| Step | Hyp | Ref
| Expression |
| 1 | | nmzsubg.2 |
. . . . . 6
⊢ 𝑋 = (Base‘𝐺) |
| 2 | 1 | subgss 19115 |
. . . . 5
⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ 𝑋) |
| 3 | 2 | sselda 3963 |
. . . 4
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑧 ∈ 𝑆) → 𝑧 ∈ 𝑋) |
| 4 | | simpll 766 |
. . . . . . . 8
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → 𝑆 ∈ (SubGrp‘𝐺)) |
| 5 | | subgrcl 19119 |
. . . . . . . . . . . . 13
⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) |
| 6 | 4, 5 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → 𝐺 ∈ Grp) |
| 7 | 4, 2 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → 𝑆 ⊆ 𝑋) |
| 8 | | simplrl 776 |
. . . . . . . . . . . . 13
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → 𝑧 ∈ 𝑆) |
| 9 | 7, 8 | sseldd 3964 |
. . . . . . . . . . . 12
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → 𝑧 ∈ 𝑋) |
| 10 | | nmzsubg.3 |
. . . . . . . . . . . . 13
⊢ + =
(+g‘𝐺) |
| 11 | | eqid 2736 |
. . . . . . . . . . . . 13
⊢
(0g‘𝐺) = (0g‘𝐺) |
| 12 | | eqid 2736 |
. . . . . . . . . . . . 13
⊢
(invg‘𝐺) = (invg‘𝐺) |
| 13 | 1, 10, 11, 12 | grplinv 18977 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑋) → (((invg‘𝐺)‘𝑧) + 𝑧) = (0g‘𝐺)) |
| 14 | 6, 9, 13 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → (((invg‘𝐺)‘𝑧) + 𝑧) = (0g‘𝐺)) |
| 15 | 14 | oveq1d 7425 |
. . . . . . . . . 10
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → ((((invg‘𝐺)‘𝑧) + 𝑧) + 𝑤) = ((0g‘𝐺) + 𝑤)) |
| 16 | 12 | subginvcl 19123 |
. . . . . . . . . . . . 13
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑧 ∈ 𝑆) → ((invg‘𝐺)‘𝑧) ∈ 𝑆) |
| 17 | 4, 8, 16 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → ((invg‘𝐺)‘𝑧) ∈ 𝑆) |
| 18 | 7, 17 | sseldd 3964 |
. . . . . . . . . . 11
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → ((invg‘𝐺)‘𝑧) ∈ 𝑋) |
| 19 | | simplrr 777 |
. . . . . . . . . . 11
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → 𝑤 ∈ 𝑋) |
| 20 | 1, 10 | grpass 18930 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ Grp ∧
(((invg‘𝐺)‘𝑧) ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → ((((invg‘𝐺)‘𝑧) + 𝑧) + 𝑤) = (((invg‘𝐺)‘𝑧) + (𝑧 + 𝑤))) |
| 21 | 6, 18, 9, 19, 20 | syl13anc 1374 |
. . . . . . . . . 10
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → ((((invg‘𝐺)‘𝑧) + 𝑧) + 𝑤) = (((invg‘𝐺)‘𝑧) + (𝑧 + 𝑤))) |
| 22 | 1, 10, 11 | grplid 18955 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ Grp ∧ 𝑤 ∈ 𝑋) → ((0g‘𝐺) + 𝑤) = 𝑤) |
| 23 | 6, 19, 22 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → ((0g‘𝐺) + 𝑤) = 𝑤) |
| 24 | 15, 21, 23 | 3eqtr3d 2779 |
. . . . . . . . 9
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → (((invg‘𝐺)‘𝑧) + (𝑧 + 𝑤)) = 𝑤) |
| 25 | | simpr 484 |
. . . . . . . . . 10
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → (𝑧 + 𝑤) ∈ 𝑆) |
| 26 | 10 | subgcl 19124 |
. . . . . . . . . 10
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧
((invg‘𝐺)‘𝑧) ∈ 𝑆 ∧ (𝑧 + 𝑤) ∈ 𝑆) → (((invg‘𝐺)‘𝑧) + (𝑧 + 𝑤)) ∈ 𝑆) |
| 27 | 4, 17, 25, 26 | syl3anc 1373 |
. . . . . . . . 9
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → (((invg‘𝐺)‘𝑧) + (𝑧 + 𝑤)) ∈ 𝑆) |
| 28 | 24, 27 | eqeltrrd 2836 |
. . . . . . . 8
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → 𝑤 ∈ 𝑆) |
| 29 | 10 | subgcl 19124 |
. . . . . . . 8
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑤 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) → (𝑤 + 𝑧) ∈ 𝑆) |
| 30 | 4, 28, 8, 29 | syl3anc 1373 |
. . . . . . 7
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → (𝑤 + 𝑧) ∈ 𝑆) |
| 31 | | simpll 766 |
. . . . . . . 8
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑤 + 𝑧) ∈ 𝑆) → 𝑆 ∈ (SubGrp‘𝐺)) |
| 32 | | simplrl 776 |
. . . . . . . 8
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑤 + 𝑧) ∈ 𝑆) → 𝑧 ∈ 𝑆) |
| 33 | 31, 5 | syl 17 |
. . . . . . . . . 10
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑤 + 𝑧) ∈ 𝑆) → 𝐺 ∈ Grp) |
| 34 | | simplrr 777 |
. . . . . . . . . 10
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑤 + 𝑧) ∈ 𝑆) → 𝑤 ∈ 𝑋) |
| 35 | 31, 32, 3 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑤 + 𝑧) ∈ 𝑆) → 𝑧 ∈ 𝑋) |
| 36 | | eqid 2736 |
. . . . . . . . . . 11
⊢
(-g‘𝐺) = (-g‘𝐺) |
| 37 | 1, 10, 36 | grppncan 19019 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ Grp ∧ 𝑤 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) → ((𝑤 + 𝑧)(-g‘𝐺)𝑧) = 𝑤) |
| 38 | 33, 34, 35, 37 | syl3anc 1373 |
. . . . . . . . 9
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑤 + 𝑧) ∈ 𝑆) → ((𝑤 + 𝑧)(-g‘𝐺)𝑧) = 𝑤) |
| 39 | | simpr 484 |
. . . . . . . . . 10
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑤 + 𝑧) ∈ 𝑆) → (𝑤 + 𝑧) ∈ 𝑆) |
| 40 | 36 | subgsubcl 19125 |
. . . . . . . . . 10
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑤 + 𝑧) ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) → ((𝑤 + 𝑧)(-g‘𝐺)𝑧) ∈ 𝑆) |
| 41 | 31, 39, 32, 40 | syl3anc 1373 |
. . . . . . . . 9
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑤 + 𝑧) ∈ 𝑆) → ((𝑤 + 𝑧)(-g‘𝐺)𝑧) ∈ 𝑆) |
| 42 | 38, 41 | eqeltrrd 2836 |
. . . . . . . 8
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑤 + 𝑧) ∈ 𝑆) → 𝑤 ∈ 𝑆) |
| 43 | 10 | subgcl 19124 |
. . . . . . . 8
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) → (𝑧 + 𝑤) ∈ 𝑆) |
| 44 | 31, 32, 42, 43 | syl3anc 1373 |
. . . . . . 7
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑤 + 𝑧) ∈ 𝑆) → (𝑧 + 𝑤) ∈ 𝑆) |
| 45 | 30, 44 | impbida 800 |
. . . . . 6
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) → ((𝑧 + 𝑤) ∈ 𝑆 ↔ (𝑤 + 𝑧) ∈ 𝑆)) |
| 46 | 45 | anassrs 467 |
. . . . 5
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑧 ∈ 𝑆) ∧ 𝑤 ∈ 𝑋) → ((𝑧 + 𝑤) ∈ 𝑆 ↔ (𝑤 + 𝑧) ∈ 𝑆)) |
| 47 | 46 | ralrimiva 3133 |
. . . 4
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑧 ∈ 𝑆) → ∀𝑤 ∈ 𝑋 ((𝑧 + 𝑤) ∈ 𝑆 ↔ (𝑤 + 𝑧) ∈ 𝑆)) |
| 48 | | elnmz.1 |
. . . . 5
⊢ 𝑁 = {𝑥 ∈ 𝑋 ∣ ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)} |
| 49 | 48 | elnmz 19151 |
. . . 4
⊢ (𝑧 ∈ 𝑁 ↔ (𝑧 ∈ 𝑋 ∧ ∀𝑤 ∈ 𝑋 ((𝑧 + 𝑤) ∈ 𝑆 ↔ (𝑤 + 𝑧) ∈ 𝑆))) |
| 50 | 3, 47, 49 | sylanbrc 583 |
. . 3
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑧 ∈ 𝑆) → 𝑧 ∈ 𝑁) |
| 51 | 50 | ex 412 |
. 2
⊢ (𝑆 ∈ (SubGrp‘𝐺) → (𝑧 ∈ 𝑆 → 𝑧 ∈ 𝑁)) |
| 52 | 51 | ssrdv 3969 |
1
⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ 𝑁) |