![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > engch | Structured version Visualization version GIF version |
Description: The property of being a GCH-set is a cardinal invariant. (Contributed by Mario Carneiro, 15-May-2015.) |
Ref | Expression |
---|---|
engch | ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ GCH ↔ 𝐵 ∈ GCH)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | enfi 9196 | . . 3 ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ Fin ↔ 𝐵 ∈ Fin)) | |
2 | sdomen1 9127 | . . . . . 6 ⊢ (𝐴 ≈ 𝐵 → (𝐴 ≺ 𝑥 ↔ 𝐵 ≺ 𝑥)) | |
3 | pwen 9156 | . . . . . . 7 ⊢ (𝐴 ≈ 𝐵 → 𝒫 𝐴 ≈ 𝒫 𝐵) | |
4 | sdomen2 9128 | . . . . . . 7 ⊢ (𝒫 𝐴 ≈ 𝒫 𝐵 → (𝑥 ≺ 𝒫 𝐴 ↔ 𝑥 ≺ 𝒫 𝐵)) | |
5 | 3, 4 | syl 17 | . . . . . 6 ⊢ (𝐴 ≈ 𝐵 → (𝑥 ≺ 𝒫 𝐴 ↔ 𝑥 ≺ 𝒫 𝐵)) |
6 | 2, 5 | anbi12d 630 | . . . . 5 ⊢ (𝐴 ≈ 𝐵 → ((𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴) ↔ (𝐵 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐵))) |
7 | 6 | notbid 318 | . . . 4 ⊢ (𝐴 ≈ 𝐵 → (¬ (𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴) ↔ ¬ (𝐵 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐵))) |
8 | 7 | albidv 1922 | . . 3 ⊢ (𝐴 ≈ 𝐵 → (∀𝑥 ¬ (𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴) ↔ ∀𝑥 ¬ (𝐵 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐵))) |
9 | 1, 8 | orbi12d 916 | . 2 ⊢ (𝐴 ≈ 𝐵 → ((𝐴 ∈ Fin ∨ ∀𝑥 ¬ (𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴)) ↔ (𝐵 ∈ Fin ∨ ∀𝑥 ¬ (𝐵 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐵)))) |
10 | relen 8950 | . . . 4 ⊢ Rel ≈ | |
11 | 10 | brrelex1i 5732 | . . 3 ⊢ (𝐴 ≈ 𝐵 → 𝐴 ∈ V) |
12 | elgch 10623 | . . 3 ⊢ (𝐴 ∈ V → (𝐴 ∈ GCH ↔ (𝐴 ∈ Fin ∨ ∀𝑥 ¬ (𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴)))) | |
13 | 11, 12 | syl 17 | . 2 ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ GCH ↔ (𝐴 ∈ Fin ∨ ∀𝑥 ¬ (𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴)))) |
14 | 10 | brrelex2i 5733 | . . 3 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ∈ V) |
15 | elgch 10623 | . . 3 ⊢ (𝐵 ∈ V → (𝐵 ∈ GCH ↔ (𝐵 ∈ Fin ∨ ∀𝑥 ¬ (𝐵 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐵)))) | |
16 | 14, 15 | syl 17 | . 2 ⊢ (𝐴 ≈ 𝐵 → (𝐵 ∈ GCH ↔ (𝐵 ∈ Fin ∨ ∀𝑥 ¬ (𝐵 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐵)))) |
17 | 9, 13, 16 | 3bitr4d 311 | 1 ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ GCH ↔ 𝐵 ∈ GCH)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 844 ∀wal 1538 ∈ wcel 2105 Vcvv 3473 𝒫 cpw 4602 class class class wbr 5148 ≈ cen 8942 ≺ csdm 8944 Fincfn 8945 GCHcgch 10621 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-1o 8472 df-2o 8473 df-er 8709 df-map 8828 df-en 8946 df-dom 8947 df-sdom 8948 df-fin 8949 df-gch 10622 |
This theorem is referenced by: gch2 10676 |
Copyright terms: Public domain | W3C validator |