Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > engch | Structured version Visualization version GIF version |
Description: The property of being a GCH-set is a cardinal invariant. (Contributed by Mario Carneiro, 15-May-2015.) |
Ref | Expression |
---|---|
engch | ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ GCH ↔ 𝐵 ∈ GCH)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | enfi 8933 | . . 3 ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ Fin ↔ 𝐵 ∈ Fin)) | |
2 | sdomen1 8857 | . . . . . 6 ⊢ (𝐴 ≈ 𝐵 → (𝐴 ≺ 𝑥 ↔ 𝐵 ≺ 𝑥)) | |
3 | pwen 8886 | . . . . . . 7 ⊢ (𝐴 ≈ 𝐵 → 𝒫 𝐴 ≈ 𝒫 𝐵) | |
4 | sdomen2 8858 | . . . . . . 7 ⊢ (𝒫 𝐴 ≈ 𝒫 𝐵 → (𝑥 ≺ 𝒫 𝐴 ↔ 𝑥 ≺ 𝒫 𝐵)) | |
5 | 3, 4 | syl 17 | . . . . . 6 ⊢ (𝐴 ≈ 𝐵 → (𝑥 ≺ 𝒫 𝐴 ↔ 𝑥 ≺ 𝒫 𝐵)) |
6 | 2, 5 | anbi12d 630 | . . . . 5 ⊢ (𝐴 ≈ 𝐵 → ((𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴) ↔ (𝐵 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐵))) |
7 | 6 | notbid 317 | . . . 4 ⊢ (𝐴 ≈ 𝐵 → (¬ (𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴) ↔ ¬ (𝐵 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐵))) |
8 | 7 | albidv 1924 | . . 3 ⊢ (𝐴 ≈ 𝐵 → (∀𝑥 ¬ (𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴) ↔ ∀𝑥 ¬ (𝐵 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐵))) |
9 | 1, 8 | orbi12d 915 | . 2 ⊢ (𝐴 ≈ 𝐵 → ((𝐴 ∈ Fin ∨ ∀𝑥 ¬ (𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴)) ↔ (𝐵 ∈ Fin ∨ ∀𝑥 ¬ (𝐵 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐵)))) |
10 | relen 8696 | . . . 4 ⊢ Rel ≈ | |
11 | 10 | brrelex1i 5634 | . . 3 ⊢ (𝐴 ≈ 𝐵 → 𝐴 ∈ V) |
12 | elgch 10309 | . . 3 ⊢ (𝐴 ∈ V → (𝐴 ∈ GCH ↔ (𝐴 ∈ Fin ∨ ∀𝑥 ¬ (𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴)))) | |
13 | 11, 12 | syl 17 | . 2 ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ GCH ↔ (𝐴 ∈ Fin ∨ ∀𝑥 ¬ (𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴)))) |
14 | 10 | brrelex2i 5635 | . . 3 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ∈ V) |
15 | elgch 10309 | . . 3 ⊢ (𝐵 ∈ V → (𝐵 ∈ GCH ↔ (𝐵 ∈ Fin ∨ ∀𝑥 ¬ (𝐵 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐵)))) | |
16 | 14, 15 | syl 17 | . 2 ⊢ (𝐴 ≈ 𝐵 → (𝐵 ∈ GCH ↔ (𝐵 ∈ Fin ∨ ∀𝑥 ¬ (𝐵 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐵)))) |
17 | 9, 13, 16 | 3bitr4d 310 | 1 ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ GCH ↔ 𝐵 ∈ GCH)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 843 ∀wal 1537 ∈ wcel 2108 Vcvv 3422 𝒫 cpw 4530 class class class wbr 5070 ≈ cen 8688 ≺ csdm 8690 Fincfn 8691 GCHcgch 10307 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-1o 8267 df-2o 8268 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-gch 10308 |
This theorem is referenced by: gch2 10362 |
Copyright terms: Public domain | W3C validator |