HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  eleigvec Structured version   Visualization version   GIF version

Theorem eleigvec 31948
Description: Membership in the set of eigenvectors of a Hilbert space operator. (Contributed by NM, 11-Mar-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Assertion
Ref Expression
eleigvec (𝑇: ℋ⟶ ℋ → (𝐴 ∈ (eigvec‘𝑇) ↔ (𝐴 ∈ ℋ ∧ 𝐴 ≠ 0 ∧ ∃𝑥 ∈ ℂ (𝑇𝐴) = (𝑥 · 𝐴))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑇

Proof of Theorem eleigvec
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eigvecval 31887 . . 3 (𝑇: ℋ⟶ ℋ → (eigvec‘𝑇) = {𝑦 ∈ ( ℋ ∖ 0) ∣ ∃𝑥 ∈ ℂ (𝑇𝑦) = (𝑥 · 𝑦)})
21eleq2d 2819 . 2 (𝑇: ℋ⟶ ℋ → (𝐴 ∈ (eigvec‘𝑇) ↔ 𝐴 ∈ {𝑦 ∈ ( ℋ ∖ 0) ∣ ∃𝑥 ∈ ℂ (𝑇𝑦) = (𝑥 · 𝑦)}))
3 eldif 3909 . . . . 5 (𝐴 ∈ ( ℋ ∖ 0) ↔ (𝐴 ∈ ℋ ∧ ¬ 𝐴 ∈ 0))
4 elch0 31245 . . . . . . 7 (𝐴 ∈ 0𝐴 = 0)
54necon3bbii 2977 . . . . . 6 𝐴 ∈ 0𝐴 ≠ 0)
65anbi2i 623 . . . . 5 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 ∈ 0) ↔ (𝐴 ∈ ℋ ∧ 𝐴 ≠ 0))
73, 6bitri 275 . . . 4 (𝐴 ∈ ( ℋ ∖ 0) ↔ (𝐴 ∈ ℋ ∧ 𝐴 ≠ 0))
87anbi1i 624 . . 3 ((𝐴 ∈ ( ℋ ∖ 0) ∧ ∃𝑥 ∈ ℂ (𝑇𝐴) = (𝑥 · 𝐴)) ↔ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) ∧ ∃𝑥 ∈ ℂ (𝑇𝐴) = (𝑥 · 𝐴)))
9 fveq2 6831 . . . . . 6 (𝑦 = 𝐴 → (𝑇𝑦) = (𝑇𝐴))
10 oveq2 7363 . . . . . 6 (𝑦 = 𝐴 → (𝑥 · 𝑦) = (𝑥 · 𝐴))
119, 10eqeq12d 2749 . . . . 5 (𝑦 = 𝐴 → ((𝑇𝑦) = (𝑥 · 𝑦) ↔ (𝑇𝐴) = (𝑥 · 𝐴)))
1211rexbidv 3158 . . . 4 (𝑦 = 𝐴 → (∃𝑥 ∈ ℂ (𝑇𝑦) = (𝑥 · 𝑦) ↔ ∃𝑥 ∈ ℂ (𝑇𝐴) = (𝑥 · 𝐴)))
1312elrab 3644 . . 3 (𝐴 ∈ {𝑦 ∈ ( ℋ ∖ 0) ∣ ∃𝑥 ∈ ℂ (𝑇𝑦) = (𝑥 · 𝑦)} ↔ (𝐴 ∈ ( ℋ ∖ 0) ∧ ∃𝑥 ∈ ℂ (𝑇𝐴) = (𝑥 · 𝐴)))
14 df-3an 1088 . . 3 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0 ∧ ∃𝑥 ∈ ℂ (𝑇𝐴) = (𝑥 · 𝐴)) ↔ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) ∧ ∃𝑥 ∈ ℂ (𝑇𝐴) = (𝑥 · 𝐴)))
158, 13, 143bitr4i 303 . 2 (𝐴 ∈ {𝑦 ∈ ( ℋ ∖ 0) ∣ ∃𝑥 ∈ ℂ (𝑇𝑦) = (𝑥 · 𝑦)} ↔ (𝐴 ∈ ℋ ∧ 𝐴 ≠ 0 ∧ ∃𝑥 ∈ ℂ (𝑇𝐴) = (𝑥 · 𝐴)))
162, 15bitrdi 287 1 (𝑇: ℋ⟶ ℋ → (𝐴 ∈ (eigvec‘𝑇) ↔ (𝐴 ∈ ℋ ∧ 𝐴 ≠ 0 ∧ ∃𝑥 ∈ ℂ (𝑇𝐴) = (𝑥 · 𝐴))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wne 2930  wrex 3058  {crab 3397  cdif 3896  wf 6485  cfv 6489  (class class class)co 7355  cc 11014  chba 30910   · csm 30912  0c0v 30915  0c0h 30926  eigveccei 30950
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-hilex 30990  ax-hv0cl 30994
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-ral 3050  df-rex 3059  df-rab 3398  df-v 3440  df-sbc 3739  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-map 8761  df-ch0 31244  df-eigvec 31844
This theorem is referenced by:  eleigvec2  31949  eigvalcl  31952
  Copyright terms: Public domain W3C validator