HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  eleigvec Structured version   Visualization version   GIF version

Theorem eleigvec 31886
Description: Membership in the set of eigenvectors of a Hilbert space operator. (Contributed by NM, 11-Mar-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Assertion
Ref Expression
eleigvec (𝑇: ℋ⟶ ℋ → (𝐴 ∈ (eigvec‘𝑇) ↔ (𝐴 ∈ ℋ ∧ 𝐴 ≠ 0 ∧ ∃𝑥 ∈ ℂ (𝑇𝐴) = (𝑥 · 𝐴))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑇

Proof of Theorem eleigvec
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eigvecval 31825 . . 3 (𝑇: ℋ⟶ ℋ → (eigvec‘𝑇) = {𝑦 ∈ ( ℋ ∖ 0) ∣ ∃𝑥 ∈ ℂ (𝑇𝑦) = (𝑥 · 𝑦)})
21eleq2d 2814 . 2 (𝑇: ℋ⟶ ℋ → (𝐴 ∈ (eigvec‘𝑇) ↔ 𝐴 ∈ {𝑦 ∈ ( ℋ ∖ 0) ∣ ∃𝑥 ∈ ℂ (𝑇𝑦) = (𝑥 · 𝑦)}))
3 eldif 3924 . . . . 5 (𝐴 ∈ ( ℋ ∖ 0) ↔ (𝐴 ∈ ℋ ∧ ¬ 𝐴 ∈ 0))
4 elch0 31183 . . . . . . 7 (𝐴 ∈ 0𝐴 = 0)
54necon3bbii 2972 . . . . . 6 𝐴 ∈ 0𝐴 ≠ 0)
65anbi2i 623 . . . . 5 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 ∈ 0) ↔ (𝐴 ∈ ℋ ∧ 𝐴 ≠ 0))
73, 6bitri 275 . . . 4 (𝐴 ∈ ( ℋ ∖ 0) ↔ (𝐴 ∈ ℋ ∧ 𝐴 ≠ 0))
87anbi1i 624 . . 3 ((𝐴 ∈ ( ℋ ∖ 0) ∧ ∃𝑥 ∈ ℂ (𝑇𝐴) = (𝑥 · 𝐴)) ↔ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) ∧ ∃𝑥 ∈ ℂ (𝑇𝐴) = (𝑥 · 𝐴)))
9 fveq2 6858 . . . . . 6 (𝑦 = 𝐴 → (𝑇𝑦) = (𝑇𝐴))
10 oveq2 7395 . . . . . 6 (𝑦 = 𝐴 → (𝑥 · 𝑦) = (𝑥 · 𝐴))
119, 10eqeq12d 2745 . . . . 5 (𝑦 = 𝐴 → ((𝑇𝑦) = (𝑥 · 𝑦) ↔ (𝑇𝐴) = (𝑥 · 𝐴)))
1211rexbidv 3157 . . . 4 (𝑦 = 𝐴 → (∃𝑥 ∈ ℂ (𝑇𝑦) = (𝑥 · 𝑦) ↔ ∃𝑥 ∈ ℂ (𝑇𝐴) = (𝑥 · 𝐴)))
1312elrab 3659 . . 3 (𝐴 ∈ {𝑦 ∈ ( ℋ ∖ 0) ∣ ∃𝑥 ∈ ℂ (𝑇𝑦) = (𝑥 · 𝑦)} ↔ (𝐴 ∈ ( ℋ ∖ 0) ∧ ∃𝑥 ∈ ℂ (𝑇𝐴) = (𝑥 · 𝐴)))
14 df-3an 1088 . . 3 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0 ∧ ∃𝑥 ∈ ℂ (𝑇𝐴) = (𝑥 · 𝐴)) ↔ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) ∧ ∃𝑥 ∈ ℂ (𝑇𝐴) = (𝑥 · 𝐴)))
158, 13, 143bitr4i 303 . 2 (𝐴 ∈ {𝑦 ∈ ( ℋ ∖ 0) ∣ ∃𝑥 ∈ ℂ (𝑇𝑦) = (𝑥 · 𝑦)} ↔ (𝐴 ∈ ℋ ∧ 𝐴 ≠ 0 ∧ ∃𝑥 ∈ ℂ (𝑇𝐴) = (𝑥 · 𝐴)))
162, 15bitrdi 287 1 (𝑇: ℋ⟶ ℋ → (𝐴 ∈ (eigvec‘𝑇) ↔ (𝐴 ∈ ℋ ∧ 𝐴 ≠ 0 ∧ ∃𝑥 ∈ ℂ (𝑇𝐴) = (𝑥 · 𝐴))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053  {crab 3405  cdif 3911  wf 6507  cfv 6511  (class class class)co 7387  cc 11066  chba 30848   · csm 30850  0c0v 30853  0c0h 30864  eigveccei 30888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-hilex 30928  ax-hv0cl 30932
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-map 8801  df-ch0 31182  df-eigvec 31782
This theorem is referenced by:  eleigvec2  31887  eigvalcl  31890
  Copyright terms: Public domain W3C validator