| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > eleigvec | Structured version Visualization version GIF version | ||
| Description: Membership in the set of eigenvectors of a Hilbert space operator. (Contributed by NM, 11-Mar-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| eleigvec | ⊢ (𝑇: ℋ⟶ ℋ → (𝐴 ∈ (eigvec‘𝑇) ↔ (𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ∧ ∃𝑥 ∈ ℂ (𝑇‘𝐴) = (𝑥 ·ℎ 𝐴)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eigvecval 31832 | . . 3 ⊢ (𝑇: ℋ⟶ ℋ → (eigvec‘𝑇) = {𝑦 ∈ ( ℋ ∖ 0ℋ) ∣ ∃𝑥 ∈ ℂ (𝑇‘𝑦) = (𝑥 ·ℎ 𝑦)}) | |
| 2 | 1 | eleq2d 2815 | . 2 ⊢ (𝑇: ℋ⟶ ℋ → (𝐴 ∈ (eigvec‘𝑇) ↔ 𝐴 ∈ {𝑦 ∈ ( ℋ ∖ 0ℋ) ∣ ∃𝑥 ∈ ℂ (𝑇‘𝑦) = (𝑥 ·ℎ 𝑦)})) |
| 3 | eldif 3927 | . . . . 5 ⊢ (𝐴 ∈ ( ℋ ∖ 0ℋ) ↔ (𝐴 ∈ ℋ ∧ ¬ 𝐴 ∈ 0ℋ)) | |
| 4 | elch0 31190 | . . . . . . 7 ⊢ (𝐴 ∈ 0ℋ ↔ 𝐴 = 0ℎ) | |
| 5 | 4 | necon3bbii 2973 | . . . . . 6 ⊢ (¬ 𝐴 ∈ 0ℋ ↔ 𝐴 ≠ 0ℎ) |
| 6 | 5 | anbi2i 623 | . . . . 5 ⊢ ((𝐴 ∈ ℋ ∧ ¬ 𝐴 ∈ 0ℋ) ↔ (𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)) |
| 7 | 3, 6 | bitri 275 | . . . 4 ⊢ (𝐴 ∈ ( ℋ ∖ 0ℋ) ↔ (𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)) |
| 8 | 7 | anbi1i 624 | . . 3 ⊢ ((𝐴 ∈ ( ℋ ∖ 0ℋ) ∧ ∃𝑥 ∈ ℂ (𝑇‘𝐴) = (𝑥 ·ℎ 𝐴)) ↔ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ) ∧ ∃𝑥 ∈ ℂ (𝑇‘𝐴) = (𝑥 ·ℎ 𝐴))) |
| 9 | fveq2 6861 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (𝑇‘𝑦) = (𝑇‘𝐴)) | |
| 10 | oveq2 7398 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (𝑥 ·ℎ 𝑦) = (𝑥 ·ℎ 𝐴)) | |
| 11 | 9, 10 | eqeq12d 2746 | . . . . 5 ⊢ (𝑦 = 𝐴 → ((𝑇‘𝑦) = (𝑥 ·ℎ 𝑦) ↔ (𝑇‘𝐴) = (𝑥 ·ℎ 𝐴))) |
| 12 | 11 | rexbidv 3158 | . . . 4 ⊢ (𝑦 = 𝐴 → (∃𝑥 ∈ ℂ (𝑇‘𝑦) = (𝑥 ·ℎ 𝑦) ↔ ∃𝑥 ∈ ℂ (𝑇‘𝐴) = (𝑥 ·ℎ 𝐴))) |
| 13 | 12 | elrab 3662 | . . 3 ⊢ (𝐴 ∈ {𝑦 ∈ ( ℋ ∖ 0ℋ) ∣ ∃𝑥 ∈ ℂ (𝑇‘𝑦) = (𝑥 ·ℎ 𝑦)} ↔ (𝐴 ∈ ( ℋ ∖ 0ℋ) ∧ ∃𝑥 ∈ ℂ (𝑇‘𝐴) = (𝑥 ·ℎ 𝐴))) |
| 14 | df-3an 1088 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ∧ ∃𝑥 ∈ ℂ (𝑇‘𝐴) = (𝑥 ·ℎ 𝐴)) ↔ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ) ∧ ∃𝑥 ∈ ℂ (𝑇‘𝐴) = (𝑥 ·ℎ 𝐴))) | |
| 15 | 8, 13, 14 | 3bitr4i 303 | . 2 ⊢ (𝐴 ∈ {𝑦 ∈ ( ℋ ∖ 0ℋ) ∣ ∃𝑥 ∈ ℂ (𝑇‘𝑦) = (𝑥 ·ℎ 𝑦)} ↔ (𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ∧ ∃𝑥 ∈ ℂ (𝑇‘𝐴) = (𝑥 ·ℎ 𝐴))) |
| 16 | 2, 15 | bitrdi 287 | 1 ⊢ (𝑇: ℋ⟶ ℋ → (𝐴 ∈ (eigvec‘𝑇) ↔ (𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ∧ ∃𝑥 ∈ ℂ (𝑇‘𝐴) = (𝑥 ·ℎ 𝐴)))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∃wrex 3054 {crab 3408 ∖ cdif 3914 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 ℂcc 11073 ℋchba 30855 ·ℎ csm 30857 0ℎc0v 30860 0ℋc0h 30871 eigveccei 30895 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-hilex 30935 ax-hv0cl 30939 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-map 8804 df-ch0 31189 df-eigvec 31789 |
| This theorem is referenced by: eleigvec2 31894 eigvalcl 31897 |
| Copyright terms: Public domain | W3C validator |