![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > engch | Structured version Visualization version GIF version |
Description: The property of being a GCH-set is a cardinal invariant. (Contributed by Mario Carneiro, 15-May-2015.) |
Ref | Expression |
---|---|
engch | ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ GCH ↔ 𝐵 ∈ GCH)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | enfi 9225 | . . 3 ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ Fin ↔ 𝐵 ∈ Fin)) | |
2 | sdomen1 9160 | . . . . . 6 ⊢ (𝐴 ≈ 𝐵 → (𝐴 ≺ 𝑥 ↔ 𝐵 ≺ 𝑥)) | |
3 | pwen 9189 | . . . . . . 7 ⊢ (𝐴 ≈ 𝐵 → 𝒫 𝐴 ≈ 𝒫 𝐵) | |
4 | sdomen2 9161 | . . . . . . 7 ⊢ (𝒫 𝐴 ≈ 𝒫 𝐵 → (𝑥 ≺ 𝒫 𝐴 ↔ 𝑥 ≺ 𝒫 𝐵)) | |
5 | 3, 4 | syl 17 | . . . . . 6 ⊢ (𝐴 ≈ 𝐵 → (𝑥 ≺ 𝒫 𝐴 ↔ 𝑥 ≺ 𝒫 𝐵)) |
6 | 2, 5 | anbi12d 632 | . . . . 5 ⊢ (𝐴 ≈ 𝐵 → ((𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴) ↔ (𝐵 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐵))) |
7 | 6 | notbid 318 | . . . 4 ⊢ (𝐴 ≈ 𝐵 → (¬ (𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴) ↔ ¬ (𝐵 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐵))) |
8 | 7 | albidv 1918 | . . 3 ⊢ (𝐴 ≈ 𝐵 → (∀𝑥 ¬ (𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴) ↔ ∀𝑥 ¬ (𝐵 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐵))) |
9 | 1, 8 | orbi12d 918 | . 2 ⊢ (𝐴 ≈ 𝐵 → ((𝐴 ∈ Fin ∨ ∀𝑥 ¬ (𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴)) ↔ (𝐵 ∈ Fin ∨ ∀𝑥 ¬ (𝐵 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐵)))) |
10 | relen 8989 | . . . 4 ⊢ Rel ≈ | |
11 | 10 | brrelex1i 5745 | . . 3 ⊢ (𝐴 ≈ 𝐵 → 𝐴 ∈ V) |
12 | elgch 10660 | . . 3 ⊢ (𝐴 ∈ V → (𝐴 ∈ GCH ↔ (𝐴 ∈ Fin ∨ ∀𝑥 ¬ (𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴)))) | |
13 | 11, 12 | syl 17 | . 2 ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ GCH ↔ (𝐴 ∈ Fin ∨ ∀𝑥 ¬ (𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴)))) |
14 | 10 | brrelex2i 5746 | . . 3 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ∈ V) |
15 | elgch 10660 | . . 3 ⊢ (𝐵 ∈ V → (𝐵 ∈ GCH ↔ (𝐵 ∈ Fin ∨ ∀𝑥 ¬ (𝐵 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐵)))) | |
16 | 14, 15 | syl 17 | . 2 ⊢ (𝐴 ≈ 𝐵 → (𝐵 ∈ GCH ↔ (𝐵 ∈ Fin ∨ ∀𝑥 ¬ (𝐵 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐵)))) |
17 | 9, 13, 16 | 3bitr4d 311 | 1 ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ GCH ↔ 𝐵 ∈ GCH)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∀wal 1535 ∈ wcel 2106 Vcvv 3478 𝒫 cpw 4605 class class class wbr 5148 ≈ cen 8981 ≺ csdm 8983 Fincfn 8984 GCHcgch 10658 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-1o 8505 df-2o 8506 df-er 8744 df-map 8867 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-gch 10659 |
This theorem is referenced by: gch2 10713 |
Copyright terms: Public domain | W3C validator |