Step | Hyp | Ref
| Expression |
1 | | nmzsubg.2 |
. . . . . 6
⊢ 𝑋 = (Base‘𝐺) |
2 | 1 | subgss 18756 |
. . . . 5
⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ 𝑋) |
3 | 2 | sselda 3921 |
. . . 4
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑧 ∈ 𝑆) → 𝑧 ∈ 𝑋) |
4 | | simpll 764 |
. . . . . . . 8
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → 𝑆 ∈ (SubGrp‘𝐺)) |
5 | | subgrcl 18760 |
. . . . . . . . . . . . 13
⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) |
6 | 4, 5 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → 𝐺 ∈ Grp) |
7 | 4, 2 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → 𝑆 ⊆ 𝑋) |
8 | | simplrl 774 |
. . . . . . . . . . . . 13
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → 𝑧 ∈ 𝑆) |
9 | 7, 8 | sseldd 3922 |
. . . . . . . . . . . 12
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → 𝑧 ∈ 𝑋) |
10 | | nmzsubg.3 |
. . . . . . . . . . . . 13
⊢ + =
(+g‘𝐺) |
11 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢
(0g‘𝐺) = (0g‘𝐺) |
12 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢
(invg‘𝐺) = (invg‘𝐺) |
13 | 1, 10, 11, 12 | grplinv 18628 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑋) → (((invg‘𝐺)‘𝑧) + 𝑧) = (0g‘𝐺)) |
14 | 6, 9, 13 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → (((invg‘𝐺)‘𝑧) + 𝑧) = (0g‘𝐺)) |
15 | 14 | oveq1d 7290 |
. . . . . . . . . 10
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → ((((invg‘𝐺)‘𝑧) + 𝑧) + 𝑤) = ((0g‘𝐺) + 𝑤)) |
16 | 12 | subginvcl 18764 |
. . . . . . . . . . . . 13
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑧 ∈ 𝑆) → ((invg‘𝐺)‘𝑧) ∈ 𝑆) |
17 | 4, 8, 16 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → ((invg‘𝐺)‘𝑧) ∈ 𝑆) |
18 | 7, 17 | sseldd 3922 |
. . . . . . . . . . 11
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → ((invg‘𝐺)‘𝑧) ∈ 𝑋) |
19 | | simplrr 775 |
. . . . . . . . . . 11
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → 𝑤 ∈ 𝑋) |
20 | 1, 10 | grpass 18586 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ Grp ∧
(((invg‘𝐺)‘𝑧) ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → ((((invg‘𝐺)‘𝑧) + 𝑧) + 𝑤) = (((invg‘𝐺)‘𝑧) + (𝑧 + 𝑤))) |
21 | 6, 18, 9, 19, 20 | syl13anc 1371 |
. . . . . . . . . 10
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → ((((invg‘𝐺)‘𝑧) + 𝑧) + 𝑤) = (((invg‘𝐺)‘𝑧) + (𝑧 + 𝑤))) |
22 | 1, 10, 11 | grplid 18609 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ Grp ∧ 𝑤 ∈ 𝑋) → ((0g‘𝐺) + 𝑤) = 𝑤) |
23 | 6, 19, 22 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → ((0g‘𝐺) + 𝑤) = 𝑤) |
24 | 15, 21, 23 | 3eqtr3d 2786 |
. . . . . . . . 9
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → (((invg‘𝐺)‘𝑧) + (𝑧 + 𝑤)) = 𝑤) |
25 | | simpr 485 |
. . . . . . . . . 10
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → (𝑧 + 𝑤) ∈ 𝑆) |
26 | 10 | subgcl 18765 |
. . . . . . . . . 10
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧
((invg‘𝐺)‘𝑧) ∈ 𝑆 ∧ (𝑧 + 𝑤) ∈ 𝑆) → (((invg‘𝐺)‘𝑧) + (𝑧 + 𝑤)) ∈ 𝑆) |
27 | 4, 17, 25, 26 | syl3anc 1370 |
. . . . . . . . 9
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → (((invg‘𝐺)‘𝑧) + (𝑧 + 𝑤)) ∈ 𝑆) |
28 | 24, 27 | eqeltrrd 2840 |
. . . . . . . 8
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → 𝑤 ∈ 𝑆) |
29 | 10 | subgcl 18765 |
. . . . . . . 8
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑤 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) → (𝑤 + 𝑧) ∈ 𝑆) |
30 | 4, 28, 8, 29 | syl3anc 1370 |
. . . . . . 7
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → (𝑤 + 𝑧) ∈ 𝑆) |
31 | | simpll 764 |
. . . . . . . 8
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑤 + 𝑧) ∈ 𝑆) → 𝑆 ∈ (SubGrp‘𝐺)) |
32 | | simplrl 774 |
. . . . . . . 8
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑤 + 𝑧) ∈ 𝑆) → 𝑧 ∈ 𝑆) |
33 | 31, 5 | syl 17 |
. . . . . . . . . 10
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑤 + 𝑧) ∈ 𝑆) → 𝐺 ∈ Grp) |
34 | | simplrr 775 |
. . . . . . . . . 10
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑤 + 𝑧) ∈ 𝑆) → 𝑤 ∈ 𝑋) |
35 | 31, 32, 3 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑤 + 𝑧) ∈ 𝑆) → 𝑧 ∈ 𝑋) |
36 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(-g‘𝐺) = (-g‘𝐺) |
37 | 1, 10, 36 | grppncan 18666 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ Grp ∧ 𝑤 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) → ((𝑤 + 𝑧)(-g‘𝐺)𝑧) = 𝑤) |
38 | 33, 34, 35, 37 | syl3anc 1370 |
. . . . . . . . 9
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑤 + 𝑧) ∈ 𝑆) → ((𝑤 + 𝑧)(-g‘𝐺)𝑧) = 𝑤) |
39 | | simpr 485 |
. . . . . . . . . 10
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑤 + 𝑧) ∈ 𝑆) → (𝑤 + 𝑧) ∈ 𝑆) |
40 | 36 | subgsubcl 18766 |
. . . . . . . . . 10
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑤 + 𝑧) ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) → ((𝑤 + 𝑧)(-g‘𝐺)𝑧) ∈ 𝑆) |
41 | 31, 39, 32, 40 | syl3anc 1370 |
. . . . . . . . 9
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑤 + 𝑧) ∈ 𝑆) → ((𝑤 + 𝑧)(-g‘𝐺)𝑧) ∈ 𝑆) |
42 | 38, 41 | eqeltrrd 2840 |
. . . . . . . 8
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑤 + 𝑧) ∈ 𝑆) → 𝑤 ∈ 𝑆) |
43 | 10 | subgcl 18765 |
. . . . . . . 8
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) → (𝑧 + 𝑤) ∈ 𝑆) |
44 | 31, 32, 42, 43 | syl3anc 1370 |
. . . . . . 7
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑤 + 𝑧) ∈ 𝑆) → (𝑧 + 𝑤) ∈ 𝑆) |
45 | 30, 44 | impbida 798 |
. . . . . 6
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) → ((𝑧 + 𝑤) ∈ 𝑆 ↔ (𝑤 + 𝑧) ∈ 𝑆)) |
46 | 45 | anassrs 468 |
. . . . 5
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑧 ∈ 𝑆) ∧ 𝑤 ∈ 𝑋) → ((𝑧 + 𝑤) ∈ 𝑆 ↔ (𝑤 + 𝑧) ∈ 𝑆)) |
47 | 46 | ralrimiva 3103 |
. . . 4
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑧 ∈ 𝑆) → ∀𝑤 ∈ 𝑋 ((𝑧 + 𝑤) ∈ 𝑆 ↔ (𝑤 + 𝑧) ∈ 𝑆)) |
48 | | elnmz.1 |
. . . . 5
⊢ 𝑁 = {𝑥 ∈ 𝑋 ∣ ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)} |
49 | 48 | elnmz 18791 |
. . . 4
⊢ (𝑧 ∈ 𝑁 ↔ (𝑧 ∈ 𝑋 ∧ ∀𝑤 ∈ 𝑋 ((𝑧 + 𝑤) ∈ 𝑆 ↔ (𝑤 + 𝑧) ∈ 𝑆))) |
50 | 3, 47, 49 | sylanbrc 583 |
. . 3
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑧 ∈ 𝑆) → 𝑧 ∈ 𝑁) |
51 | 50 | ex 413 |
. 2
⊢ (𝑆 ∈ (SubGrp‘𝐺) → (𝑧 ∈ 𝑆 → 𝑧 ∈ 𝑁)) |
52 | 51 | ssrdv 3927 |
1
⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ 𝑁) |