HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cdj3lem1 Structured version   Visualization version   GIF version

Theorem cdj3lem1 32463
Description: A property of "𝐴 and 𝐵 are completely disjoint subspaces." Part of Lemma 5 of [Holland] p. 1520. (Contributed by NM, 23-May-2005.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdj1.1 𝐴S
cdj1.2 𝐵S
Assertion
Ref Expression
cdj3lem1 (∃𝑥 ∈ ℝ (0 < 𝑥 ∧ ∀𝑦𝐴𝑧𝐵 ((norm𝑦) + (norm𝑧)) ≤ (𝑥 · (norm‘(𝑦 + 𝑧)))) → (𝐴𝐵) = 0)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧

Proof of Theorem cdj3lem1
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 elin 3979 . . . . . . . . . . . 12 (𝑤 ∈ (𝐴𝐵) ↔ (𝑤𝐴𝑤𝐵))
2 cdj1.2 . . . . . . . . . . . . . 14 𝐵S
3 neg1cn 12378 . . . . . . . . . . . . . 14 -1 ∈ ℂ
4 shmulcl 31247 . . . . . . . . . . . . . 14 ((𝐵S ∧ -1 ∈ ℂ ∧ 𝑤𝐵) → (-1 · 𝑤) ∈ 𝐵)
52, 3, 4mp3an12 1450 . . . . . . . . . . . . 13 (𝑤𝐵 → (-1 · 𝑤) ∈ 𝐵)
65anim2i 617 . . . . . . . . . . . 12 ((𝑤𝐴𝑤𝐵) → (𝑤𝐴 ∧ (-1 · 𝑤) ∈ 𝐵))
71, 6sylbi 217 . . . . . . . . . . 11 (𝑤 ∈ (𝐴𝐵) → (𝑤𝐴 ∧ (-1 · 𝑤) ∈ 𝐵))
8 fveq2 6907 . . . . . . . . . . . . . 14 (𝑦 = 𝑤 → (norm𝑦) = (norm𝑤))
98oveq1d 7446 . . . . . . . . . . . . 13 (𝑦 = 𝑤 → ((norm𝑦) + (norm𝑧)) = ((norm𝑤) + (norm𝑧)))
10 fvoveq1 7454 . . . . . . . . . . . . . 14 (𝑦 = 𝑤 → (norm‘(𝑦 + 𝑧)) = (norm‘(𝑤 + 𝑧)))
1110oveq2d 7447 . . . . . . . . . . . . 13 (𝑦 = 𝑤 → (𝑥 · (norm‘(𝑦 + 𝑧))) = (𝑥 · (norm‘(𝑤 + 𝑧))))
129, 11breq12d 5161 . . . . . . . . . . . 12 (𝑦 = 𝑤 → (((norm𝑦) + (norm𝑧)) ≤ (𝑥 · (norm‘(𝑦 + 𝑧))) ↔ ((norm𝑤) + (norm𝑧)) ≤ (𝑥 · (norm‘(𝑤 + 𝑧)))))
13 fveq2 6907 . . . . . . . . . . . . . 14 (𝑧 = (-1 · 𝑤) → (norm𝑧) = (norm‘(-1 · 𝑤)))
1413oveq2d 7447 . . . . . . . . . . . . 13 (𝑧 = (-1 · 𝑤) → ((norm𝑤) + (norm𝑧)) = ((norm𝑤) + (norm‘(-1 · 𝑤))))
15 oveq2 7439 . . . . . . . . . . . . . . 15 (𝑧 = (-1 · 𝑤) → (𝑤 + 𝑧) = (𝑤 + (-1 · 𝑤)))
1615fveq2d 6911 . . . . . . . . . . . . . 14 (𝑧 = (-1 · 𝑤) → (norm‘(𝑤 + 𝑧)) = (norm‘(𝑤 + (-1 · 𝑤))))
1716oveq2d 7447 . . . . . . . . . . . . 13 (𝑧 = (-1 · 𝑤) → (𝑥 · (norm‘(𝑤 + 𝑧))) = (𝑥 · (norm‘(𝑤 + (-1 · 𝑤)))))
1814, 17breq12d 5161 . . . . . . . . . . . 12 (𝑧 = (-1 · 𝑤) → (((norm𝑤) + (norm𝑧)) ≤ (𝑥 · (norm‘(𝑤 + 𝑧))) ↔ ((norm𝑤) + (norm‘(-1 · 𝑤))) ≤ (𝑥 · (norm‘(𝑤 + (-1 · 𝑤))))))
1912, 18rspc2v 3633 . . . . . . . . . . 11 ((𝑤𝐴 ∧ (-1 · 𝑤) ∈ 𝐵) → (∀𝑦𝐴𝑧𝐵 ((norm𝑦) + (norm𝑧)) ≤ (𝑥 · (norm‘(𝑦 + 𝑧))) → ((norm𝑤) + (norm‘(-1 · 𝑤))) ≤ (𝑥 · (norm‘(𝑤 + (-1 · 𝑤))))))
207, 19syl 17 . . . . . . . . . 10 (𝑤 ∈ (𝐴𝐵) → (∀𝑦𝐴𝑧𝐵 ((norm𝑦) + (norm𝑧)) ≤ (𝑥 · (norm‘(𝑦 + 𝑧))) → ((norm𝑤) + (norm‘(-1 · 𝑤))) ≤ (𝑥 · (norm‘(𝑤 + (-1 · 𝑤))))))
2120adantl 481 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝑤 ∈ (𝐴𝐵)) → (∀𝑦𝐴𝑧𝐵 ((norm𝑦) + (norm𝑧)) ≤ (𝑥 · (norm‘(𝑦 + 𝑧))) → ((norm𝑤) + (norm‘(-1 · 𝑤))) ≤ (𝑥 · (norm‘(𝑤 + (-1 · 𝑤))))))
22 cdj1.1 . . . . . . . . . . . 12 𝐴S
2322, 2shincli 31391 . . . . . . . . . . 11 (𝐴𝐵) ∈ S
2423sheli 31243 . . . . . . . . . 10 (𝑤 ∈ (𝐴𝐵) → 𝑤 ∈ ℋ)
25 normneg 31173 . . . . . . . . . . . . . . 15 (𝑤 ∈ ℋ → (norm‘(-1 · 𝑤)) = (norm𝑤))
2625oveq2d 7447 . . . . . . . . . . . . . 14 (𝑤 ∈ ℋ → ((norm𝑤) + (norm‘(-1 · 𝑤))) = ((norm𝑤) + (norm𝑤)))
27 normcl 31154 . . . . . . . . . . . . . . . 16 (𝑤 ∈ ℋ → (norm𝑤) ∈ ℝ)
2827recnd 11287 . . . . . . . . . . . . . . 15 (𝑤 ∈ ℋ → (norm𝑤) ∈ ℂ)
29282timesd 12507 . . . . . . . . . . . . . 14 (𝑤 ∈ ℋ → (2 · (norm𝑤)) = ((norm𝑤) + (norm𝑤)))
3026, 29eqtr4d 2778 . . . . . . . . . . . . 13 (𝑤 ∈ ℋ → ((norm𝑤) + (norm‘(-1 · 𝑤))) = (2 · (norm𝑤)))
3130adantl 481 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝑤 ∈ ℋ) → ((norm𝑤) + (norm‘(-1 · 𝑤))) = (2 · (norm𝑤)))
32 hvnegid 31056 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ ℋ → (𝑤 + (-1 · 𝑤)) = 0)
3332fveq2d 6911 . . . . . . . . . . . . . . . 16 (𝑤 ∈ ℋ → (norm‘(𝑤 + (-1 · 𝑤))) = (norm‘0))
34 norm0 31157 . . . . . . . . . . . . . . . 16 (norm‘0) = 0
3533, 34eqtrdi 2791 . . . . . . . . . . . . . . 15 (𝑤 ∈ ℋ → (norm‘(𝑤 + (-1 · 𝑤))) = 0)
3635oveq2d 7447 . . . . . . . . . . . . . 14 (𝑤 ∈ ℋ → (𝑥 · (norm‘(𝑤 + (-1 · 𝑤)))) = (𝑥 · 0))
37 recn 11243 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
3837mul01d 11458 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → (𝑥 · 0) = 0)
3936, 38sylan9eqr 2797 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 𝑤 ∈ ℋ) → (𝑥 · (norm‘(𝑤 + (-1 · 𝑤)))) = 0)
40 2t0e0 12433 . . . . . . . . . . . . 13 (2 · 0) = 0
4139, 40eqtr4di 2793 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝑤 ∈ ℋ) → (𝑥 · (norm‘(𝑤 + (-1 · 𝑤)))) = (2 · 0))
4231, 41breq12d 5161 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑤 ∈ ℋ) → (((norm𝑤) + (norm‘(-1 · 𝑤))) ≤ (𝑥 · (norm‘(𝑤 + (-1 · 𝑤)))) ↔ (2 · (norm𝑤)) ≤ (2 · 0)))
43 0re 11261 . . . . . . . . . . . . . . 15 0 ∈ ℝ
44 letri3 11344 . . . . . . . . . . . . . . 15 (((norm𝑤) ∈ ℝ ∧ 0 ∈ ℝ) → ((norm𝑤) = 0 ↔ ((norm𝑤) ≤ 0 ∧ 0 ≤ (norm𝑤))))
4527, 43, 44sylancl 586 . . . . . . . . . . . . . 14 (𝑤 ∈ ℋ → ((norm𝑤) = 0 ↔ ((norm𝑤) ≤ 0 ∧ 0 ≤ (norm𝑤))))
46 normge0 31155 . . . . . . . . . . . . . . 15 (𝑤 ∈ ℋ → 0 ≤ (norm𝑤))
4746biantrud 531 . . . . . . . . . . . . . 14 (𝑤 ∈ ℋ → ((norm𝑤) ≤ 0 ↔ ((norm𝑤) ≤ 0 ∧ 0 ≤ (norm𝑤))))
48 2re 12338 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ
49 2pos 12367 . . . . . . . . . . . . . . . . 17 0 < 2
5048, 49pm3.2i 470 . . . . . . . . . . . . . . . 16 (2 ∈ ℝ ∧ 0 < 2)
51 lemul2 12118 . . . . . . . . . . . . . . . 16 (((norm𝑤) ∈ ℝ ∧ 0 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((norm𝑤) ≤ 0 ↔ (2 · (norm𝑤)) ≤ (2 · 0)))
5243, 50, 51mp3an23 1452 . . . . . . . . . . . . . . 15 ((norm𝑤) ∈ ℝ → ((norm𝑤) ≤ 0 ↔ (2 · (norm𝑤)) ≤ (2 · 0)))
5327, 52syl 17 . . . . . . . . . . . . . 14 (𝑤 ∈ ℋ → ((norm𝑤) ≤ 0 ↔ (2 · (norm𝑤)) ≤ (2 · 0)))
5445, 47, 533bitr2rd 308 . . . . . . . . . . . . 13 (𝑤 ∈ ℋ → ((2 · (norm𝑤)) ≤ (2 · 0) ↔ (norm𝑤) = 0))
55 norm-i 31158 . . . . . . . . . . . . 13 (𝑤 ∈ ℋ → ((norm𝑤) = 0 ↔ 𝑤 = 0))
5654, 55bitrd 279 . . . . . . . . . . . 12 (𝑤 ∈ ℋ → ((2 · (norm𝑤)) ≤ (2 · 0) ↔ 𝑤 = 0))
5756adantl 481 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑤 ∈ ℋ) → ((2 · (norm𝑤)) ≤ (2 · 0) ↔ 𝑤 = 0))
5842, 57bitrd 279 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑤 ∈ ℋ) → (((norm𝑤) + (norm‘(-1 · 𝑤))) ≤ (𝑥 · (norm‘(𝑤 + (-1 · 𝑤)))) ↔ 𝑤 = 0))
5924, 58sylan2 593 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝑤 ∈ (𝐴𝐵)) → (((norm𝑤) + (norm‘(-1 · 𝑤))) ≤ (𝑥 · (norm‘(𝑤 + (-1 · 𝑤)))) ↔ 𝑤 = 0))
6021, 59sylibd 239 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑤 ∈ (𝐴𝐵)) → (∀𝑦𝐴𝑧𝐵 ((norm𝑦) + (norm𝑧)) ≤ (𝑥 · (norm‘(𝑦 + 𝑧))) → 𝑤 = 0))
6160impancom 451 . . . . . . 7 ((𝑥 ∈ ℝ ∧ ∀𝑦𝐴𝑧𝐵 ((norm𝑦) + (norm𝑧)) ≤ (𝑥 · (norm‘(𝑦 + 𝑧)))) → (𝑤 ∈ (𝐴𝐵) → 𝑤 = 0))
62 elch0 31283 . . . . . . 7 (𝑤 ∈ 0𝑤 = 0)
6361, 62imbitrrdi 252 . . . . . 6 ((𝑥 ∈ ℝ ∧ ∀𝑦𝐴𝑧𝐵 ((norm𝑦) + (norm𝑧)) ≤ (𝑥 · (norm‘(𝑦 + 𝑧)))) → (𝑤 ∈ (𝐴𝐵) → 𝑤 ∈ 0))
6463ssrdv 4001 . . . . 5 ((𝑥 ∈ ℝ ∧ ∀𝑦𝐴𝑧𝐵 ((norm𝑦) + (norm𝑧)) ≤ (𝑥 · (norm‘(𝑦 + 𝑧)))) → (𝐴𝐵) ⊆ 0)
6564ex 412 . . . 4 (𝑥 ∈ ℝ → (∀𝑦𝐴𝑧𝐵 ((norm𝑦) + (norm𝑧)) ≤ (𝑥 · (norm‘(𝑦 + 𝑧))) → (𝐴𝐵) ⊆ 0))
66 shle0 31471 . . . . 5 ((𝐴𝐵) ∈ S → ((𝐴𝐵) ⊆ 0 ↔ (𝐴𝐵) = 0))
6723, 66ax-mp 5 . . . 4 ((𝐴𝐵) ⊆ 0 ↔ (𝐴𝐵) = 0)
6865, 67imbitrdi 251 . . 3 (𝑥 ∈ ℝ → (∀𝑦𝐴𝑧𝐵 ((norm𝑦) + (norm𝑧)) ≤ (𝑥 · (norm‘(𝑦 + 𝑧))) → (𝐴𝐵) = 0))
6968adantld 490 . 2 (𝑥 ∈ ℝ → ((0 < 𝑥 ∧ ∀𝑦𝐴𝑧𝐵 ((norm𝑦) + (norm𝑧)) ≤ (𝑥 · (norm‘(𝑦 + 𝑧)))) → (𝐴𝐵) = 0))
7069rexlimiv 3146 1 (∃𝑥 ∈ ℝ (0 < 𝑥 ∧ ∀𝑦𝐴𝑧𝐵 ((norm𝑦) + (norm𝑧)) ≤ (𝑥 · (norm‘(𝑦 + 𝑧)))) → (𝐴𝐵) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wral 3059  wrex 3068  cin 3962  wss 3963   class class class wbr 5148  cfv 6563  (class class class)co 7431  cc 11151  cr 11152  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158   < clt 11293  cle 11294  -cneg 11491  2c2 12319  chba 30948   + cva 30949   · csm 30950  normcno 30952  0c0v 30953   S csh 30957  0c0h 30964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-hilex 31028  ax-hfvadd 31029  ax-hvcom 31030  ax-hv0cl 31032  ax-hvaddid 31033  ax-hfvmul 31034  ax-hvmulid 31035  ax-hvmulass 31036  ax-hvdistr1 31037  ax-hvdistr2 31038  ax-hvmul0 31039  ax-hfi 31108  ax-his1 31111  ax-his3 31113  ax-his4 31114
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-sup 9480  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-seq 14040  df-exp 14100  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-hnorm 30997  df-hvsub 31000  df-sh 31236  df-ch0 31282
This theorem is referenced by:  cdj3lem2b  32466  cdj3i  32470
  Copyright terms: Public domain W3C validator