| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > ocin | Structured version Visualization version GIF version | ||
| Description: Intersection of a Hilbert subspace and its complement. Part of Proposition 1 of [Kalmbach] p. 65. (Contributed by NM, 11-Oct-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ocin | ⊢ (𝐴 ∈ Sℋ → (𝐴 ∩ (⊥‘𝐴)) = 0ℋ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shocel 31264 | . . . . . . 7 ⊢ (𝐴 ∈ Sℋ → (𝑥 ∈ (⊥‘𝐴) ↔ (𝑥 ∈ ℋ ∧ ∀𝑦 ∈ 𝐴 (𝑥 ·ih 𝑦) = 0))) | |
| 2 | oveq2 7360 | . . . . . . . . . 10 ⊢ (𝑦 = 𝑥 → (𝑥 ·ih 𝑦) = (𝑥 ·ih 𝑥)) | |
| 3 | 2 | eqeq1d 2735 | . . . . . . . . 9 ⊢ (𝑦 = 𝑥 → ((𝑥 ·ih 𝑦) = 0 ↔ (𝑥 ·ih 𝑥) = 0)) |
| 4 | 3 | rspccv 3570 | . . . . . . . 8 ⊢ (∀𝑦 ∈ 𝐴 (𝑥 ·ih 𝑦) = 0 → (𝑥 ∈ 𝐴 → (𝑥 ·ih 𝑥) = 0)) |
| 5 | his6 31081 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℋ → ((𝑥 ·ih 𝑥) = 0 ↔ 𝑥 = 0ℎ)) | |
| 6 | 5 | biimpd 229 | . . . . . . . 8 ⊢ (𝑥 ∈ ℋ → ((𝑥 ·ih 𝑥) = 0 → 𝑥 = 0ℎ)) |
| 7 | 4, 6 | sylan9r 508 | . . . . . . 7 ⊢ ((𝑥 ∈ ℋ ∧ ∀𝑦 ∈ 𝐴 (𝑥 ·ih 𝑦) = 0) → (𝑥 ∈ 𝐴 → 𝑥 = 0ℎ)) |
| 8 | 1, 7 | biimtrdi 253 | . . . . . 6 ⊢ (𝐴 ∈ Sℋ → (𝑥 ∈ (⊥‘𝐴) → (𝑥 ∈ 𝐴 → 𝑥 = 0ℎ))) |
| 9 | 8 | com23 86 | . . . . 5 ⊢ (𝐴 ∈ Sℋ → (𝑥 ∈ 𝐴 → (𝑥 ∈ (⊥‘𝐴) → 𝑥 = 0ℎ))) |
| 10 | 9 | impd 410 | . . . 4 ⊢ (𝐴 ∈ Sℋ → ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (⊥‘𝐴)) → 𝑥 = 0ℎ)) |
| 11 | sh0 31198 | . . . . . 6 ⊢ (𝐴 ∈ Sℋ → 0ℎ ∈ 𝐴) | |
| 12 | oc0 31272 | . . . . . 6 ⊢ (𝐴 ∈ Sℋ → 0ℎ ∈ (⊥‘𝐴)) | |
| 13 | 11, 12 | jca 511 | . . . . 5 ⊢ (𝐴 ∈ Sℋ → (0ℎ ∈ 𝐴 ∧ 0ℎ ∈ (⊥‘𝐴))) |
| 14 | eleq1 2821 | . . . . . 6 ⊢ (𝑥 = 0ℎ → (𝑥 ∈ 𝐴 ↔ 0ℎ ∈ 𝐴)) | |
| 15 | eleq1 2821 | . . . . . 6 ⊢ (𝑥 = 0ℎ → (𝑥 ∈ (⊥‘𝐴) ↔ 0ℎ ∈ (⊥‘𝐴))) | |
| 16 | 14, 15 | anbi12d 632 | . . . . 5 ⊢ (𝑥 = 0ℎ → ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (⊥‘𝐴)) ↔ (0ℎ ∈ 𝐴 ∧ 0ℎ ∈ (⊥‘𝐴)))) |
| 17 | 13, 16 | syl5ibrcom 247 | . . . 4 ⊢ (𝐴 ∈ Sℋ → (𝑥 = 0ℎ → (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (⊥‘𝐴)))) |
| 18 | 10, 17 | impbid 212 | . . 3 ⊢ (𝐴 ∈ Sℋ → ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (⊥‘𝐴)) ↔ 𝑥 = 0ℎ)) |
| 19 | elin 3914 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∩ (⊥‘𝐴)) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (⊥‘𝐴))) | |
| 20 | elch0 31236 | . . 3 ⊢ (𝑥 ∈ 0ℋ ↔ 𝑥 = 0ℎ) | |
| 21 | 18, 19, 20 | 3bitr4g 314 | . 2 ⊢ (𝐴 ∈ Sℋ → (𝑥 ∈ (𝐴 ∩ (⊥‘𝐴)) ↔ 𝑥 ∈ 0ℋ)) |
| 22 | 21 | eqrdv 2731 | 1 ⊢ (𝐴 ∈ Sℋ → (𝐴 ∩ (⊥‘𝐴)) = 0ℋ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3048 ∩ cin 3897 ‘cfv 6486 (class class class)co 7352 0cc0 11013 ℋchba 30901 ·ih csp 30904 0ℎc0v 30906 Sℋ csh 30910 ⊥cort 30912 0ℋc0h 30917 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-hilex 30981 ax-hfvadd 30982 ax-hv0cl 30985 ax-hfvmul 30987 ax-hvmul0 30992 ax-hfi 31061 ax-his2 31065 ax-his3 31066 ax-his4 31067 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-ltxr 11158 df-sh 31189 df-oc 31234 df-ch0 31235 |
| This theorem is referenced by: ocnel 31280 chocunii 31283 pjhtheu 31376 pjpreeq 31380 omlsi 31386 ococi 31387 pjoc1i 31413 orthin 31428 ssjo 31429 chocini 31436 chscllem3 31621 |
| Copyright terms: Public domain | W3C validator |