| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > eleigvec | Structured version Visualization version GIF version | ||
| Description: Membership in the set of eigenvectors of a Hilbert space operator. (Contributed by NM, 11-Mar-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| eleigvec | ⊢ (𝑇: ℋ⟶ ℋ → (𝐴 ∈ (eigvec‘𝑇) ↔ (𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ∧ ∃𝑥 ∈ ℂ (𝑇‘𝐴) = (𝑥 ·ℎ 𝐴)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eigvecval 31825 | . . 3 ⊢ (𝑇: ℋ⟶ ℋ → (eigvec‘𝑇) = {𝑦 ∈ ( ℋ ∖ 0ℋ) ∣ ∃𝑥 ∈ ℂ (𝑇‘𝑦) = (𝑥 ·ℎ 𝑦)}) | |
| 2 | 1 | eleq2d 2814 | . 2 ⊢ (𝑇: ℋ⟶ ℋ → (𝐴 ∈ (eigvec‘𝑇) ↔ 𝐴 ∈ {𝑦 ∈ ( ℋ ∖ 0ℋ) ∣ ∃𝑥 ∈ ℂ (𝑇‘𝑦) = (𝑥 ·ℎ 𝑦)})) |
| 3 | eldif 3924 | . . . . 5 ⊢ (𝐴 ∈ ( ℋ ∖ 0ℋ) ↔ (𝐴 ∈ ℋ ∧ ¬ 𝐴 ∈ 0ℋ)) | |
| 4 | elch0 31183 | . . . . . . 7 ⊢ (𝐴 ∈ 0ℋ ↔ 𝐴 = 0ℎ) | |
| 5 | 4 | necon3bbii 2972 | . . . . . 6 ⊢ (¬ 𝐴 ∈ 0ℋ ↔ 𝐴 ≠ 0ℎ) |
| 6 | 5 | anbi2i 623 | . . . . 5 ⊢ ((𝐴 ∈ ℋ ∧ ¬ 𝐴 ∈ 0ℋ) ↔ (𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)) |
| 7 | 3, 6 | bitri 275 | . . . 4 ⊢ (𝐴 ∈ ( ℋ ∖ 0ℋ) ↔ (𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)) |
| 8 | 7 | anbi1i 624 | . . 3 ⊢ ((𝐴 ∈ ( ℋ ∖ 0ℋ) ∧ ∃𝑥 ∈ ℂ (𝑇‘𝐴) = (𝑥 ·ℎ 𝐴)) ↔ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ) ∧ ∃𝑥 ∈ ℂ (𝑇‘𝐴) = (𝑥 ·ℎ 𝐴))) |
| 9 | fveq2 6858 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (𝑇‘𝑦) = (𝑇‘𝐴)) | |
| 10 | oveq2 7395 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (𝑥 ·ℎ 𝑦) = (𝑥 ·ℎ 𝐴)) | |
| 11 | 9, 10 | eqeq12d 2745 | . . . . 5 ⊢ (𝑦 = 𝐴 → ((𝑇‘𝑦) = (𝑥 ·ℎ 𝑦) ↔ (𝑇‘𝐴) = (𝑥 ·ℎ 𝐴))) |
| 12 | 11 | rexbidv 3157 | . . . 4 ⊢ (𝑦 = 𝐴 → (∃𝑥 ∈ ℂ (𝑇‘𝑦) = (𝑥 ·ℎ 𝑦) ↔ ∃𝑥 ∈ ℂ (𝑇‘𝐴) = (𝑥 ·ℎ 𝐴))) |
| 13 | 12 | elrab 3659 | . . 3 ⊢ (𝐴 ∈ {𝑦 ∈ ( ℋ ∖ 0ℋ) ∣ ∃𝑥 ∈ ℂ (𝑇‘𝑦) = (𝑥 ·ℎ 𝑦)} ↔ (𝐴 ∈ ( ℋ ∖ 0ℋ) ∧ ∃𝑥 ∈ ℂ (𝑇‘𝐴) = (𝑥 ·ℎ 𝐴))) |
| 14 | df-3an 1088 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ∧ ∃𝑥 ∈ ℂ (𝑇‘𝐴) = (𝑥 ·ℎ 𝐴)) ↔ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ) ∧ ∃𝑥 ∈ ℂ (𝑇‘𝐴) = (𝑥 ·ℎ 𝐴))) | |
| 15 | 8, 13, 14 | 3bitr4i 303 | . 2 ⊢ (𝐴 ∈ {𝑦 ∈ ( ℋ ∖ 0ℋ) ∣ ∃𝑥 ∈ ℂ (𝑇‘𝑦) = (𝑥 ·ℎ 𝑦)} ↔ (𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ∧ ∃𝑥 ∈ ℂ (𝑇‘𝐴) = (𝑥 ·ℎ 𝐴))) |
| 16 | 2, 15 | bitrdi 287 | 1 ⊢ (𝑇: ℋ⟶ ℋ → (𝐴 ∈ (eigvec‘𝑇) ↔ (𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ∧ ∃𝑥 ∈ ℂ (𝑇‘𝐴) = (𝑥 ·ℎ 𝐴)))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∃wrex 3053 {crab 3405 ∖ cdif 3911 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ℂcc 11066 ℋchba 30848 ·ℎ csm 30850 0ℎc0v 30853 0ℋc0h 30864 eigveccei 30888 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-hilex 30928 ax-hv0cl 30932 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-map 8801 df-ch0 31182 df-eigvec 31782 |
| This theorem is referenced by: eleigvec2 31887 eigvalcl 31890 |
| Copyright terms: Public domain | W3C validator |