| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > ocin | Structured version Visualization version GIF version | ||
| Description: Intersection of a Hilbert subspace and its complement. Part of Proposition 1 of [Kalmbach] p. 65. (Contributed by NM, 11-Oct-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ocin | ⊢ (𝐴 ∈ Sℋ → (𝐴 ∩ (⊥‘𝐴)) = 0ℋ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shocel 31263 | . . . . . . 7 ⊢ (𝐴 ∈ Sℋ → (𝑥 ∈ (⊥‘𝐴) ↔ (𝑥 ∈ ℋ ∧ ∀𝑦 ∈ 𝐴 (𝑥 ·ih 𝑦) = 0))) | |
| 2 | oveq2 7413 | . . . . . . . . . 10 ⊢ (𝑦 = 𝑥 → (𝑥 ·ih 𝑦) = (𝑥 ·ih 𝑥)) | |
| 3 | 2 | eqeq1d 2737 | . . . . . . . . 9 ⊢ (𝑦 = 𝑥 → ((𝑥 ·ih 𝑦) = 0 ↔ (𝑥 ·ih 𝑥) = 0)) |
| 4 | 3 | rspccv 3598 | . . . . . . . 8 ⊢ (∀𝑦 ∈ 𝐴 (𝑥 ·ih 𝑦) = 0 → (𝑥 ∈ 𝐴 → (𝑥 ·ih 𝑥) = 0)) |
| 5 | his6 31080 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℋ → ((𝑥 ·ih 𝑥) = 0 ↔ 𝑥 = 0ℎ)) | |
| 6 | 5 | biimpd 229 | . . . . . . . 8 ⊢ (𝑥 ∈ ℋ → ((𝑥 ·ih 𝑥) = 0 → 𝑥 = 0ℎ)) |
| 7 | 4, 6 | sylan9r 508 | . . . . . . 7 ⊢ ((𝑥 ∈ ℋ ∧ ∀𝑦 ∈ 𝐴 (𝑥 ·ih 𝑦) = 0) → (𝑥 ∈ 𝐴 → 𝑥 = 0ℎ)) |
| 8 | 1, 7 | biimtrdi 253 | . . . . . 6 ⊢ (𝐴 ∈ Sℋ → (𝑥 ∈ (⊥‘𝐴) → (𝑥 ∈ 𝐴 → 𝑥 = 0ℎ))) |
| 9 | 8 | com23 86 | . . . . 5 ⊢ (𝐴 ∈ Sℋ → (𝑥 ∈ 𝐴 → (𝑥 ∈ (⊥‘𝐴) → 𝑥 = 0ℎ))) |
| 10 | 9 | impd 410 | . . . 4 ⊢ (𝐴 ∈ Sℋ → ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (⊥‘𝐴)) → 𝑥 = 0ℎ)) |
| 11 | sh0 31197 | . . . . . 6 ⊢ (𝐴 ∈ Sℋ → 0ℎ ∈ 𝐴) | |
| 12 | oc0 31271 | . . . . . 6 ⊢ (𝐴 ∈ Sℋ → 0ℎ ∈ (⊥‘𝐴)) | |
| 13 | 11, 12 | jca 511 | . . . . 5 ⊢ (𝐴 ∈ Sℋ → (0ℎ ∈ 𝐴 ∧ 0ℎ ∈ (⊥‘𝐴))) |
| 14 | eleq1 2822 | . . . . . 6 ⊢ (𝑥 = 0ℎ → (𝑥 ∈ 𝐴 ↔ 0ℎ ∈ 𝐴)) | |
| 15 | eleq1 2822 | . . . . . 6 ⊢ (𝑥 = 0ℎ → (𝑥 ∈ (⊥‘𝐴) ↔ 0ℎ ∈ (⊥‘𝐴))) | |
| 16 | 14, 15 | anbi12d 632 | . . . . 5 ⊢ (𝑥 = 0ℎ → ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (⊥‘𝐴)) ↔ (0ℎ ∈ 𝐴 ∧ 0ℎ ∈ (⊥‘𝐴)))) |
| 17 | 13, 16 | syl5ibrcom 247 | . . . 4 ⊢ (𝐴 ∈ Sℋ → (𝑥 = 0ℎ → (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (⊥‘𝐴)))) |
| 18 | 10, 17 | impbid 212 | . . 3 ⊢ (𝐴 ∈ Sℋ → ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (⊥‘𝐴)) ↔ 𝑥 = 0ℎ)) |
| 19 | elin 3942 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∩ (⊥‘𝐴)) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (⊥‘𝐴))) | |
| 20 | elch0 31235 | . . 3 ⊢ (𝑥 ∈ 0ℋ ↔ 𝑥 = 0ℎ) | |
| 21 | 18, 19, 20 | 3bitr4g 314 | . 2 ⊢ (𝐴 ∈ Sℋ → (𝑥 ∈ (𝐴 ∩ (⊥‘𝐴)) ↔ 𝑥 ∈ 0ℋ)) |
| 22 | 21 | eqrdv 2733 | 1 ⊢ (𝐴 ∈ Sℋ → (𝐴 ∩ (⊥‘𝐴)) = 0ℋ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ∩ cin 3925 ‘cfv 6531 (class class class)co 7405 0cc0 11129 ℋchba 30900 ·ih csp 30903 0ℎc0v 30905 Sℋ csh 30909 ⊥cort 30911 0ℋc0h 30916 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-hilex 30980 ax-hfvadd 30981 ax-hv0cl 30984 ax-hfvmul 30986 ax-hvmul0 30991 ax-hfi 31060 ax-his2 31064 ax-his3 31065 ax-his4 31066 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-po 5561 df-so 5562 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-ltxr 11274 df-sh 31188 df-oc 31233 df-ch0 31234 |
| This theorem is referenced by: ocnel 31279 chocunii 31282 pjhtheu 31375 pjpreeq 31379 omlsi 31385 ococi 31386 pjoc1i 31412 orthin 31427 ssjo 31428 chocini 31435 chscllem3 31620 |
| Copyright terms: Public domain | W3C validator |