HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cdjreui Structured version   Visualization version   GIF version

Theorem cdjreui 30215
Description: A member of the sum of disjoint subspaces has a unique decomposition. Part of Lemma 5 of [Holland] p. 1520. (Contributed by NM, 20-May-2005.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdjreu.1 𝐴S
cdjreu.2 𝐵S
Assertion
Ref Expression
cdjreui ((𝐶 ∈ (𝐴 + 𝐵) ∧ (𝐴𝐵) = 0) → ∃!𝑥𝐴𝑦𝐵 𝐶 = (𝑥 + 𝑦))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦

Proof of Theorem cdjreui
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cdjreu.1 . . . . 5 𝐴S
2 cdjreu.2 . . . . 5 𝐵S
31, 2shseli 29099 . . . 4 (𝐶 ∈ (𝐴 + 𝐵) ↔ ∃𝑥𝐴𝑦𝐵 𝐶 = (𝑥 + 𝑦))
43biimpi 219 . . 3 (𝐶 ∈ (𝐴 + 𝐵) → ∃𝑥𝐴𝑦𝐵 𝐶 = (𝑥 + 𝑦))
5 reeanv 3320 . . . . 5 (∃𝑦𝐵𝑤𝐵 (𝐶 = (𝑥 + 𝑦) ∧ 𝐶 = (𝑧 + 𝑤)) ↔ (∃𝑦𝐵 𝐶 = (𝑥 + 𝑦) ∧ ∃𝑤𝐵 𝐶 = (𝑧 + 𝑤)))
6 eqtr2 2819 . . . . . . 7 ((𝐶 = (𝑥 + 𝑦) ∧ 𝐶 = (𝑧 + 𝑤)) → (𝑥 + 𝑦) = (𝑧 + 𝑤))
71sheli 28997 . . . . . . . . . . . 12 (𝑥𝐴𝑥 ∈ ℋ)
82sheli 28997 . . . . . . . . . . . 12 (𝑦𝐵𝑦 ∈ ℋ)
97, 8anim12i 615 . . . . . . . . . . 11 ((𝑥𝐴𝑦𝐵) → (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ))
101sheli 28997 . . . . . . . . . . . 12 (𝑧𝐴𝑧 ∈ ℋ)
112sheli 28997 . . . . . . . . . . . 12 (𝑤𝐵𝑤 ∈ ℋ)
1210, 11anim12i 615 . . . . . . . . . . 11 ((𝑧𝐴𝑤𝐵) → (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ))
13 hvaddsub4 28861 . . . . . . . . . . 11 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → ((𝑥 + 𝑦) = (𝑧 + 𝑤) ↔ (𝑥 𝑧) = (𝑤 𝑦)))
149, 12, 13syl2an 598 . . . . . . . . . 10 (((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐴𝑤𝐵)) → ((𝑥 + 𝑦) = (𝑧 + 𝑤) ↔ (𝑥 𝑧) = (𝑤 𝑦)))
1514an4s 659 . . . . . . . . 9 (((𝑥𝐴𝑧𝐴) ∧ (𝑦𝐵𝑤𝐵)) → ((𝑥 + 𝑦) = (𝑧 + 𝑤) ↔ (𝑥 𝑧) = (𝑤 𝑦)))
1615adantll 713 . . . . . . . 8 ((((𝐴𝐵) = 0 ∧ (𝑥𝐴𝑧𝐴)) ∧ (𝑦𝐵𝑤𝐵)) → ((𝑥 + 𝑦) = (𝑧 + 𝑤) ↔ (𝑥 𝑧) = (𝑤 𝑦)))
17 shsubcl 29003 . . . . . . . . . . . . . . . 16 ((𝐵S𝑤𝐵𝑦𝐵) → (𝑤 𝑦) ∈ 𝐵)
182, 17mp3an1 1445 . . . . . . . . . . . . . . 15 ((𝑤𝐵𝑦𝐵) → (𝑤 𝑦) ∈ 𝐵)
1918ancoms 462 . . . . . . . . . . . . . 14 ((𝑦𝐵𝑤𝐵) → (𝑤 𝑦) ∈ 𝐵)
20 eleq1 2877 . . . . . . . . . . . . . 14 ((𝑥 𝑧) = (𝑤 𝑦) → ((𝑥 𝑧) ∈ 𝐵 ↔ (𝑤 𝑦) ∈ 𝐵))
2119, 20syl5ibrcom 250 . . . . . . . . . . . . 13 ((𝑦𝐵𝑤𝐵) → ((𝑥 𝑧) = (𝑤 𝑦) → (𝑥 𝑧) ∈ 𝐵))
2221adantl 485 . . . . . . . . . . . 12 (((𝑥𝐴𝑧𝐴) ∧ (𝑦𝐵𝑤𝐵)) → ((𝑥 𝑧) = (𝑤 𝑦) → (𝑥 𝑧) ∈ 𝐵))
23 shsubcl 29003 . . . . . . . . . . . . . 14 ((𝐴S𝑥𝐴𝑧𝐴) → (𝑥 𝑧) ∈ 𝐴)
241, 23mp3an1 1445 . . . . . . . . . . . . 13 ((𝑥𝐴𝑧𝐴) → (𝑥 𝑧) ∈ 𝐴)
2524adantr 484 . . . . . . . . . . . 12 (((𝑥𝐴𝑧𝐴) ∧ (𝑦𝐵𝑤𝐵)) → (𝑥 𝑧) ∈ 𝐴)
2622, 25jctild 529 . . . . . . . . . . 11 (((𝑥𝐴𝑧𝐴) ∧ (𝑦𝐵𝑤𝐵)) → ((𝑥 𝑧) = (𝑤 𝑦) → ((𝑥 𝑧) ∈ 𝐴 ∧ (𝑥 𝑧) ∈ 𝐵)))
2726adantll 713 . . . . . . . . . 10 ((((𝐴𝐵) = 0 ∧ (𝑥𝐴𝑧𝐴)) ∧ (𝑦𝐵𝑤𝐵)) → ((𝑥 𝑧) = (𝑤 𝑦) → ((𝑥 𝑧) ∈ 𝐴 ∧ (𝑥 𝑧) ∈ 𝐵)))
28 elin 3897 . . . . . . . . . . . 12 ((𝑥 𝑧) ∈ (𝐴𝐵) ↔ ((𝑥 𝑧) ∈ 𝐴 ∧ (𝑥 𝑧) ∈ 𝐵))
29 eleq2 2878 . . . . . . . . . . . 12 ((𝐴𝐵) = 0 → ((𝑥 𝑧) ∈ (𝐴𝐵) ↔ (𝑥 𝑧) ∈ 0))
3028, 29bitr3id 288 . . . . . . . . . . 11 ((𝐴𝐵) = 0 → (((𝑥 𝑧) ∈ 𝐴 ∧ (𝑥 𝑧) ∈ 𝐵) ↔ (𝑥 𝑧) ∈ 0))
3130ad2antrr 725 . . . . . . . . . 10 ((((𝐴𝐵) = 0 ∧ (𝑥𝐴𝑧𝐴)) ∧ (𝑦𝐵𝑤𝐵)) → (((𝑥 𝑧) ∈ 𝐴 ∧ (𝑥 𝑧) ∈ 𝐵) ↔ (𝑥 𝑧) ∈ 0))
3227, 31sylibd 242 . . . . . . . . 9 ((((𝐴𝐵) = 0 ∧ (𝑥𝐴𝑧𝐴)) ∧ (𝑦𝐵𝑤𝐵)) → ((𝑥 𝑧) = (𝑤 𝑦) → (𝑥 𝑧) ∈ 0))
33 elch0 29037 . . . . . . . . . . . 12 ((𝑥 𝑧) ∈ 0 ↔ (𝑥 𝑧) = 0)
34 hvsubeq0 28851 . . . . . . . . . . . 12 ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑥 𝑧) = 0𝑥 = 𝑧))
3533, 34syl5bb 286 . . . . . . . . . . 11 ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑥 𝑧) ∈ 0𝑥 = 𝑧))
367, 10, 35syl2an 598 . . . . . . . . . 10 ((𝑥𝐴𝑧𝐴) → ((𝑥 𝑧) ∈ 0𝑥 = 𝑧))
3736ad2antlr 726 . . . . . . . . 9 ((((𝐴𝐵) = 0 ∧ (𝑥𝐴𝑧𝐴)) ∧ (𝑦𝐵𝑤𝐵)) → ((𝑥 𝑧) ∈ 0𝑥 = 𝑧))
3832, 37sylibd 242 . . . . . . . 8 ((((𝐴𝐵) = 0 ∧ (𝑥𝐴𝑧𝐴)) ∧ (𝑦𝐵𝑤𝐵)) → ((𝑥 𝑧) = (𝑤 𝑦) → 𝑥 = 𝑧))
3916, 38sylbid 243 . . . . . . 7 ((((𝐴𝐵) = 0 ∧ (𝑥𝐴𝑧𝐴)) ∧ (𝑦𝐵𝑤𝐵)) → ((𝑥 + 𝑦) = (𝑧 + 𝑤) → 𝑥 = 𝑧))
406, 39syl5 34 . . . . . 6 ((((𝐴𝐵) = 0 ∧ (𝑥𝐴𝑧𝐴)) ∧ (𝑦𝐵𝑤𝐵)) → ((𝐶 = (𝑥 + 𝑦) ∧ 𝐶 = (𝑧 + 𝑤)) → 𝑥 = 𝑧))
4140rexlimdvva 3253 . . . . 5 (((𝐴𝐵) = 0 ∧ (𝑥𝐴𝑧𝐴)) → (∃𝑦𝐵𝑤𝐵 (𝐶 = (𝑥 + 𝑦) ∧ 𝐶 = (𝑧 + 𝑤)) → 𝑥 = 𝑧))
425, 41syl5bir 246 . . . 4 (((𝐴𝐵) = 0 ∧ (𝑥𝐴𝑧𝐴)) → ((∃𝑦𝐵 𝐶 = (𝑥 + 𝑦) ∧ ∃𝑤𝐵 𝐶 = (𝑧 + 𝑤)) → 𝑥 = 𝑧))
4342ralrimivva 3156 . . 3 ((𝐴𝐵) = 0 → ∀𝑥𝐴𝑧𝐴 ((∃𝑦𝐵 𝐶 = (𝑥 + 𝑦) ∧ ∃𝑤𝐵 𝐶 = (𝑧 + 𝑤)) → 𝑥 = 𝑧))
444, 43anim12i 615 . 2 ((𝐶 ∈ (𝐴 + 𝐵) ∧ (𝐴𝐵) = 0) → (∃𝑥𝐴𝑦𝐵 𝐶 = (𝑥 + 𝑦) ∧ ∀𝑥𝐴𝑧𝐴 ((∃𝑦𝐵 𝐶 = (𝑥 + 𝑦) ∧ ∃𝑤𝐵 𝐶 = (𝑧 + 𝑤)) → 𝑥 = 𝑧)))
45 oveq1 7142 . . . . . 6 (𝑥 = 𝑧 → (𝑥 + 𝑦) = (𝑧 + 𝑦))
4645eqeq2d 2809 . . . . 5 (𝑥 = 𝑧 → (𝐶 = (𝑥 + 𝑦) ↔ 𝐶 = (𝑧 + 𝑦)))
4746rexbidv 3256 . . . 4 (𝑥 = 𝑧 → (∃𝑦𝐵 𝐶 = (𝑥 + 𝑦) ↔ ∃𝑦𝐵 𝐶 = (𝑧 + 𝑦)))
48 oveq2 7143 . . . . . 6 (𝑦 = 𝑤 → (𝑧 + 𝑦) = (𝑧 + 𝑤))
4948eqeq2d 2809 . . . . 5 (𝑦 = 𝑤 → (𝐶 = (𝑧 + 𝑦) ↔ 𝐶 = (𝑧 + 𝑤)))
5049cbvrexvw 3397 . . . 4 (∃𝑦𝐵 𝐶 = (𝑧 + 𝑦) ↔ ∃𝑤𝐵 𝐶 = (𝑧 + 𝑤))
5147, 50syl6bb 290 . . 3 (𝑥 = 𝑧 → (∃𝑦𝐵 𝐶 = (𝑥 + 𝑦) ↔ ∃𝑤𝐵 𝐶 = (𝑧 + 𝑤)))
5251reu4 3670 . 2 (∃!𝑥𝐴𝑦𝐵 𝐶 = (𝑥 + 𝑦) ↔ (∃𝑥𝐴𝑦𝐵 𝐶 = (𝑥 + 𝑦) ∧ ∀𝑥𝐴𝑧𝐴 ((∃𝑦𝐵 𝐶 = (𝑥 + 𝑦) ∧ ∃𝑤𝐵 𝐶 = (𝑧 + 𝑤)) → 𝑥 = 𝑧)))
5344, 52sylibr 237 1 ((𝐶 ∈ (𝐴 + 𝐵) ∧ (𝐴𝐵) = 0) → ∃!𝑥𝐴𝑦𝐵 𝐶 = (𝑥 + 𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wral 3106  wrex 3107  ∃!wreu 3108  cin 3880  (class class class)co 7135  chba 28702   + cva 28703  0c0v 28707   cmv 28708   S csh 28711   + cph 28714  0c0h 28718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-hilex 28782  ax-hfvadd 28783  ax-hvcom 28784  ax-hvass 28785  ax-hv0cl 28786  ax-hvaddid 28787  ax-hfvmul 28788  ax-hvmulid 28789  ax-hvmulass 28790  ax-hvdistr1 28791  ax-hvdistr2 28792  ax-hvmul0 28793
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-po 5438  df-so 5439  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-grpo 28276  df-ablo 28328  df-hvsub 28754  df-sh 28990  df-ch0 29036  df-shs 29091
This theorem is referenced by:  cdj3lem2  30218
  Copyright terms: Public domain W3C validator