| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > eleigvec | Structured version Visualization version GIF version | ||
| Description: Membership in the set of eigenvectors of a Hilbert space operator. (Contributed by NM, 11-Mar-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| eleigvec | ⊢ (𝑇: ℋ⟶ ℋ → (𝐴 ∈ (eigvec‘𝑇) ↔ (𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ∧ ∃𝑥 ∈ ℂ (𝑇‘𝐴) = (𝑥 ·ℎ 𝐴)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eigvecval 31887 | . . 3 ⊢ (𝑇: ℋ⟶ ℋ → (eigvec‘𝑇) = {𝑦 ∈ ( ℋ ∖ 0ℋ) ∣ ∃𝑥 ∈ ℂ (𝑇‘𝑦) = (𝑥 ·ℎ 𝑦)}) | |
| 2 | 1 | eleq2d 2819 | . 2 ⊢ (𝑇: ℋ⟶ ℋ → (𝐴 ∈ (eigvec‘𝑇) ↔ 𝐴 ∈ {𝑦 ∈ ( ℋ ∖ 0ℋ) ∣ ∃𝑥 ∈ ℂ (𝑇‘𝑦) = (𝑥 ·ℎ 𝑦)})) |
| 3 | eldif 3909 | . . . . 5 ⊢ (𝐴 ∈ ( ℋ ∖ 0ℋ) ↔ (𝐴 ∈ ℋ ∧ ¬ 𝐴 ∈ 0ℋ)) | |
| 4 | elch0 31245 | . . . . . . 7 ⊢ (𝐴 ∈ 0ℋ ↔ 𝐴 = 0ℎ) | |
| 5 | 4 | necon3bbii 2977 | . . . . . 6 ⊢ (¬ 𝐴 ∈ 0ℋ ↔ 𝐴 ≠ 0ℎ) |
| 6 | 5 | anbi2i 623 | . . . . 5 ⊢ ((𝐴 ∈ ℋ ∧ ¬ 𝐴 ∈ 0ℋ) ↔ (𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)) |
| 7 | 3, 6 | bitri 275 | . . . 4 ⊢ (𝐴 ∈ ( ℋ ∖ 0ℋ) ↔ (𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)) |
| 8 | 7 | anbi1i 624 | . . 3 ⊢ ((𝐴 ∈ ( ℋ ∖ 0ℋ) ∧ ∃𝑥 ∈ ℂ (𝑇‘𝐴) = (𝑥 ·ℎ 𝐴)) ↔ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ) ∧ ∃𝑥 ∈ ℂ (𝑇‘𝐴) = (𝑥 ·ℎ 𝐴))) |
| 9 | fveq2 6831 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (𝑇‘𝑦) = (𝑇‘𝐴)) | |
| 10 | oveq2 7363 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (𝑥 ·ℎ 𝑦) = (𝑥 ·ℎ 𝐴)) | |
| 11 | 9, 10 | eqeq12d 2749 | . . . . 5 ⊢ (𝑦 = 𝐴 → ((𝑇‘𝑦) = (𝑥 ·ℎ 𝑦) ↔ (𝑇‘𝐴) = (𝑥 ·ℎ 𝐴))) |
| 12 | 11 | rexbidv 3158 | . . . 4 ⊢ (𝑦 = 𝐴 → (∃𝑥 ∈ ℂ (𝑇‘𝑦) = (𝑥 ·ℎ 𝑦) ↔ ∃𝑥 ∈ ℂ (𝑇‘𝐴) = (𝑥 ·ℎ 𝐴))) |
| 13 | 12 | elrab 3644 | . . 3 ⊢ (𝐴 ∈ {𝑦 ∈ ( ℋ ∖ 0ℋ) ∣ ∃𝑥 ∈ ℂ (𝑇‘𝑦) = (𝑥 ·ℎ 𝑦)} ↔ (𝐴 ∈ ( ℋ ∖ 0ℋ) ∧ ∃𝑥 ∈ ℂ (𝑇‘𝐴) = (𝑥 ·ℎ 𝐴))) |
| 14 | df-3an 1088 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ∧ ∃𝑥 ∈ ℂ (𝑇‘𝐴) = (𝑥 ·ℎ 𝐴)) ↔ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ) ∧ ∃𝑥 ∈ ℂ (𝑇‘𝐴) = (𝑥 ·ℎ 𝐴))) | |
| 15 | 8, 13, 14 | 3bitr4i 303 | . 2 ⊢ (𝐴 ∈ {𝑦 ∈ ( ℋ ∖ 0ℋ) ∣ ∃𝑥 ∈ ℂ (𝑇‘𝑦) = (𝑥 ·ℎ 𝑦)} ↔ (𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ∧ ∃𝑥 ∈ ℂ (𝑇‘𝐴) = (𝑥 ·ℎ 𝐴))) |
| 16 | 2, 15 | bitrdi 287 | 1 ⊢ (𝑇: ℋ⟶ ℋ → (𝐴 ∈ (eigvec‘𝑇) ↔ (𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ∧ ∃𝑥 ∈ ℂ (𝑇‘𝐴) = (𝑥 ·ℎ 𝐴)))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ≠ wne 2930 ∃wrex 3058 {crab 3397 ∖ cdif 3896 ⟶wf 6485 ‘cfv 6489 (class class class)co 7355 ℂcc 11014 ℋchba 30910 ·ℎ csm 30912 0ℎc0v 30915 0ℋc0h 30926 eigveccei 30950 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-hilex 30990 ax-hv0cl 30994 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-ral 3050 df-rex 3059 df-rab 3398 df-v 3440 df-sbc 3739 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-map 8761 df-ch0 31244 df-eigvec 31844 |
| This theorem is referenced by: eleigvec2 31949 eigvalcl 31952 |
| Copyright terms: Public domain | W3C validator |