MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  engch Structured version   Visualization version   GIF version

Theorem engch 10043
Description: The property of being a GCH-set is a cardinal invariant. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
engch (𝐴𝐵 → (𝐴 ∈ GCH ↔ 𝐵 ∈ GCH))

Proof of Theorem engch
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 enfi 8722 . . 3 (𝐴𝐵 → (𝐴 ∈ Fin ↔ 𝐵 ∈ Fin))
2 sdomen1 8649 . . . . . 6 (𝐴𝐵 → (𝐴𝑥𝐵𝑥))
3 pwen 8678 . . . . . . 7 (𝐴𝐵 → 𝒫 𝐴 ≈ 𝒫 𝐵)
4 sdomen2 8650 . . . . . . 7 (𝒫 𝐴 ≈ 𝒫 𝐵 → (𝑥 ≺ 𝒫 𝐴𝑥 ≺ 𝒫 𝐵))
53, 4syl 17 . . . . . 6 (𝐴𝐵 → (𝑥 ≺ 𝒫 𝐴𝑥 ≺ 𝒫 𝐵))
62, 5anbi12d 633 . . . . 5 (𝐴𝐵 → ((𝐴𝑥𝑥 ≺ 𝒫 𝐴) ↔ (𝐵𝑥𝑥 ≺ 𝒫 𝐵)))
76notbid 321 . . . 4 (𝐴𝐵 → (¬ (𝐴𝑥𝑥 ≺ 𝒫 𝐴) ↔ ¬ (𝐵𝑥𝑥 ≺ 𝒫 𝐵)))
87albidv 1921 . . 3 (𝐴𝐵 → (∀𝑥 ¬ (𝐴𝑥𝑥 ≺ 𝒫 𝐴) ↔ ∀𝑥 ¬ (𝐵𝑥𝑥 ≺ 𝒫 𝐵)))
91, 8orbi12d 916 . 2 (𝐴𝐵 → ((𝐴 ∈ Fin ∨ ∀𝑥 ¬ (𝐴𝑥𝑥 ≺ 𝒫 𝐴)) ↔ (𝐵 ∈ Fin ∨ ∀𝑥 ¬ (𝐵𝑥𝑥 ≺ 𝒫 𝐵))))
10 relen 8501 . . . 4 Rel ≈
1110brrelex1i 5576 . . 3 (𝐴𝐵𝐴 ∈ V)
12 elgch 10037 . . 3 (𝐴 ∈ V → (𝐴 ∈ GCH ↔ (𝐴 ∈ Fin ∨ ∀𝑥 ¬ (𝐴𝑥𝑥 ≺ 𝒫 𝐴))))
1311, 12syl 17 . 2 (𝐴𝐵 → (𝐴 ∈ GCH ↔ (𝐴 ∈ Fin ∨ ∀𝑥 ¬ (𝐴𝑥𝑥 ≺ 𝒫 𝐴))))
1410brrelex2i 5577 . . 3 (𝐴𝐵𝐵 ∈ V)
15 elgch 10037 . . 3 (𝐵 ∈ V → (𝐵 ∈ GCH ↔ (𝐵 ∈ Fin ∨ ∀𝑥 ¬ (𝐵𝑥𝑥 ≺ 𝒫 𝐵))))
1614, 15syl 17 . 2 (𝐴𝐵 → (𝐵 ∈ GCH ↔ (𝐵 ∈ Fin ∨ ∀𝑥 ¬ (𝐵𝑥𝑥 ≺ 𝒫 𝐵))))
179, 13, 163bitr4d 314 1 (𝐴𝐵 → (𝐴 ∈ GCH ↔ 𝐵 ∈ GCH))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844  wal 1536  wcel 2112  Vcvv 3444  𝒫 cpw 4500   class class class wbr 5033  cen 8493  csdm 8495  Fincfn 8496  GCHcgch 10035
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-1o 8089  df-2o 8090  df-er 8276  df-map 8395  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-gch 10036
This theorem is referenced by:  gch2  10090
  Copyright terms: Public domain W3C validator