|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > engch | Structured version Visualization version GIF version | ||
| Description: The property of being a GCH-set is a cardinal invariant. (Contributed by Mario Carneiro, 15-May-2015.) | 
| Ref | Expression | 
|---|---|
| engch | ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ GCH ↔ 𝐵 ∈ GCH)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | enfi 9227 | . . 3 ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ Fin ↔ 𝐵 ∈ Fin)) | |
| 2 | sdomen1 9161 | . . . . . 6 ⊢ (𝐴 ≈ 𝐵 → (𝐴 ≺ 𝑥 ↔ 𝐵 ≺ 𝑥)) | |
| 3 | pwen 9190 | . . . . . . 7 ⊢ (𝐴 ≈ 𝐵 → 𝒫 𝐴 ≈ 𝒫 𝐵) | |
| 4 | sdomen2 9162 | . . . . . . 7 ⊢ (𝒫 𝐴 ≈ 𝒫 𝐵 → (𝑥 ≺ 𝒫 𝐴 ↔ 𝑥 ≺ 𝒫 𝐵)) | |
| 5 | 3, 4 | syl 17 | . . . . . 6 ⊢ (𝐴 ≈ 𝐵 → (𝑥 ≺ 𝒫 𝐴 ↔ 𝑥 ≺ 𝒫 𝐵)) | 
| 6 | 2, 5 | anbi12d 632 | . . . . 5 ⊢ (𝐴 ≈ 𝐵 → ((𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴) ↔ (𝐵 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐵))) | 
| 7 | 6 | notbid 318 | . . . 4 ⊢ (𝐴 ≈ 𝐵 → (¬ (𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴) ↔ ¬ (𝐵 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐵))) | 
| 8 | 7 | albidv 1920 | . . 3 ⊢ (𝐴 ≈ 𝐵 → (∀𝑥 ¬ (𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴) ↔ ∀𝑥 ¬ (𝐵 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐵))) | 
| 9 | 1, 8 | orbi12d 919 | . 2 ⊢ (𝐴 ≈ 𝐵 → ((𝐴 ∈ Fin ∨ ∀𝑥 ¬ (𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴)) ↔ (𝐵 ∈ Fin ∨ ∀𝑥 ¬ (𝐵 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐵)))) | 
| 10 | relen 8990 | . . . 4 ⊢ Rel ≈ | |
| 11 | 10 | brrelex1i 5741 | . . 3 ⊢ (𝐴 ≈ 𝐵 → 𝐴 ∈ V) | 
| 12 | elgch 10662 | . . 3 ⊢ (𝐴 ∈ V → (𝐴 ∈ GCH ↔ (𝐴 ∈ Fin ∨ ∀𝑥 ¬ (𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴)))) | |
| 13 | 11, 12 | syl 17 | . 2 ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ GCH ↔ (𝐴 ∈ Fin ∨ ∀𝑥 ¬ (𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴)))) | 
| 14 | 10 | brrelex2i 5742 | . . 3 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ∈ V) | 
| 15 | elgch 10662 | . . 3 ⊢ (𝐵 ∈ V → (𝐵 ∈ GCH ↔ (𝐵 ∈ Fin ∨ ∀𝑥 ¬ (𝐵 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐵)))) | |
| 16 | 14, 15 | syl 17 | . 2 ⊢ (𝐴 ≈ 𝐵 → (𝐵 ∈ GCH ↔ (𝐵 ∈ Fin ∨ ∀𝑥 ¬ (𝐵 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐵)))) | 
| 17 | 9, 13, 16 | 3bitr4d 311 | 1 ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ GCH ↔ 𝐵 ∈ GCH)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 848 ∀wal 1538 ∈ wcel 2108 Vcvv 3480 𝒫 cpw 4600 class class class wbr 5143 ≈ cen 8982 ≺ csdm 8984 Fincfn 8985 GCHcgch 10660 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-1o 8506 df-2o 8507 df-er 8745 df-map 8868 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-gch 10661 | 
| This theorem is referenced by: gch2 10715 | 
| Copyright terms: Public domain | W3C validator |