| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | nmzsubg.2 | . . . . . 6
⊢ 𝑋 = (Base‘𝐺) | 
| 2 | 1 | subgss 19145 | . . . . 5
⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ 𝑋) | 
| 3 | 2 | sselda 3983 | . . . 4
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑧 ∈ 𝑆) → 𝑧 ∈ 𝑋) | 
| 4 |  | simpll 767 | . . . . . . . 8
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → 𝑆 ∈ (SubGrp‘𝐺)) | 
| 5 |  | subgrcl 19149 | . . . . . . . . . . . . 13
⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) | 
| 6 | 4, 5 | syl 17 | . . . . . . . . . . . 12
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → 𝐺 ∈ Grp) | 
| 7 | 4, 2 | syl 17 | . . . . . . . . . . . . 13
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → 𝑆 ⊆ 𝑋) | 
| 8 |  | simplrl 777 | . . . . . . . . . . . . 13
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → 𝑧 ∈ 𝑆) | 
| 9 | 7, 8 | sseldd 3984 | . . . . . . . . . . . 12
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → 𝑧 ∈ 𝑋) | 
| 10 |  | nmzsubg.3 | . . . . . . . . . . . . 13
⊢  + =
(+g‘𝐺) | 
| 11 |  | eqid 2737 | . . . . . . . . . . . . 13
⊢
(0g‘𝐺) = (0g‘𝐺) | 
| 12 |  | eqid 2737 | . . . . . . . . . . . . 13
⊢
(invg‘𝐺) = (invg‘𝐺) | 
| 13 | 1, 10, 11, 12 | grplinv 19007 | . . . . . . . . . . . 12
⊢ ((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑋) → (((invg‘𝐺)‘𝑧) + 𝑧) = (0g‘𝐺)) | 
| 14 | 6, 9, 13 | syl2anc 584 | . . . . . . . . . . 11
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → (((invg‘𝐺)‘𝑧) + 𝑧) = (0g‘𝐺)) | 
| 15 | 14 | oveq1d 7446 | . . . . . . . . . 10
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → ((((invg‘𝐺)‘𝑧) + 𝑧) + 𝑤) = ((0g‘𝐺) + 𝑤)) | 
| 16 | 12 | subginvcl 19153 | . . . . . . . . . . . . 13
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑧 ∈ 𝑆) → ((invg‘𝐺)‘𝑧) ∈ 𝑆) | 
| 17 | 4, 8, 16 | syl2anc 584 | . . . . . . . . . . . 12
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → ((invg‘𝐺)‘𝑧) ∈ 𝑆) | 
| 18 | 7, 17 | sseldd 3984 | . . . . . . . . . . 11
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → ((invg‘𝐺)‘𝑧) ∈ 𝑋) | 
| 19 |  | simplrr 778 | . . . . . . . . . . 11
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → 𝑤 ∈ 𝑋) | 
| 20 | 1, 10 | grpass 18960 | . . . . . . . . . . 11
⊢ ((𝐺 ∈ Grp ∧
(((invg‘𝐺)‘𝑧) ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → ((((invg‘𝐺)‘𝑧) + 𝑧) + 𝑤) = (((invg‘𝐺)‘𝑧) + (𝑧 + 𝑤))) | 
| 21 | 6, 18, 9, 19, 20 | syl13anc 1374 | . . . . . . . . . 10
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → ((((invg‘𝐺)‘𝑧) + 𝑧) + 𝑤) = (((invg‘𝐺)‘𝑧) + (𝑧 + 𝑤))) | 
| 22 | 1, 10, 11 | grplid 18985 | . . . . . . . . . . 11
⊢ ((𝐺 ∈ Grp ∧ 𝑤 ∈ 𝑋) → ((0g‘𝐺) + 𝑤) = 𝑤) | 
| 23 | 6, 19, 22 | syl2anc 584 | . . . . . . . . . 10
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → ((0g‘𝐺) + 𝑤) = 𝑤) | 
| 24 | 15, 21, 23 | 3eqtr3d 2785 | . . . . . . . . 9
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → (((invg‘𝐺)‘𝑧) + (𝑧 + 𝑤)) = 𝑤) | 
| 25 |  | simpr 484 | . . . . . . . . . 10
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → (𝑧 + 𝑤) ∈ 𝑆) | 
| 26 | 10 | subgcl 19154 | . . . . . . . . . 10
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧
((invg‘𝐺)‘𝑧) ∈ 𝑆 ∧ (𝑧 + 𝑤) ∈ 𝑆) → (((invg‘𝐺)‘𝑧) + (𝑧 + 𝑤)) ∈ 𝑆) | 
| 27 | 4, 17, 25, 26 | syl3anc 1373 | . . . . . . . . 9
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → (((invg‘𝐺)‘𝑧) + (𝑧 + 𝑤)) ∈ 𝑆) | 
| 28 | 24, 27 | eqeltrrd 2842 | . . . . . . . 8
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → 𝑤 ∈ 𝑆) | 
| 29 | 10 | subgcl 19154 | . . . . . . . 8
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑤 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) → (𝑤 + 𝑧) ∈ 𝑆) | 
| 30 | 4, 28, 8, 29 | syl3anc 1373 | . . . . . . 7
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → (𝑤 + 𝑧) ∈ 𝑆) | 
| 31 |  | simpll 767 | . . . . . . . 8
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑤 + 𝑧) ∈ 𝑆) → 𝑆 ∈ (SubGrp‘𝐺)) | 
| 32 |  | simplrl 777 | . . . . . . . 8
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑤 + 𝑧) ∈ 𝑆) → 𝑧 ∈ 𝑆) | 
| 33 | 31, 5 | syl 17 | . . . . . . . . . 10
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑤 + 𝑧) ∈ 𝑆) → 𝐺 ∈ Grp) | 
| 34 |  | simplrr 778 | . . . . . . . . . 10
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑤 + 𝑧) ∈ 𝑆) → 𝑤 ∈ 𝑋) | 
| 35 | 31, 32, 3 | syl2anc 584 | . . . . . . . . . 10
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑤 + 𝑧) ∈ 𝑆) → 𝑧 ∈ 𝑋) | 
| 36 |  | eqid 2737 | . . . . . . . . . . 11
⊢
(-g‘𝐺) = (-g‘𝐺) | 
| 37 | 1, 10, 36 | grppncan 19049 | . . . . . . . . . 10
⊢ ((𝐺 ∈ Grp ∧ 𝑤 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) → ((𝑤 + 𝑧)(-g‘𝐺)𝑧) = 𝑤) | 
| 38 | 33, 34, 35, 37 | syl3anc 1373 | . . . . . . . . 9
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑤 + 𝑧) ∈ 𝑆) → ((𝑤 + 𝑧)(-g‘𝐺)𝑧) = 𝑤) | 
| 39 |  | simpr 484 | . . . . . . . . . 10
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑤 + 𝑧) ∈ 𝑆) → (𝑤 + 𝑧) ∈ 𝑆) | 
| 40 | 36 | subgsubcl 19155 | . . . . . . . . . 10
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑤 + 𝑧) ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) → ((𝑤 + 𝑧)(-g‘𝐺)𝑧) ∈ 𝑆) | 
| 41 | 31, 39, 32, 40 | syl3anc 1373 | . . . . . . . . 9
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑤 + 𝑧) ∈ 𝑆) → ((𝑤 + 𝑧)(-g‘𝐺)𝑧) ∈ 𝑆) | 
| 42 | 38, 41 | eqeltrrd 2842 | . . . . . . . 8
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑤 + 𝑧) ∈ 𝑆) → 𝑤 ∈ 𝑆) | 
| 43 | 10 | subgcl 19154 | . . . . . . . 8
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) → (𝑧 + 𝑤) ∈ 𝑆) | 
| 44 | 31, 32, 42, 43 | syl3anc 1373 | . . . . . . 7
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑤 + 𝑧) ∈ 𝑆) → (𝑧 + 𝑤) ∈ 𝑆) | 
| 45 | 30, 44 | impbida 801 | . . . . . 6
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) → ((𝑧 + 𝑤) ∈ 𝑆 ↔ (𝑤 + 𝑧) ∈ 𝑆)) | 
| 46 | 45 | anassrs 467 | . . . . 5
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑧 ∈ 𝑆) ∧ 𝑤 ∈ 𝑋) → ((𝑧 + 𝑤) ∈ 𝑆 ↔ (𝑤 + 𝑧) ∈ 𝑆)) | 
| 47 | 46 | ralrimiva 3146 | . . . 4
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑧 ∈ 𝑆) → ∀𝑤 ∈ 𝑋 ((𝑧 + 𝑤) ∈ 𝑆 ↔ (𝑤 + 𝑧) ∈ 𝑆)) | 
| 48 |  | elnmz.1 | . . . . 5
⊢ 𝑁 = {𝑥 ∈ 𝑋 ∣ ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)} | 
| 49 | 48 | elnmz 19181 | . . . 4
⊢ (𝑧 ∈ 𝑁 ↔ (𝑧 ∈ 𝑋 ∧ ∀𝑤 ∈ 𝑋 ((𝑧 + 𝑤) ∈ 𝑆 ↔ (𝑤 + 𝑧) ∈ 𝑆))) | 
| 50 | 3, 47, 49 | sylanbrc 583 | . . 3
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑧 ∈ 𝑆) → 𝑧 ∈ 𝑁) | 
| 51 | 50 | ex 412 | . 2
⊢ (𝑆 ∈ (SubGrp‘𝐺) → (𝑧 ∈ 𝑆 → 𝑧 ∈ 𝑁)) | 
| 52 | 51 | ssrdv 3989 | 1
⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ 𝑁) |