) = (norm𝑤))
98oveq1d 7160 . . . . . . . . . . . . 13 (𝑦 = 𝑤 → ((norm𝑦) + (norm𝑧)) = ((norm𝑤) + (norm𝑧)))
10 fvoveq1 7168 . . . . . . . . . . . . . 14 (𝑦 = 𝑤 → (norm‘(𝑦 + 𝑧)) = (norm‘(𝑤 + 𝑧)))
1110oveq2d 7161 . . . . . . . . . . . . 13 (𝑦 = 𝑤 → (𝑥 · (norm‘(𝑦 + 𝑧))) = (𝑥 · (norm‘(𝑤 + 𝑧))))
129, 11breq12d 5070 . . . . . . . . . . . 12 (𝑦 = 𝑤 → (((norm𝑦) + (norm𝑧)) ≤ (𝑥 · (norm‘(𝑦 + 𝑧))) ↔ ((norm𝑤) + (norm𝑧)) ≤ (𝑥 · (norm‘(𝑤 + 𝑧)))))
13 fveq2 6663 . . . . . . . . . . . . . 14 (𝑧 = (-1 · 𝑤) → (norm𝑧) = (norm‘(-1 · 𝑤)))
1413oveq2d 7161 . . . . . . . . . . . . 13 (𝑧 = (-1 · 𝑤) → ((norm𝑤) + (norm𝑧)) = ((norm𝑤) + (norm‘(-1 · 𝑤))))
15 oveq2 7153 . . . . . . . . . . . . . . 15 (𝑧 = (-1 · 𝑤) → (𝑤 + 𝑧) = (𝑤 + (-1 · 𝑤)))
1615fveq2d 6667 . . . . . . . . . . . . . 14 (𝑧 = (-1 · 𝑤) → (norm‘(𝑤 + 𝑧)) = (norm‘(𝑤 + (-1 · 𝑤))))
1716oveq2d 7161 . . . . . . . . . . . . 13 (𝑧 = (-1 · 𝑤) → (𝑥 · (norm‘(𝑤 + 𝑧))) = (𝑥 · (norm‘(𝑤 + (-1 · 𝑤)))))
1814, 17breq12d 5070 . . . . . . . . . . . 12 (𝑧 = (-1 · 𝑤) → (((norm𝑤) + (norm𝑧)) ≤ (𝑥 · (norm‘(𝑤 + 𝑧))) ↔ ((norm𝑤) + (norm‘(-1 · 𝑤))) ≤ (𝑥 · (norm‘(𝑤 + (-1 · 𝑤))))))
1912, 18rspc2v 3630 . . . . . . . . . . 11 ((𝑤𝐴 ∧ (-1 · 𝑤) ∈ 𝐵) → (∀𝑦𝐴𝑧𝐵 ((norm𝑦) + (norm𝑧)) ≤ (𝑥 · (norm‘(𝑦 + 𝑧))) → ((norm𝑤) + (norm‘(-1 · 𝑤))) ≤ (𝑥 · (norm‘(𝑤 + (-1 · 𝑤))))))
207, 19syl 17 . . . . . . . . . 10 (𝑤 ∈ (𝐴𝐵) → (∀𝑦𝐴𝑧𝐵 ((norm𝑦) + (norm𝑧)) ≤ (𝑥 · (norm‘(𝑦 + 𝑧))) → ((norm𝑤) + (norm‘(-1 · 𝑤))) ≤ (𝑥 · (norm‘(𝑤 + (-1 · 𝑤))))))
2120adantl 482 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝑤 ∈ (𝐴𝐵)) → (∀𝑦𝐴𝑧𝐵 ((norm𝑦) + (norm𝑧)) ≤ (𝑥 · (norm‘(𝑦 + 𝑧))) → ((norm𝑤) + (norm‘(-1 · 𝑤))) ≤ (𝑥 · (norm‘(𝑤 + (-1 · 𝑤))))))
22 cdj1.1 . . . . . . . . . . . 12 𝐴S
2322, 2shincli 29066 . . . . . . . . . . 11 (𝐴𝐵) ∈ S
2423sheli 28918 . . . . . . . . . 10 (𝑤 ∈ (𝐴𝐵) → 𝑤 ∈ ℋ)
25 normneg 28848 . . . . . . . . . . . . . . 15 (𝑤 ∈ ℋ → (norm‘(-1 · 𝑤)) = (norm𝑤))
2625oveq2d 7161 . . . . . . . . . . . . . 14 (𝑤 ∈ ℋ → ((norm𝑤) + (norm‘(-1 · 𝑤))) = ((norm𝑤) + (norm𝑤)))
27 normcl 28829 . . . . . . . . . . . . . . . 16 (𝑤 ∈ ℋ → (norm𝑤) ∈ ℝ)
2827recnd 10657 . . . . . . . . . . . . . . 15 (𝑤 ∈ ℋ → (norm𝑤) ∈ ℂ)
29282timesd 11868 . . . . . . . . . . . . . 14 (𝑤 ∈ ℋ → (2 · (norm𝑤)) = ((norm𝑤) + (norm𝑤)))
3026, 29eqtr4d 2856 . . . . . . . . . . . . 13 (𝑤 ∈ ℋ → ((norm𝑤) + (norm‘(-1 · 𝑤))) = (2 · (norm𝑤)))
3130adantl 482 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝑤 ∈ ℋ) → ((norm𝑤) + (norm‘(-1 · 𝑤))) = (2 · (norm𝑤)))
32 hvnegid 28731 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ ℋ → (𝑤 + (-1 · 𝑤)) = 0)
3332fveq2d 6667 . . . . . . . . . . . . . . . 16 (𝑤 ∈ ℋ → (norm‘(𝑤 + (-1 · 𝑤))) = (norm‘0))
34 norm0 28832 . . . . . . . . . . . . . . . 16 (norm‘0) = 0
3533, 34syl6eq 2869 . . . . . . . . . . . . . . 15 (𝑤 ∈ ℋ → (norm‘(𝑤 + (-1 · 𝑤))) = 0)
3635oveq2d 7161 . . . . . . . . . . . . . 14 (𝑤 ∈ ℋ → (𝑥 · (norm‘(𝑤 + (-1 · 𝑤)))) = (𝑥 · 0))
37 recn 10615 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
3837mul01d 10827 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → (𝑥 · 0) = 0)
3936, 38sylan9eqr 2875 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 𝑤 ∈ ℋ) → (𝑥 · (norm‘(𝑤 + (-1 · 𝑤)))) = 0)
40 2t0e0 11794 . . . . . . . . . . . . 13 (2 · 0) = 0
4139, 40syl6eqr 2871 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝑤 ∈ ℋ) → (𝑥 · (norm‘(𝑤 + (-1 · 𝑤)))) = (2 · 0))
4231, 41breq12d 5070 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑤 ∈ ℋ) → (((norm𝑤) + (norm‘(-1 · 𝑤))) ≤ (𝑥 · (norm‘(𝑤 + (-1 · 𝑤)))) ↔ (2 · (norm𝑤)) ≤ (2 · 0)))
43 0re 10631 . . . . . . . . . . . . . . 15 0 ∈ ℝ
44 letri3 10714 . . . . . . . . . . . . . . 15 (((norm𝑤) ∈ ℝ ∧ 0 ∈ ℝ) → ((norm𝑤) = 0 ↔ ((norm𝑤) ≤ 0 ∧ 0 ≤ (norm𝑤))))
4527, 43, 44sylancl 586 . . . . . . . . . . . . . 14 (𝑤 ∈ ℋ → ((norm𝑤) = 0 ↔ ((norm𝑤) ≤ 0 ∧ 0 ≤ (norm𝑤))))
46 normge0 28830 . . . . . . . . . . . . . . 15 (𝑤 ∈ ℋ → 0 ≤ (norm𝑤))
4746biantrud 532 . . . . . . . . . . . . . 14 (𝑤 ∈ ℋ → ((norm𝑤) ≤ 0 ↔ ((norm𝑤) ≤ 0 ∧ 0 ≤ (norm𝑤))))
48 2re 11699 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ
49 2pos 11728 . . . . . . . . . . . . . . . . 17 0 < 2
5048, 49pm3.2i 471 . . . . . . . . . . . . . . . 16 (2 ∈ ℝ ∧ 0 < 2)
51 lemul2 11481 . . . . . . . . . . . . . . . 16 (((norm𝑤) ∈ ℝ ∧ 0 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((norm𝑤) ≤ 0 ↔ (2 · (norm𝑤)) ≤ (2 · 0)))
5243, 50, 51mp3an23 1444 . . . . . . . . . . . . . . 15 ((norm𝑤) ∈ ℝ → ((norm𝑤) ≤ 0 ↔ (2 · (norm𝑤)) ≤ (2 · 0)))
5327, 52syl 17 . . . . . . . . . . . . . 14 (𝑤 ∈ ℋ → ((norm𝑤) ≤ 0 ↔ (2 · (norm𝑤)) ≤ (2 · 0)))
5445, 47, 533bitr2rd 309 . . . . . . . . . . . . 13 (𝑤 ∈ ℋ → ((2 · (norm𝑤)) ≤ (2 · 0) ↔ (norm𝑤) = 0))
55 norm-i 28833 . . . . . . . . . . . . 13 (𝑤 ∈ ℋ → ((norm𝑤) = 0 ↔ 𝑤 = 0))
5654, 55bitrd 280 . . . . . . . . . . . 12 (𝑤 ∈ ℋ → ((2 · (norm𝑤)) ≤ (2 · 0) ↔ 𝑤 = 0))
5756adantl 482 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑤 ∈ ℋ) → ((2 · (norm𝑤)) ≤ (2 · 0) ↔ 𝑤 = 0))
5842, 57bitrd 280 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑤 ∈ ℋ) → (((norm𝑤) + (norm‘(-1 · 𝑤))) ≤ (𝑥 · (norm‘(𝑤 + (-1 · 𝑤)))) ↔ 𝑤 = 0))
5924, 58sylan2 592 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝑤 ∈ (𝐴𝐵)) → (((norm𝑤) + (norm‘(-1 · 𝑤))) ≤ (𝑥 · (norm‘(𝑤 + (-1 · 𝑤)))) ↔ 𝑤 = 0))
6021, 59sylibd 240 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑤 ∈ (𝐴𝐵)) → (∀𝑦𝐴𝑧𝐵 ((norm𝑦) + (norm𝑧)) ≤ (𝑥 · (norm‘(𝑦 + 𝑧))) → 𝑤 = 0))
6160impancom 452 . . . . . . 7 ((𝑥 ∈ ℝ ∧ ∀𝑦𝐴𝑧𝐵 ((norm𝑦) + (norm𝑧)) ≤ (𝑥 · (norm‘(𝑦 + 𝑧)))) → (𝑤 ∈ (𝐴𝐵) → 𝑤 = 0))
62 elch0 28958 . . . . . . 7 (𝑤 ∈ 0𝑤 = 0)
6361, 62syl6ibr 253 . . . . . 6 ((𝑥 ∈ ℝ ∧ ∀𝑦𝐴𝑧𝐵 ((norm𝑦) + (norm𝑧)) ≤ (𝑥 · (norm‘(𝑦 + 𝑧)))) → (𝑤 ∈ (𝐴𝐵) → 𝑤 ∈ 0))
6463ssrdv 3970 . . . . 5 ((𝑥 ∈ ℝ ∧ ∀𝑦𝐴𝑧𝐵 ((norm𝑦) + (norm𝑧)) ≤ (𝑥 · (norm‘(𝑦 + 𝑧)))) → (𝐴𝐵) ⊆ 0)
6564ex 413 . . . 4 (𝑥 ∈ ℝ → (∀𝑦𝐴𝑧𝐵 ((norm𝑦) + (norm𝑧)) ≤ (𝑥 · (norm‘(𝑦 + 𝑧))) → (𝐴𝐵) ⊆ 0))
66 shle0 29146 . . . . 5 ((𝐴𝐵) ∈ S → ((𝐴𝐵) ⊆ 0 ↔ (𝐴𝐵) = 0))
6723, 66ax-mp 5 . . . 4 ((𝐴𝐵) ⊆ 0 ↔ (𝐴𝐵) = 0)
6865, 67syl6ib 252 . . 3 (𝑥 ∈ ℝ → (∀𝑦𝐴𝑧𝐵 ((norm𝑦) + (norm𝑧)) ≤ (𝑥 · (norm‘(𝑦 + 𝑧))) → (𝐴𝐵) = 0))
6968adantld 491 . 2 (𝑥 ∈ ℝ → ((0 < 𝑥 ∧ ∀𝑦𝐴𝑧𝐵 ((norm𝑦) + (norm𝑧)) ≤ (𝑥 · (norm‘(𝑦 + 𝑧)))) → (𝐴𝐵) = 0))
7069rexlimiv 3277 1 (∃𝑥 ∈ ℝ (0 < 𝑥 ∧ ∀𝑦𝐴𝑧𝐵 ((norm𝑦) + (norm𝑧)) ≤ (𝑥 · (norm‘(𝑦 + 𝑧)))) → (𝐴𝐵) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1528  wcel 2105  wral 3135  wrex 3136  cin 3932  wss 3933   class class class wbr 5057  cfv 6348  (class class class)co 7145  cc 10523  cr 10524  0cc0 10525  1c1 10526   + caddc 10528   · cmul 10530   < clt 10663  cle 10664  -cneg 10859  2c2 11680  chba 28623   + cva 28624   · csm 28625  normcno 28627  0c0v 28628   S csh 28632  0c0h 28639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603  ax-hilex 28703  ax-hfvadd 28704  ax-hvcom 28705  ax-hv0cl 28707  ax-hvaddid 28708  ax-hfvmul 28709  ax-hvmulid 28710  ax-hvmulass 28711  ax-hvdistr1 28712  ax-hvdistr2 28713  ax-hvmul0 28714  ax-hfi 28783  ax-his1 28786  ax-his3 28788  ax-his4 28789
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-sup 8894  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-seq 13358  df-exp 13418  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-hnorm 28672  df-hvsub 28675  df-sh 28911  df-ch0 28957
This theorem is referenced by:  cdj3lem2b  30141  cdj3i  30145
  Copyright terms: Public domain W3C validator