HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  ocin Structured version   Visualization version   GIF version

Theorem ocin 29559
Description: Intersection of a Hilbert subspace and its complement. Part of Proposition 1 of [Kalmbach] p. 65. (Contributed by NM, 11-Oct-1999.) (New usage is discouraged.)
Assertion
Ref Expression
ocin (𝐴S → (𝐴 ∩ (⊥‘𝐴)) = 0)

Proof of Theorem ocin
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 shocel 29545 . . . . . . 7 (𝐴S → (𝑥 ∈ (⊥‘𝐴) ↔ (𝑥 ∈ ℋ ∧ ∀𝑦𝐴 (𝑥 ·ih 𝑦) = 0)))
2 oveq2 7263 . . . . . . . . . 10 (𝑦 = 𝑥 → (𝑥 ·ih 𝑦) = (𝑥 ·ih 𝑥))
32eqeq1d 2740 . . . . . . . . 9 (𝑦 = 𝑥 → ((𝑥 ·ih 𝑦) = 0 ↔ (𝑥 ·ih 𝑥) = 0))
43rspccv 3549 . . . . . . . 8 (∀𝑦𝐴 (𝑥 ·ih 𝑦) = 0 → (𝑥𝐴 → (𝑥 ·ih 𝑥) = 0))
5 his6 29362 . . . . . . . . 9 (𝑥 ∈ ℋ → ((𝑥 ·ih 𝑥) = 0 ↔ 𝑥 = 0))
65biimpd 228 . . . . . . . 8 (𝑥 ∈ ℋ → ((𝑥 ·ih 𝑥) = 0 → 𝑥 = 0))
74, 6sylan9r 508 . . . . . . 7 ((𝑥 ∈ ℋ ∧ ∀𝑦𝐴 (𝑥 ·ih 𝑦) = 0) → (𝑥𝐴𝑥 = 0))
81, 7syl6bi 252 . . . . . 6 (𝐴S → (𝑥 ∈ (⊥‘𝐴) → (𝑥𝐴𝑥 = 0)))
98com23 86 . . . . 5 (𝐴S → (𝑥𝐴 → (𝑥 ∈ (⊥‘𝐴) → 𝑥 = 0)))
109impd 410 . . . 4 (𝐴S → ((𝑥𝐴𝑥 ∈ (⊥‘𝐴)) → 𝑥 = 0))
11 sh0 29479 . . . . . 6 (𝐴S → 0𝐴)
12 oc0 29553 . . . . . 6 (𝐴S → 0 ∈ (⊥‘𝐴))
1311, 12jca 511 . . . . 5 (𝐴S → (0𝐴 ∧ 0 ∈ (⊥‘𝐴)))
14 eleq1 2826 . . . . . 6 (𝑥 = 0 → (𝑥𝐴 ↔ 0𝐴))
15 eleq1 2826 . . . . . 6 (𝑥 = 0 → (𝑥 ∈ (⊥‘𝐴) ↔ 0 ∈ (⊥‘𝐴)))
1614, 15anbi12d 630 . . . . 5 (𝑥 = 0 → ((𝑥𝐴𝑥 ∈ (⊥‘𝐴)) ↔ (0𝐴 ∧ 0 ∈ (⊥‘𝐴))))
1713, 16syl5ibrcom 246 . . . 4 (𝐴S → (𝑥 = 0 → (𝑥𝐴𝑥 ∈ (⊥‘𝐴))))
1810, 17impbid 211 . . 3 (𝐴S → ((𝑥𝐴𝑥 ∈ (⊥‘𝐴)) ↔ 𝑥 = 0))
19 elin 3899 . . 3 (𝑥 ∈ (𝐴 ∩ (⊥‘𝐴)) ↔ (𝑥𝐴𝑥 ∈ (⊥‘𝐴)))
20 elch0 29517 . . 3 (𝑥 ∈ 0𝑥 = 0)
2118, 19, 203bitr4g 313 . 2 (𝐴S → (𝑥 ∈ (𝐴 ∩ (⊥‘𝐴)) ↔ 𝑥 ∈ 0))
2221eqrdv 2736 1 (𝐴S → (𝐴 ∩ (⊥‘𝐴)) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wral 3063  cin 3882  cfv 6418  (class class class)co 7255  0cc0 10802  chba 29182   ·ih csp 29185  0c0v 29187   S csh 29191  cort 29193  0c0h 29198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-hilex 29262  ax-hfvadd 29263  ax-hv0cl 29266  ax-hfvmul 29268  ax-hvmul0 29273  ax-hfi 29342  ax-his2 29346  ax-his3 29347  ax-his4 29348
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-ltxr 10945  df-sh 29470  df-oc 29515  df-ch0 29516
This theorem is referenced by:  ocnel  29561  chocunii  29564  pjhtheu  29657  pjpreeq  29661  omlsi  29667  ococi  29668  pjoc1i  29694  orthin  29709  ssjo  29710  chocini  29717  chscllem3  29902
  Copyright terms: Public domain W3C validator