MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hargch Structured version   Visualization version   GIF version

Theorem hargch 10692
Description: If 𝐴 + ≈ 𝒫 𝐴, then 𝐴 is a GCH-set. The much simpler converse to gchhar 10698. (Contributed by Mario Carneiro, 2-Jun-2015.)
Assertion
Ref Expression
hargch ((har‘𝐴) ≈ 𝒫 𝐴𝐴 ∈ GCH)

Proof of Theorem hargch
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 harcl 9578 . . . . . . . . . . . . . 14 (har‘𝐴) ∈ On
2 sdomdom 8999 . . . . . . . . . . . . . 14 (𝑥 ≺ (har‘𝐴) → 𝑥 ≼ (har‘𝐴))
3 ondomen 10056 . . . . . . . . . . . . . 14 (((har‘𝐴) ∈ On ∧ 𝑥 ≼ (har‘𝐴)) → 𝑥 ∈ dom card)
41, 2, 3sylancr 587 . . . . . . . . . . . . 13 (𝑥 ≺ (har‘𝐴) → 𝑥 ∈ dom card)
5 onenon 9968 . . . . . . . . . . . . . 14 ((har‘𝐴) ∈ On → (har‘𝐴) ∈ dom card)
61, 5ax-mp 5 . . . . . . . . . . . . 13 (har‘𝐴) ∈ dom card
7 cardsdom2 10007 . . . . . . . . . . . . 13 ((𝑥 ∈ dom card ∧ (har‘𝐴) ∈ dom card) → ((card‘𝑥) ∈ (card‘(har‘𝐴)) ↔ 𝑥 ≺ (har‘𝐴)))
84, 6, 7sylancl 586 . . . . . . . . . . . 12 (𝑥 ≺ (har‘𝐴) → ((card‘𝑥) ∈ (card‘(har‘𝐴)) ↔ 𝑥 ≺ (har‘𝐴)))
98ibir 268 . . . . . . . . . . 11 (𝑥 ≺ (har‘𝐴) → (card‘𝑥) ∈ (card‘(har‘𝐴)))
10 harcard 9997 . . . . . . . . . . 11 (card‘(har‘𝐴)) = (har‘𝐴)
119, 10eleqtrdi 2845 . . . . . . . . . 10 (𝑥 ≺ (har‘𝐴) → (card‘𝑥) ∈ (har‘𝐴))
12 elharval 9580 . . . . . . . . . . 11 ((card‘𝑥) ∈ (har‘𝐴) ↔ ((card‘𝑥) ∈ On ∧ (card‘𝑥) ≼ 𝐴))
1312simprbi 496 . . . . . . . . . 10 ((card‘𝑥) ∈ (har‘𝐴) → (card‘𝑥) ≼ 𝐴)
1411, 13syl 17 . . . . . . . . 9 (𝑥 ≺ (har‘𝐴) → (card‘𝑥) ≼ 𝐴)
15 cardid2 9972 . . . . . . . . . 10 (𝑥 ∈ dom card → (card‘𝑥) ≈ 𝑥)
16 domen1 9138 . . . . . . . . . 10 ((card‘𝑥) ≈ 𝑥 → ((card‘𝑥) ≼ 𝐴𝑥𝐴))
174, 15, 163syl 18 . . . . . . . . 9 (𝑥 ≺ (har‘𝐴) → ((card‘𝑥) ≼ 𝐴𝑥𝐴))
1814, 17mpbid 232 . . . . . . . 8 (𝑥 ≺ (har‘𝐴) → 𝑥𝐴)
19 domnsym 9118 . . . . . . . 8 (𝑥𝐴 → ¬ 𝐴𝑥)
2018, 19syl 17 . . . . . . 7 (𝑥 ≺ (har‘𝐴) → ¬ 𝐴𝑥)
2120con2i 139 . . . . . 6 (𝐴𝑥 → ¬ 𝑥 ≺ (har‘𝐴))
22 sdomen2 9141 . . . . . . 7 ((har‘𝐴) ≈ 𝒫 𝐴 → (𝑥 ≺ (har‘𝐴) ↔ 𝑥 ≺ 𝒫 𝐴))
2322notbid 318 . . . . . 6 ((har‘𝐴) ≈ 𝒫 𝐴 → (¬ 𝑥 ≺ (har‘𝐴) ↔ ¬ 𝑥 ≺ 𝒫 𝐴))
2421, 23imbitrid 244 . . . . 5 ((har‘𝐴) ≈ 𝒫 𝐴 → (𝐴𝑥 → ¬ 𝑥 ≺ 𝒫 𝐴))
25 imnan 399 . . . . 5 ((𝐴𝑥 → ¬ 𝑥 ≺ 𝒫 𝐴) ↔ ¬ (𝐴𝑥𝑥 ≺ 𝒫 𝐴))
2624, 25sylib 218 . . . 4 ((har‘𝐴) ≈ 𝒫 𝐴 → ¬ (𝐴𝑥𝑥 ≺ 𝒫 𝐴))
2726alrimiv 1927 . . 3 ((har‘𝐴) ≈ 𝒫 𝐴 → ∀𝑥 ¬ (𝐴𝑥𝑥 ≺ 𝒫 𝐴))
2827olcd 874 . 2 ((har‘𝐴) ≈ 𝒫 𝐴 → (𝐴 ∈ Fin ∨ ∀𝑥 ¬ (𝐴𝑥𝑥 ≺ 𝒫 𝐴)))
29 relen 8969 . . . . 5 Rel ≈
3029brrelex2i 5716 . . . 4 ((har‘𝐴) ≈ 𝒫 𝐴 → 𝒫 𝐴 ∈ V)
31 pwexb 7765 . . . 4 (𝐴 ∈ V ↔ 𝒫 𝐴 ∈ V)
3230, 31sylibr 234 . . 3 ((har‘𝐴) ≈ 𝒫 𝐴𝐴 ∈ V)
33 elgch 10641 . . 3 (𝐴 ∈ V → (𝐴 ∈ GCH ↔ (𝐴 ∈ Fin ∨ ∀𝑥 ¬ (𝐴𝑥𝑥 ≺ 𝒫 𝐴))))
3432, 33syl 17 . 2 ((har‘𝐴) ≈ 𝒫 𝐴 → (𝐴 ∈ GCH ↔ (𝐴 ∈ Fin ∨ ∀𝑥 ¬ (𝐴𝑥𝑥 ≺ 𝒫 𝐴))))
3528, 34mpbird 257 1 ((har‘𝐴) ≈ 𝒫 𝐴𝐴 ∈ GCH)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  wal 1538  wcel 2109  Vcvv 3464  𝒫 cpw 4580   class class class wbr 5124  dom cdm 5659  Oncon0 6357  cfv 6536  cen 8961  cdom 8962  csdm 8963  Fincfn 8964  harchar 9575  cardccrd 9954  GCHcgch 10639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-oi 9529  df-har 9576  df-card 9958  df-gch 10640
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator