Step | Hyp | Ref
| Expression |
1 | | elin 3903 |
. . . . . . . . . . . 12
⊢ (𝑤 ∈ (𝐴 ∩ 𝐵) ↔ (𝑤 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵)) |
2 | | cdj1.2 |
. . . . . . . . . . . . . 14
⊢ 𝐵 ∈
Sℋ |
3 | | neg1cn 12087 |
. . . . . . . . . . . . . 14
⊢ -1 ∈
ℂ |
4 | | shmulcl 29580 |
. . . . . . . . . . . . . 14
⊢ ((𝐵 ∈
Sℋ ∧ -1 ∈ ℂ ∧ 𝑤 ∈ 𝐵) → (-1
·ℎ 𝑤) ∈ 𝐵) |
5 | 2, 3, 4 | mp3an12 1450 |
. . . . . . . . . . . . 13
⊢ (𝑤 ∈ 𝐵 → (-1
·ℎ 𝑤) ∈ 𝐵) |
6 | 5 | anim2i 617 |
. . . . . . . . . . . 12
⊢ ((𝑤 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵) → (𝑤 ∈ 𝐴 ∧ (-1
·ℎ 𝑤) ∈ 𝐵)) |
7 | 1, 6 | sylbi 216 |
. . . . . . . . . . 11
⊢ (𝑤 ∈ (𝐴 ∩ 𝐵) → (𝑤 ∈ 𝐴 ∧ (-1
·ℎ 𝑤) ∈ 𝐵)) |
8 | | fveq2 6774 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑤 → (normℎ‘𝑦) =
(normℎ‘𝑤)) |
9 | 8 | oveq1d 7290 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑤 → ((normℎ‘𝑦) +
(normℎ‘𝑧)) = ((normℎ‘𝑤) +
(normℎ‘𝑧))) |
10 | | fvoveq1 7298 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑤 → (normℎ‘(𝑦 +ℎ 𝑧)) =
(normℎ‘(𝑤 +ℎ 𝑧))) |
11 | 10 | oveq2d 7291 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑤 → (𝑥 ·
(normℎ‘(𝑦 +ℎ 𝑧))) = (𝑥 ·
(normℎ‘(𝑤 +ℎ 𝑧)))) |
12 | 9, 11 | breq12d 5087 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑤 →
(((normℎ‘𝑦) + (normℎ‘𝑧)) ≤ (𝑥 ·
(normℎ‘(𝑦 +ℎ 𝑧))) ↔
((normℎ‘𝑤) + (normℎ‘𝑧)) ≤ (𝑥 ·
(normℎ‘(𝑤 +ℎ 𝑧))))) |
13 | | fveq2 6774 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = (-1
·ℎ 𝑤) → (normℎ‘𝑧) =
(normℎ‘(-1 ·ℎ 𝑤))) |
14 | 13 | oveq2d 7291 |
. . . . . . . . . . . . 13
⊢ (𝑧 = (-1
·ℎ 𝑤) →
((normℎ‘𝑤) + (normℎ‘𝑧)) =
((normℎ‘𝑤) + (normℎ‘(-1
·ℎ 𝑤)))) |
15 | | oveq2 7283 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = (-1
·ℎ 𝑤) → (𝑤 +ℎ 𝑧) = (𝑤 +ℎ (-1
·ℎ 𝑤))) |
16 | 15 | fveq2d 6778 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = (-1
·ℎ 𝑤) →
(normℎ‘(𝑤 +ℎ 𝑧)) = (normℎ‘(𝑤 +ℎ (-1
·ℎ 𝑤)))) |
17 | 16 | oveq2d 7291 |
. . . . . . . . . . . . 13
⊢ (𝑧 = (-1
·ℎ 𝑤) → (𝑥 ·
(normℎ‘(𝑤 +ℎ 𝑧))) = (𝑥 ·
(normℎ‘(𝑤 +ℎ (-1
·ℎ 𝑤))))) |
18 | 14, 17 | breq12d 5087 |
. . . . . . . . . . . 12
⊢ (𝑧 = (-1
·ℎ 𝑤) →
(((normℎ‘𝑤) + (normℎ‘𝑧)) ≤ (𝑥 ·
(normℎ‘(𝑤 +ℎ 𝑧))) ↔
((normℎ‘𝑤) + (normℎ‘(-1
·ℎ 𝑤))) ≤ (𝑥 ·
(normℎ‘(𝑤 +ℎ (-1
·ℎ 𝑤)))))) |
19 | 12, 18 | rspc2v 3570 |
. . . . . . . . . . 11
⊢ ((𝑤 ∈ 𝐴 ∧ (-1
·ℎ 𝑤) ∈ 𝐵) → (∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 ((normℎ‘𝑦) +
(normℎ‘𝑧)) ≤ (𝑥 ·
(normℎ‘(𝑦 +ℎ 𝑧))) →
((normℎ‘𝑤) + (normℎ‘(-1
·ℎ 𝑤))) ≤ (𝑥 ·
(normℎ‘(𝑤 +ℎ (-1
·ℎ 𝑤)))))) |
20 | 7, 19 | syl 17 |
. . . . . . . . . 10
⊢ (𝑤 ∈ (𝐴 ∩ 𝐵) → (∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 ((normℎ‘𝑦) +
(normℎ‘𝑧)) ≤ (𝑥 ·
(normℎ‘(𝑦 +ℎ 𝑧))) →
((normℎ‘𝑤) + (normℎ‘(-1
·ℎ 𝑤))) ≤ (𝑥 ·
(normℎ‘(𝑤 +ℎ (-1
·ℎ 𝑤)))))) |
21 | 20 | adantl 482 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℝ ∧ 𝑤 ∈ (𝐴 ∩ 𝐵)) → (∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 ((normℎ‘𝑦) +
(normℎ‘𝑧)) ≤ (𝑥 ·
(normℎ‘(𝑦 +ℎ 𝑧))) →
((normℎ‘𝑤) + (normℎ‘(-1
·ℎ 𝑤))) ≤ (𝑥 ·
(normℎ‘(𝑤 +ℎ (-1
·ℎ 𝑤)))))) |
22 | | cdj1.1 |
. . . . . . . . . . . 12
⊢ 𝐴 ∈
Sℋ |
23 | 22, 2 | shincli 29724 |
. . . . . . . . . . 11
⊢ (𝐴 ∩ 𝐵) ∈
Sℋ |
24 | 23 | sheli 29576 |
. . . . . . . . . 10
⊢ (𝑤 ∈ (𝐴 ∩ 𝐵) → 𝑤 ∈ ℋ) |
25 | | normneg 29506 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 ∈ ℋ →
(normℎ‘(-1 ·ℎ 𝑤)) =
(normℎ‘𝑤)) |
26 | 25 | oveq2d 7291 |
. . . . . . . . . . . . . 14
⊢ (𝑤 ∈ ℋ →
((normℎ‘𝑤) + (normℎ‘(-1
·ℎ 𝑤))) = ((normℎ‘𝑤) +
(normℎ‘𝑤))) |
27 | | normcl 29487 |
. . . . . . . . . . . . . . . 16
⊢ (𝑤 ∈ ℋ →
(normℎ‘𝑤) ∈ ℝ) |
28 | 27 | recnd 11003 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 ∈ ℋ →
(normℎ‘𝑤) ∈ ℂ) |
29 | 28 | 2timesd 12216 |
. . . . . . . . . . . . . 14
⊢ (𝑤 ∈ ℋ → (2
· (normℎ‘𝑤)) = ((normℎ‘𝑤) +
(normℎ‘𝑤))) |
30 | 26, 29 | eqtr4d 2781 |
. . . . . . . . . . . . 13
⊢ (𝑤 ∈ ℋ →
((normℎ‘𝑤) + (normℎ‘(-1
·ℎ 𝑤))) = (2 ·
(normℎ‘𝑤))) |
31 | 30 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℝ ∧ 𝑤 ∈ ℋ) →
((normℎ‘𝑤) + (normℎ‘(-1
·ℎ 𝑤))) = (2 ·
(normℎ‘𝑤))) |
32 | | hvnegid 29389 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑤 ∈ ℋ → (𝑤 +ℎ (-1
·ℎ 𝑤)) = 0ℎ) |
33 | 32 | fveq2d 6778 |
. . . . . . . . . . . . . . . 16
⊢ (𝑤 ∈ ℋ →
(normℎ‘(𝑤 +ℎ (-1
·ℎ 𝑤))) =
(normℎ‘0ℎ)) |
34 | | norm0 29490 |
. . . . . . . . . . . . . . . 16
⊢
(normℎ‘0ℎ) =
0 |
35 | 33, 34 | eqtrdi 2794 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 ∈ ℋ →
(normℎ‘(𝑤 +ℎ (-1
·ℎ 𝑤))) = 0) |
36 | 35 | oveq2d 7291 |
. . . . . . . . . . . . . 14
⊢ (𝑤 ∈ ℋ → (𝑥 ·
(normℎ‘(𝑤 +ℎ (-1
·ℎ 𝑤)))) = (𝑥 · 0)) |
37 | | recn 10961 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ ℝ → 𝑥 ∈
ℂ) |
38 | 37 | mul01d 11174 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ℝ → (𝑥 · 0) =
0) |
39 | 36, 38 | sylan9eqr 2800 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℝ ∧ 𝑤 ∈ ℋ) → (𝑥 ·
(normℎ‘(𝑤 +ℎ (-1
·ℎ 𝑤)))) = 0) |
40 | | 2t0e0 12142 |
. . . . . . . . . . . . 13
⊢ (2
· 0) = 0 |
41 | 39, 40 | eqtr4di 2796 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℝ ∧ 𝑤 ∈ ℋ) → (𝑥 ·
(normℎ‘(𝑤 +ℎ (-1
·ℎ 𝑤)))) = (2 · 0)) |
42 | 31, 41 | breq12d 5087 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℝ ∧ 𝑤 ∈ ℋ) →
(((normℎ‘𝑤) + (normℎ‘(-1
·ℎ 𝑤))) ≤ (𝑥 ·
(normℎ‘(𝑤 +ℎ (-1
·ℎ 𝑤)))) ↔ (2 ·
(normℎ‘𝑤)) ≤ (2 · 0))) |
43 | | 0re 10977 |
. . . . . . . . . . . . . . 15
⊢ 0 ∈
ℝ |
44 | | letri3 11060 |
. . . . . . . . . . . . . . 15
⊢
(((normℎ‘𝑤) ∈ ℝ ∧ 0 ∈ ℝ)
→ ((normℎ‘𝑤) = 0 ↔
((normℎ‘𝑤) ≤ 0 ∧ 0 ≤
(normℎ‘𝑤)))) |
45 | 27, 43, 44 | sylancl 586 |
. . . . . . . . . . . . . 14
⊢ (𝑤 ∈ ℋ →
((normℎ‘𝑤) = 0 ↔
((normℎ‘𝑤) ≤ 0 ∧ 0 ≤
(normℎ‘𝑤)))) |
46 | | normge0 29488 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 ∈ ℋ → 0 ≤
(normℎ‘𝑤)) |
47 | 46 | biantrud 532 |
. . . . . . . . . . . . . 14
⊢ (𝑤 ∈ ℋ →
((normℎ‘𝑤) ≤ 0 ↔
((normℎ‘𝑤) ≤ 0 ∧ 0 ≤
(normℎ‘𝑤)))) |
48 | | 2re 12047 |
. . . . . . . . . . . . . . . . 17
⊢ 2 ∈
ℝ |
49 | | 2pos 12076 |
. . . . . . . . . . . . . . . . 17
⊢ 0 <
2 |
50 | 48, 49 | pm3.2i 471 |
. . . . . . . . . . . . . . . 16
⊢ (2 ∈
ℝ ∧ 0 < 2) |
51 | | lemul2 11828 |
. . . . . . . . . . . . . . . 16
⊢
(((normℎ‘𝑤) ∈ ℝ ∧ 0 ∈ ℝ ∧
(2 ∈ ℝ ∧ 0 < 2)) → ((normℎ‘𝑤) ≤ 0 ↔ (2 ·
(normℎ‘𝑤)) ≤ (2 · 0))) |
52 | 43, 50, 51 | mp3an23 1452 |
. . . . . . . . . . . . . . 15
⊢
((normℎ‘𝑤) ∈ ℝ →
((normℎ‘𝑤) ≤ 0 ↔ (2 ·
(normℎ‘𝑤)) ≤ (2 · 0))) |
53 | 27, 52 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝑤 ∈ ℋ →
((normℎ‘𝑤) ≤ 0 ↔ (2 ·
(normℎ‘𝑤)) ≤ (2 · 0))) |
54 | 45, 47, 53 | 3bitr2rd 308 |
. . . . . . . . . . . . 13
⊢ (𝑤 ∈ ℋ → ((2
· (normℎ‘𝑤)) ≤ (2 · 0) ↔
(normℎ‘𝑤) = 0)) |
55 | | norm-i 29491 |
. . . . . . . . . . . . 13
⊢ (𝑤 ∈ ℋ →
((normℎ‘𝑤) = 0 ↔ 𝑤 = 0ℎ)) |
56 | 54, 55 | bitrd 278 |
. . . . . . . . . . . 12
⊢ (𝑤 ∈ ℋ → ((2
· (normℎ‘𝑤)) ≤ (2 · 0) ↔ 𝑤 =
0ℎ)) |
57 | 56 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℝ ∧ 𝑤 ∈ ℋ) → ((2
· (normℎ‘𝑤)) ≤ (2 · 0) ↔ 𝑤 =
0ℎ)) |
58 | 42, 57 | bitrd 278 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℝ ∧ 𝑤 ∈ ℋ) →
(((normℎ‘𝑤) + (normℎ‘(-1
·ℎ 𝑤))) ≤ (𝑥 ·
(normℎ‘(𝑤 +ℎ (-1
·ℎ 𝑤)))) ↔ 𝑤 = 0ℎ)) |
59 | 24, 58 | sylan2 593 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℝ ∧ 𝑤 ∈ (𝐴 ∩ 𝐵)) →
(((normℎ‘𝑤) + (normℎ‘(-1
·ℎ 𝑤))) ≤ (𝑥 ·
(normℎ‘(𝑤 +ℎ (-1
·ℎ 𝑤)))) ↔ 𝑤 = 0ℎ)) |
60 | 21, 59 | sylibd 238 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℝ ∧ 𝑤 ∈ (𝐴 ∩ 𝐵)) → (∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 ((normℎ‘𝑦) +
(normℎ‘𝑧)) ≤ (𝑥 ·
(normℎ‘(𝑦 +ℎ 𝑧))) → 𝑤 = 0ℎ)) |
61 | 60 | impancom 452 |
. . . . . . 7
⊢ ((𝑥 ∈ ℝ ∧
∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 ((normℎ‘𝑦) +
(normℎ‘𝑧)) ≤ (𝑥 ·
(normℎ‘(𝑦 +ℎ 𝑧)))) → (𝑤 ∈ (𝐴 ∩ 𝐵) → 𝑤 = 0ℎ)) |
62 | | elch0 29616 |
. . . . . . 7
⊢ (𝑤 ∈ 0ℋ
↔ 𝑤 =
0ℎ) |
63 | 61, 62 | syl6ibr 251 |
. . . . . 6
⊢ ((𝑥 ∈ ℝ ∧
∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 ((normℎ‘𝑦) +
(normℎ‘𝑧)) ≤ (𝑥 ·
(normℎ‘(𝑦 +ℎ 𝑧)))) → (𝑤 ∈ (𝐴 ∩ 𝐵) → 𝑤 ∈
0ℋ)) |
64 | 63 | ssrdv 3927 |
. . . . 5
⊢ ((𝑥 ∈ ℝ ∧
∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 ((normℎ‘𝑦) +
(normℎ‘𝑧)) ≤ (𝑥 ·
(normℎ‘(𝑦 +ℎ 𝑧)))) → (𝐴 ∩ 𝐵) ⊆
0ℋ) |
65 | 64 | ex 413 |
. . . 4
⊢ (𝑥 ∈ ℝ →
(∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 ((normℎ‘𝑦) +
(normℎ‘𝑧)) ≤ (𝑥 ·
(normℎ‘(𝑦 +ℎ 𝑧))) → (𝐴 ∩ 𝐵) ⊆
0ℋ)) |
66 | | shle0 29804 |
. . . . 5
⊢ ((𝐴 ∩ 𝐵) ∈ Sℋ
→ ((𝐴 ∩ 𝐵) ⊆ 0ℋ
↔ (𝐴 ∩ 𝐵) =
0ℋ)) |
67 | 23, 66 | ax-mp 5 |
. . . 4
⊢ ((𝐴 ∩ 𝐵) ⊆ 0ℋ ↔ (𝐴 ∩ 𝐵) = 0ℋ) |
68 | 65, 67 | syl6ib 250 |
. . 3
⊢ (𝑥 ∈ ℝ →
(∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 ((normℎ‘𝑦) +
(normℎ‘𝑧)) ≤ (𝑥 ·
(normℎ‘(𝑦 +ℎ 𝑧))) → (𝐴 ∩ 𝐵) = 0ℋ)) |
69 | 68 | adantld 491 |
. 2
⊢ (𝑥 ∈ ℝ → ((0 <
𝑥 ∧ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 ((normℎ‘𝑦) +
(normℎ‘𝑧)) ≤ (𝑥 ·
(normℎ‘(𝑦 +ℎ 𝑧)))) → (𝐴 ∩ 𝐵) = 0ℋ)) |
70 | 69 | rexlimiv 3209 |
1
⊢
(∃𝑥 ∈
ℝ (0 < 𝑥 ∧
∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 ((normℎ‘𝑦) +
(normℎ‘𝑧)) ≤ (𝑥 ·
(normℎ‘(𝑦 +ℎ 𝑧)))) → (𝐴 ∩ 𝐵) = 0ℋ) |