| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > engch | Structured version Visualization version GIF version | ||
| Description: The property of being a GCH-set is a cardinal invariant. (Contributed by Mario Carneiro, 15-May-2015.) |
| Ref | Expression |
|---|---|
| engch | ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ GCH ↔ 𝐵 ∈ GCH)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | enfi 9128 | . . 3 ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ Fin ↔ 𝐵 ∈ Fin)) | |
| 2 | sdomen1 9062 | . . . . . 6 ⊢ (𝐴 ≈ 𝐵 → (𝐴 ≺ 𝑥 ↔ 𝐵 ≺ 𝑥)) | |
| 3 | pwen 9091 | . . . . . . 7 ⊢ (𝐴 ≈ 𝐵 → 𝒫 𝐴 ≈ 𝒫 𝐵) | |
| 4 | sdomen2 9063 | . . . . . . 7 ⊢ (𝒫 𝐴 ≈ 𝒫 𝐵 → (𝑥 ≺ 𝒫 𝐴 ↔ 𝑥 ≺ 𝒫 𝐵)) | |
| 5 | 3, 4 | syl 17 | . . . . . 6 ⊢ (𝐴 ≈ 𝐵 → (𝑥 ≺ 𝒫 𝐴 ↔ 𝑥 ≺ 𝒫 𝐵)) |
| 6 | 2, 5 | anbi12d 632 | . . . . 5 ⊢ (𝐴 ≈ 𝐵 → ((𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴) ↔ (𝐵 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐵))) |
| 7 | 6 | notbid 318 | . . . 4 ⊢ (𝐴 ≈ 𝐵 → (¬ (𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴) ↔ ¬ (𝐵 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐵))) |
| 8 | 7 | albidv 1920 | . . 3 ⊢ (𝐴 ≈ 𝐵 → (∀𝑥 ¬ (𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴) ↔ ∀𝑥 ¬ (𝐵 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐵))) |
| 9 | 1, 8 | orbi12d 918 | . 2 ⊢ (𝐴 ≈ 𝐵 → ((𝐴 ∈ Fin ∨ ∀𝑥 ¬ (𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴)) ↔ (𝐵 ∈ Fin ∨ ∀𝑥 ¬ (𝐵 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐵)))) |
| 10 | relen 8900 | . . . 4 ⊢ Rel ≈ | |
| 11 | 10 | brrelex1i 5687 | . . 3 ⊢ (𝐴 ≈ 𝐵 → 𝐴 ∈ V) |
| 12 | elgch 10551 | . . 3 ⊢ (𝐴 ∈ V → (𝐴 ∈ GCH ↔ (𝐴 ∈ Fin ∨ ∀𝑥 ¬ (𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴)))) | |
| 13 | 11, 12 | syl 17 | . 2 ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ GCH ↔ (𝐴 ∈ Fin ∨ ∀𝑥 ¬ (𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴)))) |
| 14 | 10 | brrelex2i 5688 | . . 3 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ∈ V) |
| 15 | elgch 10551 | . . 3 ⊢ (𝐵 ∈ V → (𝐵 ∈ GCH ↔ (𝐵 ∈ Fin ∨ ∀𝑥 ¬ (𝐵 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐵)))) | |
| 16 | 14, 15 | syl 17 | . 2 ⊢ (𝐴 ≈ 𝐵 → (𝐵 ∈ GCH ↔ (𝐵 ∈ Fin ∨ ∀𝑥 ¬ (𝐵 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐵)))) |
| 17 | 9, 13, 16 | 3bitr4d 311 | 1 ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ GCH ↔ 𝐵 ∈ GCH)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∀wal 1538 ∈ wcel 2109 Vcvv 3444 𝒫 cpw 4559 class class class wbr 5102 ≈ cen 8892 ≺ csdm 8894 Fincfn 8895 GCHcgch 10549 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-1o 8411 df-2o 8412 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-gch 10550 |
| This theorem is referenced by: gch2 10604 |
| Copyright terms: Public domain | W3C validator |