Hilbert Space Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HSE Home  >  Th. List  >  ocin Structured version   Visualization version   GIF version

Theorem ocin 29083
 Description: Intersection of a Hilbert subspace and its complement. Part of Proposition 1 of [Kalmbach] p. 65. (Contributed by NM, 11-Oct-1999.) (New usage is discouraged.)
Assertion
Ref Expression
ocin (𝐴S → (𝐴 ∩ (⊥‘𝐴)) = 0)

Proof of Theorem ocin
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 shocel 29069 . . . . . . 7 (𝐴S → (𝑥 ∈ (⊥‘𝐴) ↔ (𝑥 ∈ ℋ ∧ ∀𝑦𝐴 (𝑥 ·ih 𝑦) = 0)))
2 oveq2 7147 . . . . . . . . . 10 (𝑦 = 𝑥 → (𝑥 ·ih 𝑦) = (𝑥 ·ih 𝑥))
32eqeq1d 2803 . . . . . . . . 9 (𝑦 = 𝑥 → ((𝑥 ·ih 𝑦) = 0 ↔ (𝑥 ·ih 𝑥) = 0))
43rspccv 3571 . . . . . . . 8 (∀𝑦𝐴 (𝑥 ·ih 𝑦) = 0 → (𝑥𝐴 → (𝑥 ·ih 𝑥) = 0))
5 his6 28886 . . . . . . . . 9 (𝑥 ∈ ℋ → ((𝑥 ·ih 𝑥) = 0 ↔ 𝑥 = 0))
65biimpd 232 . . . . . . . 8 (𝑥 ∈ ℋ → ((𝑥 ·ih 𝑥) = 0 → 𝑥 = 0))
74, 6sylan9r 512 . . . . . . 7 ((𝑥 ∈ ℋ ∧ ∀𝑦𝐴 (𝑥 ·ih 𝑦) = 0) → (𝑥𝐴𝑥 = 0))
81, 7syl6bi 256 . . . . . 6 (𝐴S → (𝑥 ∈ (⊥‘𝐴) → (𝑥𝐴𝑥 = 0)))
98com23 86 . . . . 5 (𝐴S → (𝑥𝐴 → (𝑥 ∈ (⊥‘𝐴) → 𝑥 = 0)))
109impd 414 . . . 4 (𝐴S → ((𝑥𝐴𝑥 ∈ (⊥‘𝐴)) → 𝑥 = 0))
11 sh0 29003 . . . . . 6 (𝐴S → 0𝐴)
12 oc0 29077 . . . . . 6 (𝐴S → 0 ∈ (⊥‘𝐴))
1311, 12jca 515 . . . . 5 (𝐴S → (0𝐴 ∧ 0 ∈ (⊥‘𝐴)))
14 eleq1 2880 . . . . . 6 (𝑥 = 0 → (𝑥𝐴 ↔ 0𝐴))
15 eleq1 2880 . . . . . 6 (𝑥 = 0 → (𝑥 ∈ (⊥‘𝐴) ↔ 0 ∈ (⊥‘𝐴)))
1614, 15anbi12d 633 . . . . 5 (𝑥 = 0 → ((𝑥𝐴𝑥 ∈ (⊥‘𝐴)) ↔ (0𝐴 ∧ 0 ∈ (⊥‘𝐴))))
1713, 16syl5ibrcom 250 . . . 4 (𝐴S → (𝑥 = 0 → (𝑥𝐴𝑥 ∈ (⊥‘𝐴))))
1810, 17impbid 215 . . 3 (𝐴S → ((𝑥𝐴𝑥 ∈ (⊥‘𝐴)) ↔ 𝑥 = 0))
19 elin 3900 . . 3 (𝑥 ∈ (𝐴 ∩ (⊥‘𝐴)) ↔ (𝑥𝐴𝑥 ∈ (⊥‘𝐴)))
20 elch0 29041 . . 3 (𝑥 ∈ 0𝑥 = 0)
2118, 19, 203bitr4g 317 . 2 (𝐴S → (𝑥 ∈ (𝐴 ∩ (⊥‘𝐴)) ↔ 𝑥 ∈ 0))
2221eqrdv 2799 1 (𝐴S → (𝐴 ∩ (⊥‘𝐴)) = 0)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2112  ∀wral 3109   ∩ cin 3883  ‘cfv 6328  (class class class)co 7139  0cc0 10530   ℋchba 28706   ·ih csp 28709  0ℎc0v 28711   Sℋ csh 28715  ⊥cort 28717  0ℋc0h 28722 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-hilex 28786  ax-hfvadd 28787  ax-hv0cl 28790  ax-hfvmul 28792  ax-hvmul0 28797  ax-hfi 28866  ax-his2 28870  ax-his3 28871  ax-his4 28872 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5428  df-po 5442  df-so 5443  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-ov 7142  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10670  df-mnf 10671  df-ltxr 10673  df-sh 28994  df-oc 29039  df-ch0 29040 This theorem is referenced by:  ocnel  29085  chocunii  29088  pjhtheu  29181  pjpreeq  29185  omlsi  29191  ococi  29192  pjoc1i  29218  orthin  29233  ssjo  29234  chocini  29241  chscllem3  29426
 Copyright terms: Public domain W3C validator