HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cdj3lem1 Structured version   Visualization version   GIF version

Theorem cdj3lem1 29848
Description: A property of "𝐴 and 𝐵 are completely disjoint subspaces." Part of Lemma 5 of [Holland] p. 1520. (Contributed by NM, 23-May-2005.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdj1.1 𝐴S
cdj1.2 𝐵S
Assertion
Ref Expression
cdj3lem1 (∃𝑥 ∈ ℝ (0 < 𝑥 ∧ ∀𝑦𝐴𝑧𝐵 ((norm𝑦) + (norm𝑧)) ≤ (𝑥 · (norm‘(𝑦 + 𝑧)))) → (𝐴𝐵) = 0)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧

Proof of Theorem cdj3lem1
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 elin 4023 . . . . . . . . . . . 12 (𝑤 ∈ (𝐴𝐵) ↔ (𝑤𝐴𝑤𝐵))
2 cdj1.2 . . . . . . . . . . . . . 14 𝐵S
3 neg1cn 11472 . . . . . . . . . . . . . 14 -1 ∈ ℂ
4 shmulcl 28630 . . . . . . . . . . . . . 14 ((𝐵S ∧ -1 ∈ ℂ ∧ 𝑤𝐵) → (-1 · 𝑤) ∈ 𝐵)
52, 3, 4mp3an12 1581 . . . . . . . . . . . . 13 (𝑤𝐵 → (-1 · 𝑤) ∈ 𝐵)
65anim2i 612 . . . . . . . . . . . 12 ((𝑤𝐴𝑤𝐵) → (𝑤𝐴 ∧ (-1 · 𝑤) ∈ 𝐵))
71, 6sylbi 209 . . . . . . . . . . 11 (𝑤 ∈ (𝐴𝐵) → (𝑤𝐴 ∧ (-1 · 𝑤) ∈ 𝐵))
8 fveq2 6433 . . . . . . . . . . . . . 14 (𝑦 = 𝑤 → (norm𝑦) = (norm𝑤))
98oveq1d 6920 . . . . . . . . . . . . 13 (𝑦 = 𝑤 → ((norm𝑦) + (norm𝑧)) = ((norm𝑤) + (norm𝑧)))
10 fvoveq1 6928 . . . . . . . . . . . . . 14 (𝑦 = 𝑤 → (norm‘(𝑦 + 𝑧)) = (norm‘(𝑤 + 𝑧)))
1110oveq2d 6921 . . . . . . . . . . . . 13 (𝑦 = 𝑤 → (𝑥 · (norm‘(𝑦 + 𝑧))) = (𝑥 · (norm‘(𝑤 + 𝑧))))
129, 11breq12d 4886 . . . . . . . . . . . 12 (𝑦 = 𝑤 → (((norm𝑦) + (norm𝑧)) ≤ (𝑥 · (norm‘(𝑦 + 𝑧))) ↔ ((norm𝑤) + (norm𝑧)) ≤ (𝑥 · (norm‘(𝑤 + 𝑧)))))
13 fveq2 6433 . . . . . . . . . . . . . 14 (𝑧 = (-1 · 𝑤) → (norm𝑧) = (norm‘(-1 · 𝑤)))
1413oveq2d 6921 . . . . . . . . . . . . 13 (𝑧 = (-1 · 𝑤) → ((norm𝑤) + (norm𝑧)) = ((norm𝑤) + (norm‘(-1 · 𝑤))))
15 oveq2 6913 . . . . . . . . . . . . . . 15 (𝑧 = (-1 · 𝑤) → (𝑤 + 𝑧) = (𝑤 + (-1 · 𝑤)))
1615fveq2d 6437 . . . . . . . . . . . . . 14 (𝑧 = (-1 · 𝑤) → (norm‘(𝑤 + 𝑧)) = (norm‘(𝑤 + (-1 · 𝑤))))
1716oveq2d 6921 . . . . . . . . . . . . 13 (𝑧 = (-1 · 𝑤) → (𝑥 · (norm‘(𝑤 + 𝑧))) = (𝑥 · (norm‘(𝑤 + (-1 · 𝑤)))))
1814, 17breq12d 4886 . . . . . . . . . . . 12 (𝑧 = (-1 · 𝑤) → (((norm𝑤) + (norm𝑧)) ≤ (𝑥 · (norm‘(𝑤 + 𝑧))) ↔ ((norm𝑤) + (norm‘(-1 · 𝑤))) ≤ (𝑥 · (norm‘(𝑤 + (-1 · 𝑤))))))
1912, 18rspc2v 3539 . . . . . . . . . . 11 ((𝑤𝐴 ∧ (-1 · 𝑤) ∈ 𝐵) → (∀𝑦𝐴𝑧𝐵 ((norm𝑦) + (norm𝑧)) ≤ (𝑥 · (norm‘(𝑦 + 𝑧))) → ((norm𝑤) + (norm‘(-1 · 𝑤))) ≤ (𝑥 · (norm‘(𝑤 + (-1 · 𝑤))))))
207, 19syl 17 . . . . . . . . . 10 (𝑤 ∈ (𝐴𝐵) → (∀𝑦𝐴𝑧𝐵 ((norm𝑦) + (norm𝑧)) ≤ (𝑥 · (norm‘(𝑦 + 𝑧))) → ((norm𝑤) + (norm‘(-1 · 𝑤))) ≤ (𝑥 · (norm‘(𝑤 + (-1 · 𝑤))))))
2120adantl 475 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝑤 ∈ (𝐴𝐵)) → (∀𝑦𝐴𝑧𝐵 ((norm𝑦) + (norm𝑧)) ≤ (𝑥 · (norm‘(𝑦 + 𝑧))) → ((norm𝑤) + (norm‘(-1 · 𝑤))) ≤ (𝑥 · (norm‘(𝑤 + (-1 · 𝑤))))))
22 cdj1.1 . . . . . . . . . . . 12 𝐴S
2322, 2shincli 28776 . . . . . . . . . . 11 (𝐴𝐵) ∈ S
2423sheli 28626 . . . . . . . . . 10 (𝑤 ∈ (𝐴𝐵) → 𝑤 ∈ ℋ)
25 normneg 28556 . . . . . . . . . . . . . . 15 (𝑤 ∈ ℋ → (norm‘(-1 · 𝑤)) = (norm𝑤))
2625oveq2d 6921 . . . . . . . . . . . . . 14 (𝑤 ∈ ℋ → ((norm𝑤) + (norm‘(-1 · 𝑤))) = ((norm𝑤) + (norm𝑤)))
27 normcl 28537 . . . . . . . . . . . . . . . 16 (𝑤 ∈ ℋ → (norm𝑤) ∈ ℝ)
2827recnd 10385 . . . . . . . . . . . . . . 15 (𝑤 ∈ ℋ → (norm𝑤) ∈ ℂ)
29282timesd 11601 . . . . . . . . . . . . . 14 (𝑤 ∈ ℋ → (2 · (norm𝑤)) = ((norm𝑤) + (norm𝑤)))
3026, 29eqtr4d 2864 . . . . . . . . . . . . 13 (𝑤 ∈ ℋ → ((norm𝑤) + (norm‘(-1 · 𝑤))) = (2 · (norm𝑤)))
3130adantl 475 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝑤 ∈ ℋ) → ((norm𝑤) + (norm‘(-1 · 𝑤))) = (2 · (norm𝑤)))
32 hvnegid 28439 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ ℋ → (𝑤 + (-1 · 𝑤)) = 0)
3332fveq2d 6437 . . . . . . . . . . . . . . . 16 (𝑤 ∈ ℋ → (norm‘(𝑤 + (-1 · 𝑤))) = (norm‘0))
34 norm0 28540 . . . . . . . . . . . . . . . 16 (norm‘0) = 0
3533, 34syl6eq 2877 . . . . . . . . . . . . . . 15 (𝑤 ∈ ℋ → (norm‘(𝑤 + (-1 · 𝑤))) = 0)
3635oveq2d 6921 . . . . . . . . . . . . . 14 (𝑤 ∈ ℋ → (𝑥 · (norm‘(𝑤 + (-1 · 𝑤)))) = (𝑥 · 0))
37 recn 10342 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
3837mul01d 10554 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → (𝑥 · 0) = 0)
3936, 38sylan9eqr 2883 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 𝑤 ∈ ℋ) → (𝑥 · (norm‘(𝑤 + (-1 · 𝑤)))) = 0)
40 2t0e0 11527 . . . . . . . . . . . . 13 (2 · 0) = 0
4139, 40syl6eqr 2879 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝑤 ∈ ℋ) → (𝑥 · (norm‘(𝑤 + (-1 · 𝑤)))) = (2 · 0))
4231, 41breq12d 4886 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑤 ∈ ℋ) → (((norm𝑤) + (norm‘(-1 · 𝑤))) ≤ (𝑥 · (norm‘(𝑤 + (-1 · 𝑤)))) ↔ (2 · (norm𝑤)) ≤ (2 · 0)))
43 0re 10358 . . . . . . . . . . . . . . 15 0 ∈ ℝ
44 letri3 10442 . . . . . . . . . . . . . . 15 (((norm𝑤) ∈ ℝ ∧ 0 ∈ ℝ) → ((norm𝑤) = 0 ↔ ((norm𝑤) ≤ 0 ∧ 0 ≤ (norm𝑤))))
4527, 43, 44sylancl 582 . . . . . . . . . . . . . 14 (𝑤 ∈ ℋ → ((norm𝑤) = 0 ↔ ((norm𝑤) ≤ 0 ∧ 0 ≤ (norm𝑤))))
46 normge0 28538 . . . . . . . . . . . . . . 15 (𝑤 ∈ ℋ → 0 ≤ (norm𝑤))
4746biantrud 529 . . . . . . . . . . . . . 14 (𝑤 ∈ ℋ → ((norm𝑤) ≤ 0 ↔ ((norm𝑤) ≤ 0 ∧ 0 ≤ (norm𝑤))))
48 2re 11425 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ
49 2pos 11461 . . . . . . . . . . . . . . . . 17 0 < 2
5048, 49pm3.2i 464 . . . . . . . . . . . . . . . 16 (2 ∈ ℝ ∧ 0 < 2)
51 lemul2 11206 . . . . . . . . . . . . . . . 16 (((norm𝑤) ∈ ℝ ∧ 0 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((norm𝑤) ≤ 0 ↔ (2 · (norm𝑤)) ≤ (2 · 0)))
5243, 50, 51mp3an23 1583 . . . . . . . . . . . . . . 15 ((norm𝑤) ∈ ℝ → ((norm𝑤) ≤ 0 ↔ (2 · (norm𝑤)) ≤ (2 · 0)))
5327, 52syl 17 . . . . . . . . . . . . . 14 (𝑤 ∈ ℋ → ((norm𝑤) ≤ 0 ↔ (2 · (norm𝑤)) ≤ (2 · 0)))
5445, 47, 533bitr2rd 300 . . . . . . . . . . . . 13 (𝑤 ∈ ℋ → ((2 · (norm𝑤)) ≤ (2 · 0) ↔ (norm𝑤) = 0))
55 norm-i 28541 . . . . . . . . . . . . 13 (𝑤 ∈ ℋ → ((norm𝑤) = 0 ↔ 𝑤 = 0))
5654, 55bitrd 271 . . . . . . . . . . . 12 (𝑤 ∈ ℋ → ((2 · (norm𝑤)) ≤ (2 · 0) ↔ 𝑤 = 0))
5756adantl 475 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑤 ∈ ℋ) → ((2 · (norm𝑤)) ≤ (2 · 0) ↔ 𝑤 = 0))
5842, 57bitrd 271 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑤 ∈ ℋ) → (((norm𝑤) + (norm‘(-1 · 𝑤))) ≤ (𝑥 · (norm‘(𝑤 + (-1 · 𝑤)))) ↔ 𝑤 = 0))
5924, 58sylan2 588 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝑤 ∈ (𝐴𝐵)) → (((norm𝑤) + (norm‘(-1 · 𝑤))) ≤ (𝑥 · (norm‘(𝑤 + (-1 · 𝑤)))) ↔ 𝑤 = 0))
6021, 59sylibd 231 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑤 ∈ (𝐴𝐵)) → (∀𝑦𝐴𝑧𝐵 ((norm𝑦) + (norm𝑧)) ≤ (𝑥 · (norm‘(𝑦 + 𝑧))) → 𝑤 = 0))
6160impancom 445 . . . . . . 7 ((𝑥 ∈ ℝ ∧ ∀𝑦𝐴𝑧𝐵 ((norm𝑦) + (norm𝑧)) ≤ (𝑥 · (norm‘(𝑦 + 𝑧)))) → (𝑤 ∈ (𝐴𝐵) → 𝑤 = 0))
62 elch0 28666 . . . . . . 7 (𝑤 ∈ 0𝑤 = 0)
6361, 62syl6ibr 244 . . . . . 6 ((𝑥 ∈ ℝ ∧ ∀𝑦𝐴𝑧𝐵 ((norm𝑦) + (norm𝑧)) ≤ (𝑥 · (norm‘(𝑦 + 𝑧)))) → (𝑤 ∈ (𝐴𝐵) → 𝑤 ∈ 0))
6463ssrdv 3833 . . . . 5 ((𝑥 ∈ ℝ ∧ ∀𝑦𝐴𝑧𝐵 ((norm𝑦) + (norm𝑧)) ≤ (𝑥 · (norm‘(𝑦 + 𝑧)))) → (𝐴𝐵) ⊆ 0)
6564ex 403 . . . 4 (𝑥 ∈ ℝ → (∀𝑦𝐴𝑧𝐵 ((norm𝑦) + (norm𝑧)) ≤ (𝑥 · (norm‘(𝑦 + 𝑧))) → (𝐴𝐵) ⊆ 0))
66 shle0 28856 . . . . 5 ((𝐴𝐵) ∈ S → ((𝐴𝐵) ⊆ 0 ↔ (𝐴𝐵) = 0))
6723, 66ax-mp 5 . . . 4 ((𝐴𝐵) ⊆ 0 ↔ (𝐴𝐵) = 0)
6865, 67syl6ib 243 . . 3 (𝑥 ∈ ℝ → (∀𝑦𝐴𝑧𝐵 ((norm𝑦) + (norm𝑧)) ≤ (𝑥 · (norm‘(𝑦 + 𝑧))) → (𝐴𝐵) = 0))
6968adantld 486 . 2 (𝑥 ∈ ℝ → ((0 < 𝑥 ∧ ∀𝑦𝐴𝑧𝐵 ((norm𝑦) + (norm𝑧)) ≤ (𝑥 · (norm‘(𝑦 + 𝑧)))) → (𝐴𝐵) = 0))
7069rexlimiv 3236 1 (∃𝑥 ∈ ℝ (0 < 𝑥 ∧ ∀𝑦𝐴𝑧𝐵 ((norm𝑦) + (norm𝑧)) ≤ (𝑥 · (norm‘(𝑦 + 𝑧)))) → (𝐴𝐵) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386   = wceq 1658  wcel 2166  wral 3117  wrex 3118  cin 3797  wss 3798   class class class wbr 4873  cfv 6123  (class class class)co 6905  cc 10250  cr 10251  0cc0 10252  1c1 10253   + caddc 10255   · cmul 10257   < clt 10391  cle 10392  -cneg 10586  2c2 11406  chba 28331   + cva 28332   · csm 28333  normcno 28335  0c0v 28336   S csh 28340  0c0h 28347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329  ax-pre-sup 10330  ax-hilex 28411  ax-hfvadd 28412  ax-hvcom 28413  ax-hv0cl 28415  ax-hvaddid 28416  ax-hfvmul 28417  ax-hvmulid 28418  ax-hvmulass 28419  ax-hvdistr1 28420  ax-hvdistr2 28421  ax-hvmul0 28422  ax-hfi 28491  ax-his1 28494  ax-his3 28496  ax-his4 28497
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-int 4698  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-2nd 7429  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-er 8009  df-en 8223  df-dom 8224  df-sdom 8225  df-sup 8617  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-div 11010  df-nn 11351  df-2 11414  df-3 11415  df-n0 11619  df-z 11705  df-uz 11969  df-rp 12113  df-seq 13096  df-exp 13155  df-cj 14216  df-re 14217  df-im 14218  df-sqrt 14352  df-abs 14353  df-hnorm 28380  df-hvsub 28383  df-sh 28619  df-ch0 28665
This theorem is referenced by:  cdj3lem2b  29851  cdj3i  29855
  Copyright terms: Public domain W3C validator