HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  eleigvec Structured version   Visualization version   GIF version

Theorem eleigvec 31989
Description: Membership in the set of eigenvectors of a Hilbert space operator. (Contributed by NM, 11-Mar-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Assertion
Ref Expression
eleigvec (𝑇: ℋ⟶ ℋ → (𝐴 ∈ (eigvec‘𝑇) ↔ (𝐴 ∈ ℋ ∧ 𝐴 ≠ 0 ∧ ∃𝑥 ∈ ℂ (𝑇𝐴) = (𝑥 · 𝐴))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑇

Proof of Theorem eleigvec
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eigvecval 31928 . . 3 (𝑇: ℋ⟶ ℋ → (eigvec‘𝑇) = {𝑦 ∈ ( ℋ ∖ 0) ∣ ∃𝑥 ∈ ℂ (𝑇𝑦) = (𝑥 · 𝑦)})
21eleq2d 2830 . 2 (𝑇: ℋ⟶ ℋ → (𝐴 ∈ (eigvec‘𝑇) ↔ 𝐴 ∈ {𝑦 ∈ ( ℋ ∖ 0) ∣ ∃𝑥 ∈ ℂ (𝑇𝑦) = (𝑥 · 𝑦)}))
3 eldif 3986 . . . . 5 (𝐴 ∈ ( ℋ ∖ 0) ↔ (𝐴 ∈ ℋ ∧ ¬ 𝐴 ∈ 0))
4 elch0 31286 . . . . . . 7 (𝐴 ∈ 0𝐴 = 0)
54necon3bbii 2994 . . . . . 6 𝐴 ∈ 0𝐴 ≠ 0)
65anbi2i 622 . . . . 5 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 ∈ 0) ↔ (𝐴 ∈ ℋ ∧ 𝐴 ≠ 0))
73, 6bitri 275 . . . 4 (𝐴 ∈ ( ℋ ∖ 0) ↔ (𝐴 ∈ ℋ ∧ 𝐴 ≠ 0))
87anbi1i 623 . . 3 ((𝐴 ∈ ( ℋ ∖ 0) ∧ ∃𝑥 ∈ ℂ (𝑇𝐴) = (𝑥 · 𝐴)) ↔ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) ∧ ∃𝑥 ∈ ℂ (𝑇𝐴) = (𝑥 · 𝐴)))
9 fveq2 6920 . . . . . 6 (𝑦 = 𝐴 → (𝑇𝑦) = (𝑇𝐴))
10 oveq2 7456 . . . . . 6 (𝑦 = 𝐴 → (𝑥 · 𝑦) = (𝑥 · 𝐴))
119, 10eqeq12d 2756 . . . . 5 (𝑦 = 𝐴 → ((𝑇𝑦) = (𝑥 · 𝑦) ↔ (𝑇𝐴) = (𝑥 · 𝐴)))
1211rexbidv 3185 . . . 4 (𝑦 = 𝐴 → (∃𝑥 ∈ ℂ (𝑇𝑦) = (𝑥 · 𝑦) ↔ ∃𝑥 ∈ ℂ (𝑇𝐴) = (𝑥 · 𝐴)))
1312elrab 3708 . . 3 (𝐴 ∈ {𝑦 ∈ ( ℋ ∖ 0) ∣ ∃𝑥 ∈ ℂ (𝑇𝑦) = (𝑥 · 𝑦)} ↔ (𝐴 ∈ ( ℋ ∖ 0) ∧ ∃𝑥 ∈ ℂ (𝑇𝐴) = (𝑥 · 𝐴)))
14 df-3an 1089 . . 3 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0 ∧ ∃𝑥 ∈ ℂ (𝑇𝐴) = (𝑥 · 𝐴)) ↔ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) ∧ ∃𝑥 ∈ ℂ (𝑇𝐴) = (𝑥 · 𝐴)))
158, 13, 143bitr4i 303 . 2 (𝐴 ∈ {𝑦 ∈ ( ℋ ∖ 0) ∣ ∃𝑥 ∈ ℂ (𝑇𝑦) = (𝑥 · 𝑦)} ↔ (𝐴 ∈ ℋ ∧ 𝐴 ≠ 0 ∧ ∃𝑥 ∈ ℂ (𝑇𝐴) = (𝑥 · 𝐴)))
162, 15bitrdi 287 1 (𝑇: ℋ⟶ ℋ → (𝐴 ∈ (eigvec‘𝑇) ↔ (𝐴 ∈ ℋ ∧ 𝐴 ≠ 0 ∧ ∃𝑥 ∈ ℂ (𝑇𝐴) = (𝑥 · 𝐴))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wrex 3076  {crab 3443  cdif 3973  wf 6569  cfv 6573  (class class class)co 7448  cc 11182  chba 30951   · csm 30953  0c0v 30956  0c0h 30967  eigveccei 30991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-hilex 31031  ax-hv0cl 31035
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-map 8886  df-ch0 31285  df-eigvec 31885
This theorem is referenced by:  eleigvec2  31990  eigvalcl  31993
  Copyright terms: Public domain W3C validator