| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > alephgch | Structured version Visualization version GIF version | ||
| Description: If (ℵ‘suc 𝐴) is equinumerous to the powerset of (ℵ‘𝐴), then (ℵ‘𝐴) is a GCH-set. (Contributed by Mario Carneiro, 15-May-2015.) |
| Ref | Expression |
|---|---|
| alephgch | ⊢ ((ℵ‘suc 𝐴) ≈ 𝒫 (ℵ‘𝐴) → (ℵ‘𝐴) ∈ GCH) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alephnbtwn2 10001 | . . . . 5 ⊢ ¬ ((ℵ‘𝐴) ≺ 𝑥 ∧ 𝑥 ≺ (ℵ‘suc 𝐴)) | |
| 2 | sdomen2 9063 | . . . . . 6 ⊢ ((ℵ‘suc 𝐴) ≈ 𝒫 (ℵ‘𝐴) → (𝑥 ≺ (ℵ‘suc 𝐴) ↔ 𝑥 ≺ 𝒫 (ℵ‘𝐴))) | |
| 3 | 2 | anbi2d 630 | . . . . 5 ⊢ ((ℵ‘suc 𝐴) ≈ 𝒫 (ℵ‘𝐴) → (((ℵ‘𝐴) ≺ 𝑥 ∧ 𝑥 ≺ (ℵ‘suc 𝐴)) ↔ ((ℵ‘𝐴) ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 (ℵ‘𝐴)))) |
| 4 | 1, 3 | mtbii 326 | . . . 4 ⊢ ((ℵ‘suc 𝐴) ≈ 𝒫 (ℵ‘𝐴) → ¬ ((ℵ‘𝐴) ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 (ℵ‘𝐴))) |
| 5 | 4 | alrimiv 1927 | . . 3 ⊢ ((ℵ‘suc 𝐴) ≈ 𝒫 (ℵ‘𝐴) → ∀𝑥 ¬ ((ℵ‘𝐴) ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 (ℵ‘𝐴))) |
| 6 | 5 | olcd 874 | . 2 ⊢ ((ℵ‘suc 𝐴) ≈ 𝒫 (ℵ‘𝐴) → ((ℵ‘𝐴) ∈ Fin ∨ ∀𝑥 ¬ ((ℵ‘𝐴) ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 (ℵ‘𝐴)))) |
| 7 | fvex 6853 | . . 3 ⊢ (ℵ‘𝐴) ∈ V | |
| 8 | elgch 10551 | . . 3 ⊢ ((ℵ‘𝐴) ∈ V → ((ℵ‘𝐴) ∈ GCH ↔ ((ℵ‘𝐴) ∈ Fin ∨ ∀𝑥 ¬ ((ℵ‘𝐴) ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 (ℵ‘𝐴))))) | |
| 9 | 7, 8 | ax-mp 5 | . 2 ⊢ ((ℵ‘𝐴) ∈ GCH ↔ ((ℵ‘𝐴) ∈ Fin ∨ ∀𝑥 ¬ ((ℵ‘𝐴) ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 (ℵ‘𝐴)))) |
| 10 | 6, 9 | sylibr 234 | 1 ⊢ ((ℵ‘suc 𝐴) ≈ 𝒫 (ℵ‘𝐴) → (ℵ‘𝐴) ∈ GCH) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∀wal 1538 ∈ wcel 2109 Vcvv 3444 𝒫 cpw 4559 class class class wbr 5102 suc csuc 6322 ‘cfv 6499 ≈ cen 8892 ≺ csdm 8894 Fincfn 8895 ℵcale 9865 GCHcgch 10549 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9570 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-oi 9439 df-har 9486 df-card 9868 df-aleph 9869 df-gch 10550 |
| This theorem is referenced by: gch3 10605 |
| Copyright terms: Public domain | W3C validator |