| Step | Hyp | Ref
| Expression |
| 1 | | harcl 9578 |
. . . . . . . . . . . . . 14
⊢
(har‘𝐴) ∈
On |
| 2 | | sdomdom 8999 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ≺ (har‘𝐴) → 𝑥 ≼ (har‘𝐴)) |
| 3 | | ondomen 10056 |
. . . . . . . . . . . . . 14
⊢
(((har‘𝐴)
∈ On ∧ 𝑥 ≼
(har‘𝐴)) → 𝑥 ∈ dom
card) |
| 4 | 1, 2, 3 | sylancr 587 |
. . . . . . . . . . . . 13
⊢ (𝑥 ≺ (har‘𝐴) → 𝑥 ∈ dom card) |
| 5 | | onenon 9968 |
. . . . . . . . . . . . . 14
⊢
((har‘𝐴)
∈ On → (har‘𝐴) ∈ dom card) |
| 6 | 1, 5 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢
(har‘𝐴) ∈
dom card |
| 7 | | cardsdom2 10007 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ dom card ∧
(har‘𝐴) ∈ dom
card) → ((card‘𝑥) ∈ (card‘(har‘𝐴)) ↔ 𝑥 ≺ (har‘𝐴))) |
| 8 | 4, 6, 7 | sylancl 586 |
. . . . . . . . . . . 12
⊢ (𝑥 ≺ (har‘𝐴) → ((card‘𝑥) ∈
(card‘(har‘𝐴))
↔ 𝑥 ≺
(har‘𝐴))) |
| 9 | 8 | ibir 268 |
. . . . . . . . . . 11
⊢ (𝑥 ≺ (har‘𝐴) → (card‘𝑥) ∈
(card‘(har‘𝐴))) |
| 10 | | harcard 9997 |
. . . . . . . . . . 11
⊢
(card‘(har‘𝐴)) = (har‘𝐴) |
| 11 | 9, 10 | eleqtrdi 2845 |
. . . . . . . . . 10
⊢ (𝑥 ≺ (har‘𝐴) → (card‘𝑥) ∈ (har‘𝐴)) |
| 12 | | elharval 9580 |
. . . . . . . . . . 11
⊢
((card‘𝑥)
∈ (har‘𝐴) ↔
((card‘𝑥) ∈ On
∧ (card‘𝑥)
≼ 𝐴)) |
| 13 | 12 | simprbi 496 |
. . . . . . . . . 10
⊢
((card‘𝑥)
∈ (har‘𝐴) →
(card‘𝑥) ≼
𝐴) |
| 14 | 11, 13 | syl 17 |
. . . . . . . . 9
⊢ (𝑥 ≺ (har‘𝐴) → (card‘𝑥) ≼ 𝐴) |
| 15 | | cardid2 9972 |
. . . . . . . . . 10
⊢ (𝑥 ∈ dom card →
(card‘𝑥) ≈
𝑥) |
| 16 | | domen1 9138 |
. . . . . . . . . 10
⊢
((card‘𝑥)
≈ 𝑥 →
((card‘𝑥) ≼
𝐴 ↔ 𝑥 ≼ 𝐴)) |
| 17 | 4, 15, 16 | 3syl 18 |
. . . . . . . . 9
⊢ (𝑥 ≺ (har‘𝐴) → ((card‘𝑥) ≼ 𝐴 ↔ 𝑥 ≼ 𝐴)) |
| 18 | 14, 17 | mpbid 232 |
. . . . . . . 8
⊢ (𝑥 ≺ (har‘𝐴) → 𝑥 ≼ 𝐴) |
| 19 | | domnsym 9118 |
. . . . . . . 8
⊢ (𝑥 ≼ 𝐴 → ¬ 𝐴 ≺ 𝑥) |
| 20 | 18, 19 | syl 17 |
. . . . . . 7
⊢ (𝑥 ≺ (har‘𝐴) → ¬ 𝐴 ≺ 𝑥) |
| 21 | 20 | con2i 139 |
. . . . . 6
⊢ (𝐴 ≺ 𝑥 → ¬ 𝑥 ≺ (har‘𝐴)) |
| 22 | | sdomen2 9141 |
. . . . . . 7
⊢
((har‘𝐴)
≈ 𝒫 𝐴 →
(𝑥 ≺ (har‘𝐴) ↔ 𝑥 ≺ 𝒫 𝐴)) |
| 23 | 22 | notbid 318 |
. . . . . 6
⊢
((har‘𝐴)
≈ 𝒫 𝐴 →
(¬ 𝑥 ≺
(har‘𝐴) ↔ ¬
𝑥 ≺ 𝒫 𝐴)) |
| 24 | 21, 23 | imbitrid 244 |
. . . . 5
⊢
((har‘𝐴)
≈ 𝒫 𝐴 →
(𝐴 ≺ 𝑥 → ¬ 𝑥 ≺ 𝒫 𝐴)) |
| 25 | | imnan 399 |
. . . . 5
⊢ ((𝐴 ≺ 𝑥 → ¬ 𝑥 ≺ 𝒫 𝐴) ↔ ¬ (𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴)) |
| 26 | 24, 25 | sylib 218 |
. . . 4
⊢
((har‘𝐴)
≈ 𝒫 𝐴 →
¬ (𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴)) |
| 27 | 26 | alrimiv 1927 |
. . 3
⊢
((har‘𝐴)
≈ 𝒫 𝐴 →
∀𝑥 ¬ (𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴)) |
| 28 | 27 | olcd 874 |
. 2
⊢
((har‘𝐴)
≈ 𝒫 𝐴 →
(𝐴 ∈ Fin ∨
∀𝑥 ¬ (𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴))) |
| 29 | | relen 8969 |
. . . . 5
⊢ Rel
≈ |
| 30 | 29 | brrelex2i 5716 |
. . . 4
⊢
((har‘𝐴)
≈ 𝒫 𝐴 →
𝒫 𝐴 ∈
V) |
| 31 | | pwexb 7765 |
. . . 4
⊢ (𝐴 ∈ V ↔ 𝒫 𝐴 ∈ V) |
| 32 | 30, 31 | sylibr 234 |
. . 3
⊢
((har‘𝐴)
≈ 𝒫 𝐴 →
𝐴 ∈
V) |
| 33 | | elgch 10641 |
. . 3
⊢ (𝐴 ∈ V → (𝐴 ∈ GCH ↔ (𝐴 ∈ Fin ∨ ∀𝑥 ¬ (𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴)))) |
| 34 | 32, 33 | syl 17 |
. 2
⊢
((har‘𝐴)
≈ 𝒫 𝐴 →
(𝐴 ∈ GCH ↔ (𝐴 ∈ Fin ∨ ∀𝑥 ¬ (𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴)))) |
| 35 | 28, 34 | mpbird 257 |
1
⊢
((har‘𝐴)
≈ 𝒫 𝐴 →
𝐴 ∈
GCH) |