Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > ocin | Structured version Visualization version GIF version |
Description: Intersection of a Hilbert subspace and its complement. Part of Proposition 1 of [Kalmbach] p. 65. (Contributed by NM, 11-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ocin | ⊢ (𝐴 ∈ Sℋ → (𝐴 ∩ (⊥‘𝐴)) = 0ℋ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | shocel 29644 | . . . . . . 7 ⊢ (𝐴 ∈ Sℋ → (𝑥 ∈ (⊥‘𝐴) ↔ (𝑥 ∈ ℋ ∧ ∀𝑦 ∈ 𝐴 (𝑥 ·ih 𝑦) = 0))) | |
2 | oveq2 7283 | . . . . . . . . . 10 ⊢ (𝑦 = 𝑥 → (𝑥 ·ih 𝑦) = (𝑥 ·ih 𝑥)) | |
3 | 2 | eqeq1d 2740 | . . . . . . . . 9 ⊢ (𝑦 = 𝑥 → ((𝑥 ·ih 𝑦) = 0 ↔ (𝑥 ·ih 𝑥) = 0)) |
4 | 3 | rspccv 3558 | . . . . . . . 8 ⊢ (∀𝑦 ∈ 𝐴 (𝑥 ·ih 𝑦) = 0 → (𝑥 ∈ 𝐴 → (𝑥 ·ih 𝑥) = 0)) |
5 | his6 29461 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℋ → ((𝑥 ·ih 𝑥) = 0 ↔ 𝑥 = 0ℎ)) | |
6 | 5 | biimpd 228 | . . . . . . . 8 ⊢ (𝑥 ∈ ℋ → ((𝑥 ·ih 𝑥) = 0 → 𝑥 = 0ℎ)) |
7 | 4, 6 | sylan9r 509 | . . . . . . 7 ⊢ ((𝑥 ∈ ℋ ∧ ∀𝑦 ∈ 𝐴 (𝑥 ·ih 𝑦) = 0) → (𝑥 ∈ 𝐴 → 𝑥 = 0ℎ)) |
8 | 1, 7 | syl6bi 252 | . . . . . 6 ⊢ (𝐴 ∈ Sℋ → (𝑥 ∈ (⊥‘𝐴) → (𝑥 ∈ 𝐴 → 𝑥 = 0ℎ))) |
9 | 8 | com23 86 | . . . . 5 ⊢ (𝐴 ∈ Sℋ → (𝑥 ∈ 𝐴 → (𝑥 ∈ (⊥‘𝐴) → 𝑥 = 0ℎ))) |
10 | 9 | impd 411 | . . . 4 ⊢ (𝐴 ∈ Sℋ → ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (⊥‘𝐴)) → 𝑥 = 0ℎ)) |
11 | sh0 29578 | . . . . . 6 ⊢ (𝐴 ∈ Sℋ → 0ℎ ∈ 𝐴) | |
12 | oc0 29652 | . . . . . 6 ⊢ (𝐴 ∈ Sℋ → 0ℎ ∈ (⊥‘𝐴)) | |
13 | 11, 12 | jca 512 | . . . . 5 ⊢ (𝐴 ∈ Sℋ → (0ℎ ∈ 𝐴 ∧ 0ℎ ∈ (⊥‘𝐴))) |
14 | eleq1 2826 | . . . . . 6 ⊢ (𝑥 = 0ℎ → (𝑥 ∈ 𝐴 ↔ 0ℎ ∈ 𝐴)) | |
15 | eleq1 2826 | . . . . . 6 ⊢ (𝑥 = 0ℎ → (𝑥 ∈ (⊥‘𝐴) ↔ 0ℎ ∈ (⊥‘𝐴))) | |
16 | 14, 15 | anbi12d 631 | . . . . 5 ⊢ (𝑥 = 0ℎ → ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (⊥‘𝐴)) ↔ (0ℎ ∈ 𝐴 ∧ 0ℎ ∈ (⊥‘𝐴)))) |
17 | 13, 16 | syl5ibrcom 246 | . . . 4 ⊢ (𝐴 ∈ Sℋ → (𝑥 = 0ℎ → (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (⊥‘𝐴)))) |
18 | 10, 17 | impbid 211 | . . 3 ⊢ (𝐴 ∈ Sℋ → ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (⊥‘𝐴)) ↔ 𝑥 = 0ℎ)) |
19 | elin 3903 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∩ (⊥‘𝐴)) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (⊥‘𝐴))) | |
20 | elch0 29616 | . . 3 ⊢ (𝑥 ∈ 0ℋ ↔ 𝑥 = 0ℎ) | |
21 | 18, 19, 20 | 3bitr4g 314 | . 2 ⊢ (𝐴 ∈ Sℋ → (𝑥 ∈ (𝐴 ∩ (⊥‘𝐴)) ↔ 𝑥 ∈ 0ℋ)) |
22 | 21 | eqrdv 2736 | 1 ⊢ (𝐴 ∈ Sℋ → (𝐴 ∩ (⊥‘𝐴)) = 0ℋ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ∩ cin 3886 ‘cfv 6433 (class class class)co 7275 0cc0 10871 ℋchba 29281 ·ih csp 29284 0ℎc0v 29286 Sℋ csh 29290 ⊥cort 29292 0ℋc0h 29297 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-hilex 29361 ax-hfvadd 29362 ax-hv0cl 29365 ax-hfvmul 29367 ax-hvmul0 29372 ax-hfi 29441 ax-his2 29445 ax-his3 29446 ax-his4 29447 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-ltxr 11014 df-sh 29569 df-oc 29614 df-ch0 29615 |
This theorem is referenced by: ocnel 29660 chocunii 29663 pjhtheu 29756 pjpreeq 29760 omlsi 29766 ococi 29767 pjoc1i 29793 orthin 29808 ssjo 29809 chocini 29816 chscllem3 30001 |
Copyright terms: Public domain | W3C validator |