MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  engch Structured version   Visualization version   GIF version

Theorem engch 10629
Description: The property of being a GCH-set is a cardinal invariant. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
engch (𝐴𝐵 → (𝐴 ∈ GCH ↔ 𝐵 ∈ GCH))

Proof of Theorem engch
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 enfi 9196 . . 3 (𝐴𝐵 → (𝐴 ∈ Fin ↔ 𝐵 ∈ Fin))
2 sdomen1 9127 . . . . . 6 (𝐴𝐵 → (𝐴𝑥𝐵𝑥))
3 pwen 9156 . . . . . . 7 (𝐴𝐵 → 𝒫 𝐴 ≈ 𝒫 𝐵)
4 sdomen2 9128 . . . . . . 7 (𝒫 𝐴 ≈ 𝒫 𝐵 → (𝑥 ≺ 𝒫 𝐴𝑥 ≺ 𝒫 𝐵))
53, 4syl 17 . . . . . 6 (𝐴𝐵 → (𝑥 ≺ 𝒫 𝐴𝑥 ≺ 𝒫 𝐵))
62, 5anbi12d 630 . . . . 5 (𝐴𝐵 → ((𝐴𝑥𝑥 ≺ 𝒫 𝐴) ↔ (𝐵𝑥𝑥 ≺ 𝒫 𝐵)))
76notbid 318 . . . 4 (𝐴𝐵 → (¬ (𝐴𝑥𝑥 ≺ 𝒫 𝐴) ↔ ¬ (𝐵𝑥𝑥 ≺ 𝒫 𝐵)))
87albidv 1922 . . 3 (𝐴𝐵 → (∀𝑥 ¬ (𝐴𝑥𝑥 ≺ 𝒫 𝐴) ↔ ∀𝑥 ¬ (𝐵𝑥𝑥 ≺ 𝒫 𝐵)))
91, 8orbi12d 916 . 2 (𝐴𝐵 → ((𝐴 ∈ Fin ∨ ∀𝑥 ¬ (𝐴𝑥𝑥 ≺ 𝒫 𝐴)) ↔ (𝐵 ∈ Fin ∨ ∀𝑥 ¬ (𝐵𝑥𝑥 ≺ 𝒫 𝐵))))
10 relen 8950 . . . 4 Rel ≈
1110brrelex1i 5732 . . 3 (𝐴𝐵𝐴 ∈ V)
12 elgch 10623 . . 3 (𝐴 ∈ V → (𝐴 ∈ GCH ↔ (𝐴 ∈ Fin ∨ ∀𝑥 ¬ (𝐴𝑥𝑥 ≺ 𝒫 𝐴))))
1311, 12syl 17 . 2 (𝐴𝐵 → (𝐴 ∈ GCH ↔ (𝐴 ∈ Fin ∨ ∀𝑥 ¬ (𝐴𝑥𝑥 ≺ 𝒫 𝐴))))
1410brrelex2i 5733 . . 3 (𝐴𝐵𝐵 ∈ V)
15 elgch 10623 . . 3 (𝐵 ∈ V → (𝐵 ∈ GCH ↔ (𝐵 ∈ Fin ∨ ∀𝑥 ¬ (𝐵𝑥𝑥 ≺ 𝒫 𝐵))))
1614, 15syl 17 . 2 (𝐴𝐵 → (𝐵 ∈ GCH ↔ (𝐵 ∈ Fin ∨ ∀𝑥 ¬ (𝐵𝑥𝑥 ≺ 𝒫 𝐵))))
179, 13, 163bitr4d 311 1 (𝐴𝐵 → (𝐴 ∈ GCH ↔ 𝐵 ∈ GCH))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 844  wal 1538  wcel 2105  Vcvv 3473  𝒫 cpw 4602   class class class wbr 5148  cen 8942  csdm 8944  Fincfn 8945  GCHcgch 10621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-1o 8472  df-2o 8473  df-er 8709  df-map 8828  df-en 8946  df-dom 8947  df-sdom 8948  df-fin 8949  df-gch 10622
This theorem is referenced by:  gch2  10676
  Copyright terms: Public domain W3C validator