HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cdjreui Structured version   Visualization version   GIF version

Theorem cdjreui 32361
Description: A member of the sum of disjoint subspaces has a unique decomposition. Part of Lemma 5 of [Holland] p. 1520. (Contributed by NM, 20-May-2005.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdjreu.1 𝐴S
cdjreu.2 𝐵S
Assertion
Ref Expression
cdjreui ((𝐶 ∈ (𝐴 + 𝐵) ∧ (𝐴𝐵) = 0) → ∃!𝑥𝐴𝑦𝐵 𝐶 = (𝑥 + 𝑦))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦

Proof of Theorem cdjreui
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cdjreu.1 . . . . 5 𝐴S
2 cdjreu.2 . . . . 5 𝐵S
31, 2shseli 31245 . . . 4 (𝐶 ∈ (𝐴 + 𝐵) ↔ ∃𝑥𝐴𝑦𝐵 𝐶 = (𝑥 + 𝑦))
43biimpi 216 . . 3 (𝐶 ∈ (𝐴 + 𝐵) → ∃𝑥𝐴𝑦𝐵 𝐶 = (𝑥 + 𝑦))
5 reeanv 3209 . . . . 5 (∃𝑦𝐵𝑤𝐵 (𝐶 = (𝑥 + 𝑦) ∧ 𝐶 = (𝑧 + 𝑤)) ↔ (∃𝑦𝐵 𝐶 = (𝑥 + 𝑦) ∧ ∃𝑤𝐵 𝐶 = (𝑧 + 𝑤)))
6 eqtr2 2750 . . . . . . 7 ((𝐶 = (𝑥 + 𝑦) ∧ 𝐶 = (𝑧 + 𝑤)) → (𝑥 + 𝑦) = (𝑧 + 𝑤))
71sheli 31143 . . . . . . . . . . . 12 (𝑥𝐴𝑥 ∈ ℋ)
82sheli 31143 . . . . . . . . . . . 12 (𝑦𝐵𝑦 ∈ ℋ)
97, 8anim12i 613 . . . . . . . . . . 11 ((𝑥𝐴𝑦𝐵) → (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ))
101sheli 31143 . . . . . . . . . . . 12 (𝑧𝐴𝑧 ∈ ℋ)
112sheli 31143 . . . . . . . . . . . 12 (𝑤𝐵𝑤 ∈ ℋ)
1210, 11anim12i 613 . . . . . . . . . . 11 ((𝑧𝐴𝑤𝐵) → (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ))
13 hvaddsub4 31007 . . . . . . . . . . 11 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → ((𝑥 + 𝑦) = (𝑧 + 𝑤) ↔ (𝑥 𝑧) = (𝑤 𝑦)))
149, 12, 13syl2an 596 . . . . . . . . . 10 (((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐴𝑤𝐵)) → ((𝑥 + 𝑦) = (𝑧 + 𝑤) ↔ (𝑥 𝑧) = (𝑤 𝑦)))
1514an4s 660 . . . . . . . . 9 (((𝑥𝐴𝑧𝐴) ∧ (𝑦𝐵𝑤𝐵)) → ((𝑥 + 𝑦) = (𝑧 + 𝑤) ↔ (𝑥 𝑧) = (𝑤 𝑦)))
1615adantll 714 . . . . . . . 8 ((((𝐴𝐵) = 0 ∧ (𝑥𝐴𝑧𝐴)) ∧ (𝑦𝐵𝑤𝐵)) → ((𝑥 + 𝑦) = (𝑧 + 𝑤) ↔ (𝑥 𝑧) = (𝑤 𝑦)))
17 shsubcl 31149 . . . . . . . . . . . . . . . 16 ((𝐵S𝑤𝐵𝑦𝐵) → (𝑤 𝑦) ∈ 𝐵)
182, 17mp3an1 1450 . . . . . . . . . . . . . . 15 ((𝑤𝐵𝑦𝐵) → (𝑤 𝑦) ∈ 𝐵)
1918ancoms 458 . . . . . . . . . . . . . 14 ((𝑦𝐵𝑤𝐵) → (𝑤 𝑦) ∈ 𝐵)
20 eleq1 2816 . . . . . . . . . . . . . 14 ((𝑥 𝑧) = (𝑤 𝑦) → ((𝑥 𝑧) ∈ 𝐵 ↔ (𝑤 𝑦) ∈ 𝐵))
2119, 20syl5ibrcom 247 . . . . . . . . . . . . 13 ((𝑦𝐵𝑤𝐵) → ((𝑥 𝑧) = (𝑤 𝑦) → (𝑥 𝑧) ∈ 𝐵))
2221adantl 481 . . . . . . . . . . . 12 (((𝑥𝐴𝑧𝐴) ∧ (𝑦𝐵𝑤𝐵)) → ((𝑥 𝑧) = (𝑤 𝑦) → (𝑥 𝑧) ∈ 𝐵))
23 shsubcl 31149 . . . . . . . . . . . . . 14 ((𝐴S𝑥𝐴𝑧𝐴) → (𝑥 𝑧) ∈ 𝐴)
241, 23mp3an1 1450 . . . . . . . . . . . . 13 ((𝑥𝐴𝑧𝐴) → (𝑥 𝑧) ∈ 𝐴)
2524adantr 480 . . . . . . . . . . . 12 (((𝑥𝐴𝑧𝐴) ∧ (𝑦𝐵𝑤𝐵)) → (𝑥 𝑧) ∈ 𝐴)
2622, 25jctild 525 . . . . . . . . . . 11 (((𝑥𝐴𝑧𝐴) ∧ (𝑦𝐵𝑤𝐵)) → ((𝑥 𝑧) = (𝑤 𝑦) → ((𝑥 𝑧) ∈ 𝐴 ∧ (𝑥 𝑧) ∈ 𝐵)))
2726adantll 714 . . . . . . . . . 10 ((((𝐴𝐵) = 0 ∧ (𝑥𝐴𝑧𝐴)) ∧ (𝑦𝐵𝑤𝐵)) → ((𝑥 𝑧) = (𝑤 𝑦) → ((𝑥 𝑧) ∈ 𝐴 ∧ (𝑥 𝑧) ∈ 𝐵)))
28 elin 3930 . . . . . . . . . . . 12 ((𝑥 𝑧) ∈ (𝐴𝐵) ↔ ((𝑥 𝑧) ∈ 𝐴 ∧ (𝑥 𝑧) ∈ 𝐵))
29 eleq2 2817 . . . . . . . . . . . 12 ((𝐴𝐵) = 0 → ((𝑥 𝑧) ∈ (𝐴𝐵) ↔ (𝑥 𝑧) ∈ 0))
3028, 29bitr3id 285 . . . . . . . . . . 11 ((𝐴𝐵) = 0 → (((𝑥 𝑧) ∈ 𝐴 ∧ (𝑥 𝑧) ∈ 𝐵) ↔ (𝑥 𝑧) ∈ 0))
3130ad2antrr 726 . . . . . . . . . 10 ((((𝐴𝐵) = 0 ∧ (𝑥𝐴𝑧𝐴)) ∧ (𝑦𝐵𝑤𝐵)) → (((𝑥 𝑧) ∈ 𝐴 ∧ (𝑥 𝑧) ∈ 𝐵) ↔ (𝑥 𝑧) ∈ 0))
3227, 31sylibd 239 . . . . . . . . 9 ((((𝐴𝐵) = 0 ∧ (𝑥𝐴𝑧𝐴)) ∧ (𝑦𝐵𝑤𝐵)) → ((𝑥 𝑧) = (𝑤 𝑦) → (𝑥 𝑧) ∈ 0))
33 elch0 31183 . . . . . . . . . . . 12 ((𝑥 𝑧) ∈ 0 ↔ (𝑥 𝑧) = 0)
34 hvsubeq0 30997 . . . . . . . . . . . 12 ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑥 𝑧) = 0𝑥 = 𝑧))
3533, 34bitrid 283 . . . . . . . . . . 11 ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑥 𝑧) ∈ 0𝑥 = 𝑧))
367, 10, 35syl2an 596 . . . . . . . . . 10 ((𝑥𝐴𝑧𝐴) → ((𝑥 𝑧) ∈ 0𝑥 = 𝑧))
3736ad2antlr 727 . . . . . . . . 9 ((((𝐴𝐵) = 0 ∧ (𝑥𝐴𝑧𝐴)) ∧ (𝑦𝐵𝑤𝐵)) → ((𝑥 𝑧) ∈ 0𝑥 = 𝑧))
3832, 37sylibd 239 . . . . . . . 8 ((((𝐴𝐵) = 0 ∧ (𝑥𝐴𝑧𝐴)) ∧ (𝑦𝐵𝑤𝐵)) → ((𝑥 𝑧) = (𝑤 𝑦) → 𝑥 = 𝑧))
3916, 38sylbid 240 . . . . . . 7 ((((𝐴𝐵) = 0 ∧ (𝑥𝐴𝑧𝐴)) ∧ (𝑦𝐵𝑤𝐵)) → ((𝑥 + 𝑦) = (𝑧 + 𝑤) → 𝑥 = 𝑧))
406, 39syl5 34 . . . . . 6 ((((𝐴𝐵) = 0 ∧ (𝑥𝐴𝑧𝐴)) ∧ (𝑦𝐵𝑤𝐵)) → ((𝐶 = (𝑥 + 𝑦) ∧ 𝐶 = (𝑧 + 𝑤)) → 𝑥 = 𝑧))
4140rexlimdvva 3194 . . . . 5 (((𝐴𝐵) = 0 ∧ (𝑥𝐴𝑧𝐴)) → (∃𝑦𝐵𝑤𝐵 (𝐶 = (𝑥 + 𝑦) ∧ 𝐶 = (𝑧 + 𝑤)) → 𝑥 = 𝑧))
425, 41biimtrrid 243 . . . 4 (((𝐴𝐵) = 0 ∧ (𝑥𝐴𝑧𝐴)) → ((∃𝑦𝐵 𝐶 = (𝑥 + 𝑦) ∧ ∃𝑤𝐵 𝐶 = (𝑧 + 𝑤)) → 𝑥 = 𝑧))
4342ralrimivva 3180 . . 3 ((𝐴𝐵) = 0 → ∀𝑥𝐴𝑧𝐴 ((∃𝑦𝐵 𝐶 = (𝑥 + 𝑦) ∧ ∃𝑤𝐵 𝐶 = (𝑧 + 𝑤)) → 𝑥 = 𝑧))
444, 43anim12i 613 . 2 ((𝐶 ∈ (𝐴 + 𝐵) ∧ (𝐴𝐵) = 0) → (∃𝑥𝐴𝑦𝐵 𝐶 = (𝑥 + 𝑦) ∧ ∀𝑥𝐴𝑧𝐴 ((∃𝑦𝐵 𝐶 = (𝑥 + 𝑦) ∧ ∃𝑤𝐵 𝐶 = (𝑧 + 𝑤)) → 𝑥 = 𝑧)))
45 oveq1 7394 . . . . . 6 (𝑥 = 𝑧 → (𝑥 + 𝑦) = (𝑧 + 𝑦))
4645eqeq2d 2740 . . . . 5 (𝑥 = 𝑧 → (𝐶 = (𝑥 + 𝑦) ↔ 𝐶 = (𝑧 + 𝑦)))
4746rexbidv 3157 . . . 4 (𝑥 = 𝑧 → (∃𝑦𝐵 𝐶 = (𝑥 + 𝑦) ↔ ∃𝑦𝐵 𝐶 = (𝑧 + 𝑦)))
48 oveq2 7395 . . . . . 6 (𝑦 = 𝑤 → (𝑧 + 𝑦) = (𝑧 + 𝑤))
4948eqeq2d 2740 . . . . 5 (𝑦 = 𝑤 → (𝐶 = (𝑧 + 𝑦) ↔ 𝐶 = (𝑧 + 𝑤)))
5049cbvrexvw 3216 . . . 4 (∃𝑦𝐵 𝐶 = (𝑧 + 𝑦) ↔ ∃𝑤𝐵 𝐶 = (𝑧 + 𝑤))
5147, 50bitrdi 287 . . 3 (𝑥 = 𝑧 → (∃𝑦𝐵 𝐶 = (𝑥 + 𝑦) ↔ ∃𝑤𝐵 𝐶 = (𝑧 + 𝑤)))
5251reu4 3702 . 2 (∃!𝑥𝐴𝑦𝐵 𝐶 = (𝑥 + 𝑦) ↔ (∃𝑥𝐴𝑦𝐵 𝐶 = (𝑥 + 𝑦) ∧ ∀𝑥𝐴𝑧𝐴 ((∃𝑦𝐵 𝐶 = (𝑥 + 𝑦) ∧ ∃𝑤𝐵 𝐶 = (𝑧 + 𝑤)) → 𝑥 = 𝑧)))
5344, 52sylibr 234 1 ((𝐶 ∈ (𝐴 + 𝐵) ∧ (𝐴𝐵) = 0) → ∃!𝑥𝐴𝑦𝐵 𝐶 = (𝑥 + 𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  ∃!wreu 3352  cin 3913  (class class class)co 7387  chba 30848   + cva 30849  0c0v 30853   cmv 30854   S csh 30857   + cph 30860  0c0h 30864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-hilex 30928  ax-hfvadd 30929  ax-hvcom 30930  ax-hvass 30931  ax-hv0cl 30932  ax-hvaddid 30933  ax-hfvmul 30934  ax-hvmulid 30935  ax-hvmulass 30936  ax-hvdistr1 30937  ax-hvdistr2 30938  ax-hvmul0 30939
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-po 5546  df-so 5547  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-grpo 30422  df-ablo 30474  df-hvsub 30900  df-sh 31136  df-ch0 31182  df-shs 31237
This theorem is referenced by:  cdj3lem2  32364
  Copyright terms: Public domain W3C validator