HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  eleigvec Structured version   Visualization version   GIF version

Theorem eleigvec 31893
Description: Membership in the set of eigenvectors of a Hilbert space operator. (Contributed by NM, 11-Mar-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Assertion
Ref Expression
eleigvec (𝑇: ℋ⟶ ℋ → (𝐴 ∈ (eigvec‘𝑇) ↔ (𝐴 ∈ ℋ ∧ 𝐴 ≠ 0 ∧ ∃𝑥 ∈ ℂ (𝑇𝐴) = (𝑥 · 𝐴))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑇

Proof of Theorem eleigvec
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eigvecval 31832 . . 3 (𝑇: ℋ⟶ ℋ → (eigvec‘𝑇) = {𝑦 ∈ ( ℋ ∖ 0) ∣ ∃𝑥 ∈ ℂ (𝑇𝑦) = (𝑥 · 𝑦)})
21eleq2d 2815 . 2 (𝑇: ℋ⟶ ℋ → (𝐴 ∈ (eigvec‘𝑇) ↔ 𝐴 ∈ {𝑦 ∈ ( ℋ ∖ 0) ∣ ∃𝑥 ∈ ℂ (𝑇𝑦) = (𝑥 · 𝑦)}))
3 eldif 3927 . . . . 5 (𝐴 ∈ ( ℋ ∖ 0) ↔ (𝐴 ∈ ℋ ∧ ¬ 𝐴 ∈ 0))
4 elch0 31190 . . . . . . 7 (𝐴 ∈ 0𝐴 = 0)
54necon3bbii 2973 . . . . . 6 𝐴 ∈ 0𝐴 ≠ 0)
65anbi2i 623 . . . . 5 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 ∈ 0) ↔ (𝐴 ∈ ℋ ∧ 𝐴 ≠ 0))
73, 6bitri 275 . . . 4 (𝐴 ∈ ( ℋ ∖ 0) ↔ (𝐴 ∈ ℋ ∧ 𝐴 ≠ 0))
87anbi1i 624 . . 3 ((𝐴 ∈ ( ℋ ∖ 0) ∧ ∃𝑥 ∈ ℂ (𝑇𝐴) = (𝑥 · 𝐴)) ↔ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) ∧ ∃𝑥 ∈ ℂ (𝑇𝐴) = (𝑥 · 𝐴)))
9 fveq2 6861 . . . . . 6 (𝑦 = 𝐴 → (𝑇𝑦) = (𝑇𝐴))
10 oveq2 7398 . . . . . 6 (𝑦 = 𝐴 → (𝑥 · 𝑦) = (𝑥 · 𝐴))
119, 10eqeq12d 2746 . . . . 5 (𝑦 = 𝐴 → ((𝑇𝑦) = (𝑥 · 𝑦) ↔ (𝑇𝐴) = (𝑥 · 𝐴)))
1211rexbidv 3158 . . . 4 (𝑦 = 𝐴 → (∃𝑥 ∈ ℂ (𝑇𝑦) = (𝑥 · 𝑦) ↔ ∃𝑥 ∈ ℂ (𝑇𝐴) = (𝑥 · 𝐴)))
1312elrab 3662 . . 3 (𝐴 ∈ {𝑦 ∈ ( ℋ ∖ 0) ∣ ∃𝑥 ∈ ℂ (𝑇𝑦) = (𝑥 · 𝑦)} ↔ (𝐴 ∈ ( ℋ ∖ 0) ∧ ∃𝑥 ∈ ℂ (𝑇𝐴) = (𝑥 · 𝐴)))
14 df-3an 1088 . . 3 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0 ∧ ∃𝑥 ∈ ℂ (𝑇𝐴) = (𝑥 · 𝐴)) ↔ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) ∧ ∃𝑥 ∈ ℂ (𝑇𝐴) = (𝑥 · 𝐴)))
158, 13, 143bitr4i 303 . 2 (𝐴 ∈ {𝑦 ∈ ( ℋ ∖ 0) ∣ ∃𝑥 ∈ ℂ (𝑇𝑦) = (𝑥 · 𝑦)} ↔ (𝐴 ∈ ℋ ∧ 𝐴 ≠ 0 ∧ ∃𝑥 ∈ ℂ (𝑇𝐴) = (𝑥 · 𝐴)))
162, 15bitrdi 287 1 (𝑇: ℋ⟶ ℋ → (𝐴 ∈ (eigvec‘𝑇) ↔ (𝐴 ∈ ℋ ∧ 𝐴 ≠ 0 ∧ ∃𝑥 ∈ ℂ (𝑇𝐴) = (𝑥 · 𝐴))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wrex 3054  {crab 3408  cdif 3914  wf 6510  cfv 6514  (class class class)co 7390  cc 11073  chba 30855   · csm 30857  0c0v 30860  0c0h 30871  eigveccei 30895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-hilex 30935  ax-hv0cl 30939
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-map 8804  df-ch0 31189  df-eigvec 31789
This theorem is referenced by:  eleigvec2  31894  eigvalcl  31897
  Copyright terms: Public domain W3C validator