MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  engch Structured version   Visualization version   GIF version

Theorem engch 10383
Description: The property of being a GCH-set is a cardinal invariant. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
engch (𝐴𝐵 → (𝐴 ∈ GCH ↔ 𝐵 ∈ GCH))

Proof of Theorem engch
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 enfi 8953 . . 3 (𝐴𝐵 → (𝐴 ∈ Fin ↔ 𝐵 ∈ Fin))
2 sdomen1 8888 . . . . . 6 (𝐴𝐵 → (𝐴𝑥𝐵𝑥))
3 pwen 8917 . . . . . . 7 (𝐴𝐵 → 𝒫 𝐴 ≈ 𝒫 𝐵)
4 sdomen2 8889 . . . . . . 7 (𝒫 𝐴 ≈ 𝒫 𝐵 → (𝑥 ≺ 𝒫 𝐴𝑥 ≺ 𝒫 𝐵))
53, 4syl 17 . . . . . 6 (𝐴𝐵 → (𝑥 ≺ 𝒫 𝐴𝑥 ≺ 𝒫 𝐵))
62, 5anbi12d 631 . . . . 5 (𝐴𝐵 → ((𝐴𝑥𝑥 ≺ 𝒫 𝐴) ↔ (𝐵𝑥𝑥 ≺ 𝒫 𝐵)))
76notbid 318 . . . 4 (𝐴𝐵 → (¬ (𝐴𝑥𝑥 ≺ 𝒫 𝐴) ↔ ¬ (𝐵𝑥𝑥 ≺ 𝒫 𝐵)))
87albidv 1927 . . 3 (𝐴𝐵 → (∀𝑥 ¬ (𝐴𝑥𝑥 ≺ 𝒫 𝐴) ↔ ∀𝑥 ¬ (𝐵𝑥𝑥 ≺ 𝒫 𝐵)))
91, 8orbi12d 916 . 2 (𝐴𝐵 → ((𝐴 ∈ Fin ∨ ∀𝑥 ¬ (𝐴𝑥𝑥 ≺ 𝒫 𝐴)) ↔ (𝐵 ∈ Fin ∨ ∀𝑥 ¬ (𝐵𝑥𝑥 ≺ 𝒫 𝐵))))
10 relen 8719 . . . 4 Rel ≈
1110brrelex1i 5643 . . 3 (𝐴𝐵𝐴 ∈ V)
12 elgch 10377 . . 3 (𝐴 ∈ V → (𝐴 ∈ GCH ↔ (𝐴 ∈ Fin ∨ ∀𝑥 ¬ (𝐴𝑥𝑥 ≺ 𝒫 𝐴))))
1311, 12syl 17 . 2 (𝐴𝐵 → (𝐴 ∈ GCH ↔ (𝐴 ∈ Fin ∨ ∀𝑥 ¬ (𝐴𝑥𝑥 ≺ 𝒫 𝐴))))
1410brrelex2i 5644 . . 3 (𝐴𝐵𝐵 ∈ V)
15 elgch 10377 . . 3 (𝐵 ∈ V → (𝐵 ∈ GCH ↔ (𝐵 ∈ Fin ∨ ∀𝑥 ¬ (𝐵𝑥𝑥 ≺ 𝒫 𝐵))))
1614, 15syl 17 . 2 (𝐴𝐵 → (𝐵 ∈ GCH ↔ (𝐵 ∈ Fin ∨ ∀𝑥 ¬ (𝐵𝑥𝑥 ≺ 𝒫 𝐵))))
179, 13, 163bitr4d 311 1 (𝐴𝐵 → (𝐴 ∈ GCH ↔ 𝐵 ∈ GCH))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  wal 1540  wcel 2110  Vcvv 3431  𝒫 cpw 4539   class class class wbr 5079  cen 8711  csdm 8713  Fincfn 8714  GCHcgch 10375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7580
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6267  df-on 6268  df-lim 6269  df-suc 6270  df-iota 6389  df-fun 6433  df-fn 6434  df-f 6435  df-f1 6436  df-fo 6437  df-f1o 6438  df-fv 6439  df-ov 7272  df-oprab 7273  df-mpo 7274  df-om 7705  df-1st 7822  df-2nd 7823  df-1o 8286  df-2o 8287  df-er 8479  df-map 8598  df-en 8715  df-dom 8716  df-sdom 8717  df-fin 8718  df-gch 10376
This theorem is referenced by:  gch2  10430
  Copyright terms: Public domain W3C validator