HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  ocin Structured version   Visualization version   GIF version

Theorem ocin 31271
Description: Intersection of a Hilbert subspace and its complement. Part of Proposition 1 of [Kalmbach] p. 65. (Contributed by NM, 11-Oct-1999.) (New usage is discouraged.)
Assertion
Ref Expression
ocin (𝐴S → (𝐴 ∩ (⊥‘𝐴)) = 0)

Proof of Theorem ocin
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 shocel 31257 . . . . . . 7 (𝐴S → (𝑥 ∈ (⊥‘𝐴) ↔ (𝑥 ∈ ℋ ∧ ∀𝑦𝐴 (𝑥 ·ih 𝑦) = 0)))
2 oveq2 7354 . . . . . . . . . 10 (𝑦 = 𝑥 → (𝑥 ·ih 𝑦) = (𝑥 ·ih 𝑥))
32eqeq1d 2733 . . . . . . . . 9 (𝑦 = 𝑥 → ((𝑥 ·ih 𝑦) = 0 ↔ (𝑥 ·ih 𝑥) = 0))
43rspccv 3574 . . . . . . . 8 (∀𝑦𝐴 (𝑥 ·ih 𝑦) = 0 → (𝑥𝐴 → (𝑥 ·ih 𝑥) = 0))
5 his6 31074 . . . . . . . . 9 (𝑥 ∈ ℋ → ((𝑥 ·ih 𝑥) = 0 ↔ 𝑥 = 0))
65biimpd 229 . . . . . . . 8 (𝑥 ∈ ℋ → ((𝑥 ·ih 𝑥) = 0 → 𝑥 = 0))
74, 6sylan9r 508 . . . . . . 7 ((𝑥 ∈ ℋ ∧ ∀𝑦𝐴 (𝑥 ·ih 𝑦) = 0) → (𝑥𝐴𝑥 = 0))
81, 7biimtrdi 253 . . . . . 6 (𝐴S → (𝑥 ∈ (⊥‘𝐴) → (𝑥𝐴𝑥 = 0)))
98com23 86 . . . . 5 (𝐴S → (𝑥𝐴 → (𝑥 ∈ (⊥‘𝐴) → 𝑥 = 0)))
109impd 410 . . . 4 (𝐴S → ((𝑥𝐴𝑥 ∈ (⊥‘𝐴)) → 𝑥 = 0))
11 sh0 31191 . . . . . 6 (𝐴S → 0𝐴)
12 oc0 31265 . . . . . 6 (𝐴S → 0 ∈ (⊥‘𝐴))
1311, 12jca 511 . . . . 5 (𝐴S → (0𝐴 ∧ 0 ∈ (⊥‘𝐴)))
14 eleq1 2819 . . . . . 6 (𝑥 = 0 → (𝑥𝐴 ↔ 0𝐴))
15 eleq1 2819 . . . . . 6 (𝑥 = 0 → (𝑥 ∈ (⊥‘𝐴) ↔ 0 ∈ (⊥‘𝐴)))
1614, 15anbi12d 632 . . . . 5 (𝑥 = 0 → ((𝑥𝐴𝑥 ∈ (⊥‘𝐴)) ↔ (0𝐴 ∧ 0 ∈ (⊥‘𝐴))))
1713, 16syl5ibrcom 247 . . . 4 (𝐴S → (𝑥 = 0 → (𝑥𝐴𝑥 ∈ (⊥‘𝐴))))
1810, 17impbid 212 . . 3 (𝐴S → ((𝑥𝐴𝑥 ∈ (⊥‘𝐴)) ↔ 𝑥 = 0))
19 elin 3918 . . 3 (𝑥 ∈ (𝐴 ∩ (⊥‘𝐴)) ↔ (𝑥𝐴𝑥 ∈ (⊥‘𝐴)))
20 elch0 31229 . . 3 (𝑥 ∈ 0𝑥 = 0)
2118, 19, 203bitr4g 314 . 2 (𝐴S → (𝑥 ∈ (𝐴 ∩ (⊥‘𝐴)) ↔ 𝑥 ∈ 0))
2221eqrdv 2729 1 (𝐴S → (𝐴 ∩ (⊥‘𝐴)) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wral 3047  cin 3901  cfv 6481  (class class class)co 7346  0cc0 11003  chba 30894   ·ih csp 30897  0c0v 30899   S csh 30903  cort 30905  0c0h 30910
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-hilex 30974  ax-hfvadd 30975  ax-hv0cl 30978  ax-hfvmul 30980  ax-hvmul0 30985  ax-hfi 31054  ax-his2 31058  ax-his3 31059  ax-his4 31060
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-po 5524  df-so 5525  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11145  df-mnf 11146  df-ltxr 11148  df-sh 31182  df-oc 31227  df-ch0 31228
This theorem is referenced by:  ocnel  31273  chocunii  31276  pjhtheu  31369  pjpreeq  31373  omlsi  31379  ococi  31380  pjoc1i  31406  orthin  31421  ssjo  31422  chocini  31429  chscllem3  31614
  Copyright terms: Public domain W3C validator