| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > ocin | Structured version Visualization version GIF version | ||
| Description: Intersection of a Hilbert subspace and its complement. Part of Proposition 1 of [Kalmbach] p. 65. (Contributed by NM, 11-Oct-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ocin | ⊢ (𝐴 ∈ Sℋ → (𝐴 ∩ (⊥‘𝐴)) = 0ℋ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shocel 31244 | . . . . . . 7 ⊢ (𝐴 ∈ Sℋ → (𝑥 ∈ (⊥‘𝐴) ↔ (𝑥 ∈ ℋ ∧ ∀𝑦 ∈ 𝐴 (𝑥 ·ih 𝑦) = 0))) | |
| 2 | oveq2 7361 | . . . . . . . . . 10 ⊢ (𝑦 = 𝑥 → (𝑥 ·ih 𝑦) = (𝑥 ·ih 𝑥)) | |
| 3 | 2 | eqeq1d 2731 | . . . . . . . . 9 ⊢ (𝑦 = 𝑥 → ((𝑥 ·ih 𝑦) = 0 ↔ (𝑥 ·ih 𝑥) = 0)) |
| 4 | 3 | rspccv 3576 | . . . . . . . 8 ⊢ (∀𝑦 ∈ 𝐴 (𝑥 ·ih 𝑦) = 0 → (𝑥 ∈ 𝐴 → (𝑥 ·ih 𝑥) = 0)) |
| 5 | his6 31061 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℋ → ((𝑥 ·ih 𝑥) = 0 ↔ 𝑥 = 0ℎ)) | |
| 6 | 5 | biimpd 229 | . . . . . . . 8 ⊢ (𝑥 ∈ ℋ → ((𝑥 ·ih 𝑥) = 0 → 𝑥 = 0ℎ)) |
| 7 | 4, 6 | sylan9r 508 | . . . . . . 7 ⊢ ((𝑥 ∈ ℋ ∧ ∀𝑦 ∈ 𝐴 (𝑥 ·ih 𝑦) = 0) → (𝑥 ∈ 𝐴 → 𝑥 = 0ℎ)) |
| 8 | 1, 7 | biimtrdi 253 | . . . . . 6 ⊢ (𝐴 ∈ Sℋ → (𝑥 ∈ (⊥‘𝐴) → (𝑥 ∈ 𝐴 → 𝑥 = 0ℎ))) |
| 9 | 8 | com23 86 | . . . . 5 ⊢ (𝐴 ∈ Sℋ → (𝑥 ∈ 𝐴 → (𝑥 ∈ (⊥‘𝐴) → 𝑥 = 0ℎ))) |
| 10 | 9 | impd 410 | . . . 4 ⊢ (𝐴 ∈ Sℋ → ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (⊥‘𝐴)) → 𝑥 = 0ℎ)) |
| 11 | sh0 31178 | . . . . . 6 ⊢ (𝐴 ∈ Sℋ → 0ℎ ∈ 𝐴) | |
| 12 | oc0 31252 | . . . . . 6 ⊢ (𝐴 ∈ Sℋ → 0ℎ ∈ (⊥‘𝐴)) | |
| 13 | 11, 12 | jca 511 | . . . . 5 ⊢ (𝐴 ∈ Sℋ → (0ℎ ∈ 𝐴 ∧ 0ℎ ∈ (⊥‘𝐴))) |
| 14 | eleq1 2816 | . . . . . 6 ⊢ (𝑥 = 0ℎ → (𝑥 ∈ 𝐴 ↔ 0ℎ ∈ 𝐴)) | |
| 15 | eleq1 2816 | . . . . . 6 ⊢ (𝑥 = 0ℎ → (𝑥 ∈ (⊥‘𝐴) ↔ 0ℎ ∈ (⊥‘𝐴))) | |
| 16 | 14, 15 | anbi12d 632 | . . . . 5 ⊢ (𝑥 = 0ℎ → ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (⊥‘𝐴)) ↔ (0ℎ ∈ 𝐴 ∧ 0ℎ ∈ (⊥‘𝐴)))) |
| 17 | 13, 16 | syl5ibrcom 247 | . . . 4 ⊢ (𝐴 ∈ Sℋ → (𝑥 = 0ℎ → (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (⊥‘𝐴)))) |
| 18 | 10, 17 | impbid 212 | . . 3 ⊢ (𝐴 ∈ Sℋ → ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (⊥‘𝐴)) ↔ 𝑥 = 0ℎ)) |
| 19 | elin 3921 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∩ (⊥‘𝐴)) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (⊥‘𝐴))) | |
| 20 | elch0 31216 | . . 3 ⊢ (𝑥 ∈ 0ℋ ↔ 𝑥 = 0ℎ) | |
| 21 | 18, 19, 20 | 3bitr4g 314 | . 2 ⊢ (𝐴 ∈ Sℋ → (𝑥 ∈ (𝐴 ∩ (⊥‘𝐴)) ↔ 𝑥 ∈ 0ℋ)) |
| 22 | 21 | eqrdv 2727 | 1 ⊢ (𝐴 ∈ Sℋ → (𝐴 ∩ (⊥‘𝐴)) = 0ℋ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∩ cin 3904 ‘cfv 6486 (class class class)co 7353 0cc0 11028 ℋchba 30881 ·ih csp 30884 0ℎc0v 30886 Sℋ csh 30890 ⊥cort 30892 0ℋc0h 30897 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-hilex 30961 ax-hfvadd 30962 ax-hv0cl 30965 ax-hfvmul 30967 ax-hvmul0 30972 ax-hfi 31041 ax-his2 31045 ax-his3 31046 ax-his4 31047 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-po 5531 df-so 5532 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-ltxr 11173 df-sh 31169 df-oc 31214 df-ch0 31215 |
| This theorem is referenced by: ocnel 31260 chocunii 31263 pjhtheu 31356 pjpreeq 31360 omlsi 31366 ococi 31367 pjoc1i 31393 orthin 31408 ssjo 31409 chocini 31416 chscllem3 31601 |
| Copyright terms: Public domain | W3C validator |