MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssnmz Structured version   Visualization version   GIF version

Theorem ssnmz 19098
Description: A subgroup is a subset of its normalizer. (Contributed by Mario Carneiro, 18-Jan-2015.)
Hypotheses
Ref Expression
elnmz.1 𝑁 = {𝑥𝑋 ∣ ∀𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)}
nmzsubg.2 𝑋 = (Base‘𝐺)
nmzsubg.3 + = (+g𝐺)
Assertion
Ref Expression
ssnmz (𝑆 ∈ (SubGrp‘𝐺) → 𝑆𝑁)
Distinct variable groups:   𝑥,𝑦,𝐺   𝑥,𝑆,𝑦   𝑥, + ,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝑁(𝑥,𝑦)

Proof of Theorem ssnmz
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nmzsubg.2 . . . . . 6 𝑋 = (Base‘𝐺)
21subgss 19059 . . . . 5 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆𝑋)
32sselda 3946 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑧𝑆) → 𝑧𝑋)
4 simpll 766 . . . . . . . 8 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → 𝑆 ∈ (SubGrp‘𝐺))
5 subgrcl 19063 . . . . . . . . . . . . 13 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
64, 5syl 17 . . . . . . . . . . . 12 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → 𝐺 ∈ Grp)
74, 2syl 17 . . . . . . . . . . . . 13 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → 𝑆𝑋)
8 simplrl 776 . . . . . . . . . . . . 13 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → 𝑧𝑆)
97, 8sseldd 3947 . . . . . . . . . . . 12 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → 𝑧𝑋)
10 nmzsubg.3 . . . . . . . . . . . . 13 + = (+g𝐺)
11 eqid 2729 . . . . . . . . . . . . 13 (0g𝐺) = (0g𝐺)
12 eqid 2729 . . . . . . . . . . . . 13 (invg𝐺) = (invg𝐺)
131, 10, 11, 12grplinv 18921 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑧𝑋) → (((invg𝐺)‘𝑧) + 𝑧) = (0g𝐺))
146, 9, 13syl2anc 584 . . . . . . . . . . 11 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → (((invg𝐺)‘𝑧) + 𝑧) = (0g𝐺))
1514oveq1d 7402 . . . . . . . . . 10 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → ((((invg𝐺)‘𝑧) + 𝑧) + 𝑤) = ((0g𝐺) + 𝑤))
1612subginvcl 19067 . . . . . . . . . . . . 13 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑧𝑆) → ((invg𝐺)‘𝑧) ∈ 𝑆)
174, 8, 16syl2anc 584 . . . . . . . . . . . 12 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → ((invg𝐺)‘𝑧) ∈ 𝑆)
187, 17sseldd 3947 . . . . . . . . . . 11 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → ((invg𝐺)‘𝑧) ∈ 𝑋)
19 simplrr 777 . . . . . . . . . . 11 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → 𝑤𝑋)
201, 10grpass 18874 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (((invg𝐺)‘𝑧) ∈ 𝑋𝑧𝑋𝑤𝑋)) → ((((invg𝐺)‘𝑧) + 𝑧) + 𝑤) = (((invg𝐺)‘𝑧) + (𝑧 + 𝑤)))
216, 18, 9, 19, 20syl13anc 1374 . . . . . . . . . 10 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → ((((invg𝐺)‘𝑧) + 𝑧) + 𝑤) = (((invg𝐺)‘𝑧) + (𝑧 + 𝑤)))
221, 10, 11grplid 18899 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑤𝑋) → ((0g𝐺) + 𝑤) = 𝑤)
236, 19, 22syl2anc 584 . . . . . . . . . 10 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → ((0g𝐺) + 𝑤) = 𝑤)
2415, 21, 233eqtr3d 2772 . . . . . . . . 9 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → (((invg𝐺)‘𝑧) + (𝑧 + 𝑤)) = 𝑤)
25 simpr 484 . . . . . . . . . 10 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → (𝑧 + 𝑤) ∈ 𝑆)
2610subgcl 19068 . . . . . . . . . 10 ((𝑆 ∈ (SubGrp‘𝐺) ∧ ((invg𝐺)‘𝑧) ∈ 𝑆 ∧ (𝑧 + 𝑤) ∈ 𝑆) → (((invg𝐺)‘𝑧) + (𝑧 + 𝑤)) ∈ 𝑆)
274, 17, 25, 26syl3anc 1373 . . . . . . . . 9 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → (((invg𝐺)‘𝑧) + (𝑧 + 𝑤)) ∈ 𝑆)
2824, 27eqeltrrd 2829 . . . . . . . 8 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → 𝑤𝑆)
2910subgcl 19068 . . . . . . . 8 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑤𝑆𝑧𝑆) → (𝑤 + 𝑧) ∈ 𝑆)
304, 28, 8, 29syl3anc 1373 . . . . . . 7 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → (𝑤 + 𝑧) ∈ 𝑆)
31 simpll 766 . . . . . . . 8 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑤 + 𝑧) ∈ 𝑆) → 𝑆 ∈ (SubGrp‘𝐺))
32 simplrl 776 . . . . . . . 8 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑤 + 𝑧) ∈ 𝑆) → 𝑧𝑆)
3331, 5syl 17 . . . . . . . . . 10 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑤 + 𝑧) ∈ 𝑆) → 𝐺 ∈ Grp)
34 simplrr 777 . . . . . . . . . 10 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑤 + 𝑧) ∈ 𝑆) → 𝑤𝑋)
3531, 32, 3syl2anc 584 . . . . . . . . . 10 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑤 + 𝑧) ∈ 𝑆) → 𝑧𝑋)
36 eqid 2729 . . . . . . . . . . 11 (-g𝐺) = (-g𝐺)
371, 10, 36grppncan 18963 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑤𝑋𝑧𝑋) → ((𝑤 + 𝑧)(-g𝐺)𝑧) = 𝑤)
3833, 34, 35, 37syl3anc 1373 . . . . . . . . 9 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑤 + 𝑧) ∈ 𝑆) → ((𝑤 + 𝑧)(-g𝐺)𝑧) = 𝑤)
39 simpr 484 . . . . . . . . . 10 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑤 + 𝑧) ∈ 𝑆) → (𝑤 + 𝑧) ∈ 𝑆)
4036subgsubcl 19069 . . . . . . . . . 10 ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑤 + 𝑧) ∈ 𝑆𝑧𝑆) → ((𝑤 + 𝑧)(-g𝐺)𝑧) ∈ 𝑆)
4131, 39, 32, 40syl3anc 1373 . . . . . . . . 9 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑤 + 𝑧) ∈ 𝑆) → ((𝑤 + 𝑧)(-g𝐺)𝑧) ∈ 𝑆)
4238, 41eqeltrrd 2829 . . . . . . . 8 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑤 + 𝑧) ∈ 𝑆) → 𝑤𝑆)
4310subgcl 19068 . . . . . . . 8 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑧𝑆𝑤𝑆) → (𝑧 + 𝑤) ∈ 𝑆)
4431, 32, 42, 43syl3anc 1373 . . . . . . 7 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑤 + 𝑧) ∈ 𝑆) → (𝑧 + 𝑤) ∈ 𝑆)
4530, 44impbida 800 . . . . . 6 ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) → ((𝑧 + 𝑤) ∈ 𝑆 ↔ (𝑤 + 𝑧) ∈ 𝑆))
4645anassrs 467 . . . . 5 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑧𝑆) ∧ 𝑤𝑋) → ((𝑧 + 𝑤) ∈ 𝑆 ↔ (𝑤 + 𝑧) ∈ 𝑆))
4746ralrimiva 3125 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑧𝑆) → ∀𝑤𝑋 ((𝑧 + 𝑤) ∈ 𝑆 ↔ (𝑤 + 𝑧) ∈ 𝑆))
48 elnmz.1 . . . . 5 𝑁 = {𝑥𝑋 ∣ ∀𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)}
4948elnmz 19095 . . . 4 (𝑧𝑁 ↔ (𝑧𝑋 ∧ ∀𝑤𝑋 ((𝑧 + 𝑤) ∈ 𝑆 ↔ (𝑤 + 𝑧) ∈ 𝑆)))
503, 47, 49sylanbrc 583 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑧𝑆) → 𝑧𝑁)
5150ex 412 . 2 (𝑆 ∈ (SubGrp‘𝐺) → (𝑧𝑆𝑧𝑁))
5251ssrdv 3952 1 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  {crab 3405  wss 3914  cfv 6511  (class class class)co 7387  Basecbs 17179  +gcplusg 17220  0gc0g 17402  Grpcgrp 18865  invgcminusg 18866  -gcsg 18867  SubGrpcsubg 19052
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-minusg 18869  df-sbg 18870  df-subg 19055
This theorem is referenced by:  nmznsg  19100  sylow3lem6  19562
  Copyright terms: Public domain W3C validator