![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > eleigvec | Structured version Visualization version GIF version |
Description: Membership in the set of eigenvectors of a Hilbert space operator. (Contributed by NM, 11-Mar-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
eleigvec | ⊢ (𝑇: ℋ⟶ ℋ → (𝐴 ∈ (eigvec‘𝑇) ↔ (𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ∧ ∃𝑥 ∈ ℂ (𝑇‘𝐴) = (𝑥 ·ℎ 𝐴)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eigvecval 31693 | . . 3 ⊢ (𝑇: ℋ⟶ ℋ → (eigvec‘𝑇) = {𝑦 ∈ ( ℋ ∖ 0ℋ) ∣ ∃𝑥 ∈ ℂ (𝑇‘𝑦) = (𝑥 ·ℎ 𝑦)}) | |
2 | 1 | eleq2d 2814 | . 2 ⊢ (𝑇: ℋ⟶ ℋ → (𝐴 ∈ (eigvec‘𝑇) ↔ 𝐴 ∈ {𝑦 ∈ ( ℋ ∖ 0ℋ) ∣ ∃𝑥 ∈ ℂ (𝑇‘𝑦) = (𝑥 ·ℎ 𝑦)})) |
3 | eldif 3954 | . . . . 5 ⊢ (𝐴 ∈ ( ℋ ∖ 0ℋ) ↔ (𝐴 ∈ ℋ ∧ ¬ 𝐴 ∈ 0ℋ)) | |
4 | elch0 31051 | . . . . . . 7 ⊢ (𝐴 ∈ 0ℋ ↔ 𝐴 = 0ℎ) | |
5 | 4 | necon3bbii 2983 | . . . . . 6 ⊢ (¬ 𝐴 ∈ 0ℋ ↔ 𝐴 ≠ 0ℎ) |
6 | 5 | anbi2i 622 | . . . . 5 ⊢ ((𝐴 ∈ ℋ ∧ ¬ 𝐴 ∈ 0ℋ) ↔ (𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)) |
7 | 3, 6 | bitri 275 | . . . 4 ⊢ (𝐴 ∈ ( ℋ ∖ 0ℋ) ↔ (𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)) |
8 | 7 | anbi1i 623 | . . 3 ⊢ ((𝐴 ∈ ( ℋ ∖ 0ℋ) ∧ ∃𝑥 ∈ ℂ (𝑇‘𝐴) = (𝑥 ·ℎ 𝐴)) ↔ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ) ∧ ∃𝑥 ∈ ℂ (𝑇‘𝐴) = (𝑥 ·ℎ 𝐴))) |
9 | fveq2 6891 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (𝑇‘𝑦) = (𝑇‘𝐴)) | |
10 | oveq2 7422 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (𝑥 ·ℎ 𝑦) = (𝑥 ·ℎ 𝐴)) | |
11 | 9, 10 | eqeq12d 2743 | . . . . 5 ⊢ (𝑦 = 𝐴 → ((𝑇‘𝑦) = (𝑥 ·ℎ 𝑦) ↔ (𝑇‘𝐴) = (𝑥 ·ℎ 𝐴))) |
12 | 11 | rexbidv 3173 | . . . 4 ⊢ (𝑦 = 𝐴 → (∃𝑥 ∈ ℂ (𝑇‘𝑦) = (𝑥 ·ℎ 𝑦) ↔ ∃𝑥 ∈ ℂ (𝑇‘𝐴) = (𝑥 ·ℎ 𝐴))) |
13 | 12 | elrab 3680 | . . 3 ⊢ (𝐴 ∈ {𝑦 ∈ ( ℋ ∖ 0ℋ) ∣ ∃𝑥 ∈ ℂ (𝑇‘𝑦) = (𝑥 ·ℎ 𝑦)} ↔ (𝐴 ∈ ( ℋ ∖ 0ℋ) ∧ ∃𝑥 ∈ ℂ (𝑇‘𝐴) = (𝑥 ·ℎ 𝐴))) |
14 | df-3an 1087 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ∧ ∃𝑥 ∈ ℂ (𝑇‘𝐴) = (𝑥 ·ℎ 𝐴)) ↔ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ) ∧ ∃𝑥 ∈ ℂ (𝑇‘𝐴) = (𝑥 ·ℎ 𝐴))) | |
15 | 8, 13, 14 | 3bitr4i 303 | . 2 ⊢ (𝐴 ∈ {𝑦 ∈ ( ℋ ∖ 0ℋ) ∣ ∃𝑥 ∈ ℂ (𝑇‘𝑦) = (𝑥 ·ℎ 𝑦)} ↔ (𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ∧ ∃𝑥 ∈ ℂ (𝑇‘𝐴) = (𝑥 ·ℎ 𝐴))) |
16 | 2, 15 | bitrdi 287 | 1 ⊢ (𝑇: ℋ⟶ ℋ → (𝐴 ∈ (eigvec‘𝑇) ↔ (𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ∧ ∃𝑥 ∈ ℂ (𝑇‘𝐴) = (𝑥 ·ℎ 𝐴)))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 ≠ wne 2935 ∃wrex 3065 {crab 3427 ∖ cdif 3941 ⟶wf 6538 ‘cfv 6542 (class class class)co 7414 ℂcc 11128 ℋchba 30716 ·ℎ csm 30718 0ℎc0v 30721 0ℋc0h 30732 eigveccei 30756 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-hilex 30796 ax-hv0cl 30800 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-sbc 3775 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-map 8838 df-ch0 31050 df-eigvec 31650 |
This theorem is referenced by: eleigvec2 31755 eigvalcl 31758 |
Copyright terms: Public domain | W3C validator |