| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > alephgch | Structured version Visualization version GIF version | ||
| Description: If (ℵ‘suc 𝐴) is equinumerous to the powerset of (ℵ‘𝐴), then (ℵ‘𝐴) is a GCH-set. (Contributed by Mario Carneiro, 15-May-2015.) |
| Ref | Expression |
|---|---|
| alephgch | ⊢ ((ℵ‘suc 𝐴) ≈ 𝒫 (ℵ‘𝐴) → (ℵ‘𝐴) ∈ GCH) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alephnbtwn2 10031 | . . . . 5 ⊢ ¬ ((ℵ‘𝐴) ≺ 𝑥 ∧ 𝑥 ≺ (ℵ‘suc 𝐴)) | |
| 2 | sdomen2 9091 | . . . . . 6 ⊢ ((ℵ‘suc 𝐴) ≈ 𝒫 (ℵ‘𝐴) → (𝑥 ≺ (ℵ‘suc 𝐴) ↔ 𝑥 ≺ 𝒫 (ℵ‘𝐴))) | |
| 3 | 2 | anbi2d 630 | . . . . 5 ⊢ ((ℵ‘suc 𝐴) ≈ 𝒫 (ℵ‘𝐴) → (((ℵ‘𝐴) ≺ 𝑥 ∧ 𝑥 ≺ (ℵ‘suc 𝐴)) ↔ ((ℵ‘𝐴) ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 (ℵ‘𝐴)))) |
| 4 | 1, 3 | mtbii 326 | . . . 4 ⊢ ((ℵ‘suc 𝐴) ≈ 𝒫 (ℵ‘𝐴) → ¬ ((ℵ‘𝐴) ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 (ℵ‘𝐴))) |
| 5 | 4 | alrimiv 1927 | . . 3 ⊢ ((ℵ‘suc 𝐴) ≈ 𝒫 (ℵ‘𝐴) → ∀𝑥 ¬ ((ℵ‘𝐴) ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 (ℵ‘𝐴))) |
| 6 | 5 | olcd 874 | . 2 ⊢ ((ℵ‘suc 𝐴) ≈ 𝒫 (ℵ‘𝐴) → ((ℵ‘𝐴) ∈ Fin ∨ ∀𝑥 ¬ ((ℵ‘𝐴) ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 (ℵ‘𝐴)))) |
| 7 | fvex 6873 | . . 3 ⊢ (ℵ‘𝐴) ∈ V | |
| 8 | elgch 10581 | . . 3 ⊢ ((ℵ‘𝐴) ∈ V → ((ℵ‘𝐴) ∈ GCH ↔ ((ℵ‘𝐴) ∈ Fin ∨ ∀𝑥 ¬ ((ℵ‘𝐴) ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 (ℵ‘𝐴))))) | |
| 9 | 7, 8 | ax-mp 5 | . 2 ⊢ ((ℵ‘𝐴) ∈ GCH ↔ ((ℵ‘𝐴) ∈ Fin ∨ ∀𝑥 ¬ ((ℵ‘𝐴) ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 (ℵ‘𝐴)))) |
| 10 | 6, 9 | sylibr 234 | 1 ⊢ ((ℵ‘suc 𝐴) ≈ 𝒫 (ℵ‘𝐴) → (ℵ‘𝐴) ∈ GCH) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∀wal 1538 ∈ wcel 2109 Vcvv 3450 𝒫 cpw 4565 class class class wbr 5109 suc csuc 6336 ‘cfv 6513 ≈ cen 8917 ≺ csdm 8919 Fincfn 8920 ℵcale 9895 GCHcgch 10579 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-inf2 9600 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-int 4913 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-se 5594 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-isom 6522 df-riota 7346 df-ov 7392 df-om 7845 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-1o 8436 df-er 8673 df-en 8921 df-dom 8922 df-sdom 8923 df-fin 8924 df-oi 9469 df-har 9516 df-card 9898 df-aleph 9899 df-gch 10580 |
| This theorem is referenced by: gch3 10635 |
| Copyright terms: Public domain | W3C validator |