Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > alephgch | Structured version Visualization version GIF version |
Description: If (ℵ‘suc 𝐴) is equinumerous to the powerset of (ℵ‘𝐴), then (ℵ‘𝐴) is a GCH-set. (Contributed by Mario Carneiro, 15-May-2015.) |
Ref | Expression |
---|---|
alephgch | ⊢ ((ℵ‘suc 𝐴) ≈ 𝒫 (ℵ‘𝐴) → (ℵ‘𝐴) ∈ GCH) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alephnbtwn2 9537 | . . . . 5 ⊢ ¬ ((ℵ‘𝐴) ≺ 𝑥 ∧ 𝑥 ≺ (ℵ‘suc 𝐴)) | |
2 | sdomen2 8689 | . . . . . 6 ⊢ ((ℵ‘suc 𝐴) ≈ 𝒫 (ℵ‘𝐴) → (𝑥 ≺ (ℵ‘suc 𝐴) ↔ 𝑥 ≺ 𝒫 (ℵ‘𝐴))) | |
3 | 2 | anbi2d 631 | . . . . 5 ⊢ ((ℵ‘suc 𝐴) ≈ 𝒫 (ℵ‘𝐴) → (((ℵ‘𝐴) ≺ 𝑥 ∧ 𝑥 ≺ (ℵ‘suc 𝐴)) ↔ ((ℵ‘𝐴) ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 (ℵ‘𝐴)))) |
4 | 1, 3 | mtbii 329 | . . . 4 ⊢ ((ℵ‘suc 𝐴) ≈ 𝒫 (ℵ‘𝐴) → ¬ ((ℵ‘𝐴) ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 (ℵ‘𝐴))) |
5 | 4 | alrimiv 1928 | . . 3 ⊢ ((ℵ‘suc 𝐴) ≈ 𝒫 (ℵ‘𝐴) → ∀𝑥 ¬ ((ℵ‘𝐴) ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 (ℵ‘𝐴))) |
6 | 5 | olcd 871 | . 2 ⊢ ((ℵ‘suc 𝐴) ≈ 𝒫 (ℵ‘𝐴) → ((ℵ‘𝐴) ∈ Fin ∨ ∀𝑥 ¬ ((ℵ‘𝐴) ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 (ℵ‘𝐴)))) |
7 | fvex 6675 | . . 3 ⊢ (ℵ‘𝐴) ∈ V | |
8 | elgch 10087 | . . 3 ⊢ ((ℵ‘𝐴) ∈ V → ((ℵ‘𝐴) ∈ GCH ↔ ((ℵ‘𝐴) ∈ Fin ∨ ∀𝑥 ¬ ((ℵ‘𝐴) ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 (ℵ‘𝐴))))) | |
9 | 7, 8 | ax-mp 5 | . 2 ⊢ ((ℵ‘𝐴) ∈ GCH ↔ ((ℵ‘𝐴) ∈ Fin ∨ ∀𝑥 ¬ ((ℵ‘𝐴) ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 (ℵ‘𝐴)))) |
10 | 6, 9 | sylibr 237 | 1 ⊢ ((ℵ‘suc 𝐴) ≈ 𝒫 (ℵ‘𝐴) → (ℵ‘𝐴) ∈ GCH) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 399 ∨ wo 844 ∀wal 1536 ∈ wcel 2111 Vcvv 3409 𝒫 cpw 4497 class class class wbr 5035 suc csuc 6175 ‘cfv 6339 ≈ cen 8529 ≺ csdm 8531 Fincfn 8532 ℵcale 9403 GCHcgch 10085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5159 ax-sep 5172 ax-nul 5179 ax-pow 5237 ax-pr 5301 ax-un 7464 ax-inf2 9142 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-int 4842 df-iun 4888 df-br 5036 df-opab 5098 df-mpt 5116 df-tr 5142 df-id 5433 df-eprel 5438 df-po 5446 df-so 5447 df-fr 5486 df-se 5487 df-we 5488 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-res 5539 df-ima 5540 df-pred 6130 df-ord 6176 df-on 6177 df-lim 6178 df-suc 6179 df-iota 6298 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-isom 6348 df-riota 7113 df-om 7585 df-wrecs 7962 df-recs 8023 df-rdg 8061 df-er 8304 df-en 8533 df-dom 8534 df-sdom 8535 df-fin 8536 df-oi 9012 df-har 9059 df-card 9406 df-aleph 9407 df-gch 10086 |
This theorem is referenced by: gch3 10141 |
Copyright terms: Public domain | W3C validator |