MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylow3lem2 Structured version   Visualization version   GIF version

Theorem sylow3lem2 18682
Description: Lemma for sylow3 18687, first part. The stabilizer of a given Sylow subgroup 𝐾 in the group action acting on all of 𝐺 is the normalizer NG(K). (Contributed by Mario Carneiro, 19-Jan-2015.)
Hypotheses
Ref Expression
sylow3.x 𝑋 = (Base‘𝐺)
sylow3.g (𝜑𝐺 ∈ Grp)
sylow3.xf (𝜑𝑋 ∈ Fin)
sylow3.p (𝜑𝑃 ∈ ℙ)
sylow3lem1.a + = (+g𝐺)
sylow3lem1.d = (-g𝐺)
sylow3lem1.m = (𝑥𝑋, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)))
sylow3lem2.k (𝜑𝐾 ∈ (𝑃 pSyl 𝐺))
sylow3lem2.h 𝐻 = {𝑢𝑋 ∣ (𝑢 𝐾) = 𝐾}
sylow3lem2.n 𝑁 = {𝑥𝑋 ∣ ∀𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝐾 ↔ (𝑦 + 𝑥) ∈ 𝐾)}
Assertion
Ref Expression
sylow3lem2 (𝜑𝐻 = 𝑁)
Distinct variable groups:   𝑥,𝑢,𝑦,𝑧,   𝑢, ,𝑥,𝑦,𝑧   𝑥,𝐻,𝑦   𝑢,𝐾,𝑥,𝑦,𝑧   𝑢,𝑁,𝑧   𝑢,𝑋,𝑥,𝑦,𝑧   𝑢,𝐺,𝑥,𝑦,𝑧   𝜑,𝑢,𝑥,𝑦,𝑧   𝑢, + ,𝑥,𝑦,𝑧   𝑢,𝑃,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐻(𝑧,𝑢)   𝑁(𝑥,𝑦)

Proof of Theorem sylow3lem2
Dummy variables 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sylow3lem2.n . . . . 5 𝑁 = {𝑥𝑋 ∣ ∀𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝐾 ↔ (𝑦 + 𝑥) ∈ 𝐾)}
21ssrab3 4054 . . . 4 𝑁𝑋
3 sseqin2 4189 . . . 4 (𝑁𝑋 ↔ (𝑋𝑁) = 𝑁)
42, 3mpbi 231 . . 3 (𝑋𝑁) = 𝑁
5 simpr 485 . . . . . . . 8 ((𝜑𝑢𝑋) → 𝑢𝑋)
6 sylow3lem2.k . . . . . . . . 9 (𝜑𝐾 ∈ (𝑃 pSyl 𝐺))
76adantr 481 . . . . . . . 8 ((𝜑𝑢𝑋) → 𝐾 ∈ (𝑃 pSyl 𝐺))
8 mptexg 6975 . . . . . . . . 9 (𝐾 ∈ (𝑃 pSyl 𝐺) → (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)) ∈ V)
9 rnexg 7603 . . . . . . . . 9 ((𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)) ∈ V → ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)) ∈ V)
107, 8, 93syl 18 . . . . . . . 8 ((𝜑𝑢𝑋) → ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)) ∈ V)
11 simpr 485 . . . . . . . . . . 11 ((𝑥 = 𝑢𝑦 = 𝐾) → 𝑦 = 𝐾)
12 simpl 483 . . . . . . . . . . . . 13 ((𝑥 = 𝑢𝑦 = 𝐾) → 𝑥 = 𝑢)
1312oveq1d 7160 . . . . . . . . . . . 12 ((𝑥 = 𝑢𝑦 = 𝐾) → (𝑥 + 𝑧) = (𝑢 + 𝑧))
1413, 12oveq12d 7163 . . . . . . . . . . 11 ((𝑥 = 𝑢𝑦 = 𝐾) → ((𝑥 + 𝑧) 𝑥) = ((𝑢 + 𝑧) 𝑢))
1511, 14mpteq12dv 5142 . . . . . . . . . 10 ((𝑥 = 𝑢𝑦 = 𝐾) → (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) = (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)))
1615rneqd 5801 . . . . . . . . 9 ((𝑥 = 𝑢𝑦 = 𝐾) → ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) = ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)))
17 sylow3lem1.m . . . . . . . . 9 = (𝑥𝑋, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)))
1816, 17ovmpoga 7293 . . . . . . . 8 ((𝑢𝑋𝐾 ∈ (𝑃 pSyl 𝐺) ∧ ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)) ∈ V) → (𝑢 𝐾) = ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)))
195, 7, 10, 18syl3anc 1363 . . . . . . 7 ((𝜑𝑢𝑋) → (𝑢 𝐾) = ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)))
2019adantr 481 . . . . . 6 (((𝜑𝑢𝑋) ∧ 𝑢𝑁) → (𝑢 𝐾) = ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)))
21 slwsubg 18664 . . . . . . . . 9 (𝐾 ∈ (𝑃 pSyl 𝐺) → 𝐾 ∈ (SubGrp‘𝐺))
226, 21syl 17 . . . . . . . 8 (𝜑𝐾 ∈ (SubGrp‘𝐺))
2322adantr 481 . . . . . . 7 ((𝜑𝑢𝑋) → 𝐾 ∈ (SubGrp‘𝐺))
24 sylow3.x . . . . . . . 8 𝑋 = (Base‘𝐺)
25 sylow3lem1.a . . . . . . . 8 + = (+g𝐺)
26 sylow3lem1.d . . . . . . . 8 = (-g𝐺)
27 eqid 2818 . . . . . . . 8 (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)) = (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢))
2824, 25, 26, 27, 1conjnmz 18330 . . . . . . 7 ((𝐾 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑁) → 𝐾 = ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)))
2923, 28sylan 580 . . . . . 6 (((𝜑𝑢𝑋) ∧ 𝑢𝑁) → 𝐾 = ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)))
3020, 29eqtr4d 2856 . . . . 5 (((𝜑𝑢𝑋) ∧ 𝑢𝑁) → (𝑢 𝐾) = 𝐾)
31 simplr 765 . . . . . 6 (((𝜑𝑢𝑋) ∧ (𝑢 𝐾) = 𝐾) → 𝑢𝑋)
32 simprl 767 . . . . . . . . . . 11 (((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) → (𝑢 𝐾) = 𝐾)
3319adantr 481 . . . . . . . . . . 11 (((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) → (𝑢 𝐾) = ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)))
3432, 33eqtr3d 2855 . . . . . . . . . 10 (((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) → 𝐾 = ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)))
3534eleq2d 2895 . . . . . . . . 9 (((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) → ((𝑢 + 𝑤) ∈ 𝐾 ↔ (𝑢 + 𝑤) ∈ ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢))))
36 ovex 7178 . . . . . . . . . . . 12 (𝑢 + 𝑤) ∈ V
37 eqeq1 2822 . . . . . . . . . . . . 13 (𝑣 = (𝑢 + 𝑤) → (𝑣 = ((𝑢 + 𝑧) 𝑢) ↔ (𝑢 + 𝑤) = ((𝑢 + 𝑧) 𝑢)))
3837rexbidv 3294 . . . . . . . . . . . 12 (𝑣 = (𝑢 + 𝑤) → (∃𝑧𝐾 𝑣 = ((𝑢 + 𝑧) 𝑢) ↔ ∃𝑧𝐾 (𝑢 + 𝑤) = ((𝑢 + 𝑧) 𝑢)))
3927rnmpt 5820 . . . . . . . . . . . 12 ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)) = {𝑣 ∣ ∃𝑧𝐾 𝑣 = ((𝑢 + 𝑧) 𝑢)}
4036, 38, 39elab2 3667 . . . . . . . . . . 11 ((𝑢 + 𝑤) ∈ ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)) ↔ ∃𝑧𝐾 (𝑢 + 𝑤) = ((𝑢 + 𝑧) 𝑢))
41 simprr 769 . . . . . . . . . . . . . . . 16 ((((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) ∧ (𝑧𝐾 ∧ (𝑢 + 𝑤) = ((𝑢 + 𝑧) 𝑢))) → (𝑢 + 𝑤) = ((𝑢 + 𝑧) 𝑢))
42 sylow3.g . . . . . . . . . . . . . . . . . 18 (𝜑𝐺 ∈ Grp)
4342ad3antrrr 726 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) ∧ (𝑧𝐾 ∧ (𝑢 + 𝑤) = ((𝑢 + 𝑧) 𝑢))) → 𝐺 ∈ Grp)
44 simpllr 772 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) ∧ (𝑧𝐾 ∧ (𝑢 + 𝑤) = ((𝑢 + 𝑧) 𝑢))) → 𝑢𝑋)
4524subgss 18218 . . . . . . . . . . . . . . . . . . . 20 (𝐾 ∈ (SubGrp‘𝐺) → 𝐾𝑋)
4622, 45syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐾𝑋)
4746ad3antrrr 726 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) ∧ (𝑧𝐾 ∧ (𝑢 + 𝑤) = ((𝑢 + 𝑧) 𝑢))) → 𝐾𝑋)
48 simprl 767 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) ∧ (𝑧𝐾 ∧ (𝑢 + 𝑤) = ((𝑢 + 𝑧) 𝑢))) → 𝑧𝐾)
4947, 48sseldd 3965 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) ∧ (𝑧𝐾 ∧ (𝑢 + 𝑤) = ((𝑢 + 𝑧) 𝑢))) → 𝑧𝑋)
5024, 25, 26grpaddsubass 18127 . . . . . . . . . . . . . . . . 17 ((𝐺 ∈ Grp ∧ (𝑢𝑋𝑧𝑋𝑢𝑋)) → ((𝑢 + 𝑧) 𝑢) = (𝑢 + (𝑧 𝑢)))
5143, 44, 49, 44, 50syl13anc 1364 . . . . . . . . . . . . . . . 16 ((((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) ∧ (𝑧𝐾 ∧ (𝑢 + 𝑤) = ((𝑢 + 𝑧) 𝑢))) → ((𝑢 + 𝑧) 𝑢) = (𝑢 + (𝑧 𝑢)))
5241, 51eqtr2d 2854 . . . . . . . . . . . . . . 15 ((((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) ∧ (𝑧𝐾 ∧ (𝑢 + 𝑤) = ((𝑢 + 𝑧) 𝑢))) → (𝑢 + (𝑧 𝑢)) = (𝑢 + 𝑤))
5324, 26grpsubcl 18117 . . . . . . . . . . . . . . . . 17 ((𝐺 ∈ Grp ∧ 𝑧𝑋𝑢𝑋) → (𝑧 𝑢) ∈ 𝑋)
5443, 49, 44, 53syl3anc 1363 . . . . . . . . . . . . . . . 16 ((((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) ∧ (𝑧𝐾 ∧ (𝑢 + 𝑤) = ((𝑢 + 𝑧) 𝑢))) → (𝑧 𝑢) ∈ 𝑋)
55 simplrr 774 . . . . . . . . . . . . . . . 16 ((((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) ∧ (𝑧𝐾 ∧ (𝑢 + 𝑤) = ((𝑢 + 𝑧) 𝑢))) → 𝑤𝑋)
5624, 25grplcan 18099 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ Grp ∧ ((𝑧 𝑢) ∈ 𝑋𝑤𝑋𝑢𝑋)) → ((𝑢 + (𝑧 𝑢)) = (𝑢 + 𝑤) ↔ (𝑧 𝑢) = 𝑤))
5743, 54, 55, 44, 56syl13anc 1364 . . . . . . . . . . . . . . 15 ((((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) ∧ (𝑧𝐾 ∧ (𝑢 + 𝑤) = ((𝑢 + 𝑧) 𝑢))) → ((𝑢 + (𝑧 𝑢)) = (𝑢 + 𝑤) ↔ (𝑧 𝑢) = 𝑤))
5852, 57mpbid 233 . . . . . . . . . . . . . 14 ((((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) ∧ (𝑧𝐾 ∧ (𝑢 + 𝑤) = ((𝑢 + 𝑧) 𝑢))) → (𝑧 𝑢) = 𝑤)
5924, 25, 26grpsubadd 18125 . . . . . . . . . . . . . . 15 ((𝐺 ∈ Grp ∧ (𝑧𝑋𝑢𝑋𝑤𝑋)) → ((𝑧 𝑢) = 𝑤 ↔ (𝑤 + 𝑢) = 𝑧))
6043, 49, 44, 55, 59syl13anc 1364 . . . . . . . . . . . . . 14 ((((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) ∧ (𝑧𝐾 ∧ (𝑢 + 𝑤) = ((𝑢 + 𝑧) 𝑢))) → ((𝑧 𝑢) = 𝑤 ↔ (𝑤 + 𝑢) = 𝑧))
6158, 60mpbid 233 . . . . . . . . . . . . 13 ((((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) ∧ (𝑧𝐾 ∧ (𝑢 + 𝑤) = ((𝑢 + 𝑧) 𝑢))) → (𝑤 + 𝑢) = 𝑧)
6261, 48eqeltrd 2910 . . . . . . . . . . . 12 ((((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) ∧ (𝑧𝐾 ∧ (𝑢 + 𝑤) = ((𝑢 + 𝑧) 𝑢))) → (𝑤 + 𝑢) ∈ 𝐾)
6362rexlimdvaa 3282 . . . . . . . . . . 11 (((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) → (∃𝑧𝐾 (𝑢 + 𝑤) = ((𝑢 + 𝑧) 𝑢) → (𝑤 + 𝑢) ∈ 𝐾))
6440, 63syl5bi 243 . . . . . . . . . 10 (((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) → ((𝑢 + 𝑤) ∈ ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)) → (𝑤 + 𝑢) ∈ 𝐾))
65 simpr 485 . . . . . . . . . . . . . 14 ((((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) ∧ (𝑤 + 𝑢) ∈ 𝐾) → (𝑤 + 𝑢) ∈ 𝐾)
66 oveq2 7153 . . . . . . . . . . . . . . . 16 (𝑧 = (𝑤 + 𝑢) → (𝑢 + 𝑧) = (𝑢 + (𝑤 + 𝑢)))
6766oveq1d 7160 . . . . . . . . . . . . . . 15 (𝑧 = (𝑤 + 𝑢) → ((𝑢 + 𝑧) 𝑢) = ((𝑢 + (𝑤 + 𝑢)) 𝑢))
68 ovex 7178 . . . . . . . . . . . . . . 15 ((𝑢 + (𝑤 + 𝑢)) 𝑢) ∈ V
6967, 27, 68fvmpt 6761 . . . . . . . . . . . . . 14 ((𝑤 + 𝑢) ∈ 𝐾 → ((𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢))‘(𝑤 + 𝑢)) = ((𝑢 + (𝑤 + 𝑢)) 𝑢))
7065, 69syl 17 . . . . . . . . . . . . 13 ((((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) ∧ (𝑤 + 𝑢) ∈ 𝐾) → ((𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢))‘(𝑤 + 𝑢)) = ((𝑢 + (𝑤 + 𝑢)) 𝑢))
7142ad3antrrr 726 . . . . . . . . . . . . . . 15 ((((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) ∧ (𝑤 + 𝑢) ∈ 𝐾) → 𝐺 ∈ Grp)
72 simpllr 772 . . . . . . . . . . . . . . 15 ((((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) ∧ (𝑤 + 𝑢) ∈ 𝐾) → 𝑢𝑋)
73 simplrr 774 . . . . . . . . . . . . . . 15 ((((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) ∧ (𝑤 + 𝑢) ∈ 𝐾) → 𝑤𝑋)
7424, 25grpass 18050 . . . . . . . . . . . . . . 15 ((𝐺 ∈ Grp ∧ (𝑢𝑋𝑤𝑋𝑢𝑋)) → ((𝑢 + 𝑤) + 𝑢) = (𝑢 + (𝑤 + 𝑢)))
7571, 72, 73, 72, 74syl13anc 1364 . . . . . . . . . . . . . 14 ((((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) ∧ (𝑤 + 𝑢) ∈ 𝐾) → ((𝑢 + 𝑤) + 𝑢) = (𝑢 + (𝑤 + 𝑢)))
7675oveq1d 7160 . . . . . . . . . . . . 13 ((((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) ∧ (𝑤 + 𝑢) ∈ 𝐾) → (((𝑢 + 𝑤) + 𝑢) 𝑢) = ((𝑢 + (𝑤 + 𝑢)) 𝑢))
7724, 25grpcl 18049 . . . . . . . . . . . . . . 15 ((𝐺 ∈ Grp ∧ 𝑢𝑋𝑤𝑋) → (𝑢 + 𝑤) ∈ 𝑋)
7871, 72, 73, 77syl3anc 1363 . . . . . . . . . . . . . 14 ((((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) ∧ (𝑤 + 𝑢) ∈ 𝐾) → (𝑢 + 𝑤) ∈ 𝑋)
7924, 25, 26grppncan 18128 . . . . . . . . . . . . . 14 ((𝐺 ∈ Grp ∧ (𝑢 + 𝑤) ∈ 𝑋𝑢𝑋) → (((𝑢 + 𝑤) + 𝑢) 𝑢) = (𝑢 + 𝑤))
8071, 78, 72, 79syl3anc 1363 . . . . . . . . . . . . 13 ((((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) ∧ (𝑤 + 𝑢) ∈ 𝐾) → (((𝑢 + 𝑤) + 𝑢) 𝑢) = (𝑢 + 𝑤))
8170, 76, 803eqtr2d 2859 . . . . . . . . . . . 12 ((((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) ∧ (𝑤 + 𝑢) ∈ 𝐾) → ((𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢))‘(𝑤 + 𝑢)) = (𝑢 + 𝑤))
82 ovex 7178 . . . . . . . . . . . . . 14 ((𝑢 + 𝑧) 𝑢) ∈ V
8382, 27fnmpti 6484 . . . . . . . . . . . . 13 (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)) Fn 𝐾
84 fnfvelrn 6840 . . . . . . . . . . . . 13 (((𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)) Fn 𝐾 ∧ (𝑤 + 𝑢) ∈ 𝐾) → ((𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢))‘(𝑤 + 𝑢)) ∈ ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)))
8583, 65, 84sylancr 587 . . . . . . . . . . . 12 ((((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) ∧ (𝑤 + 𝑢) ∈ 𝐾) → ((𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢))‘(𝑤 + 𝑢)) ∈ ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)))
8681, 85eqeltrrd 2911 . . . . . . . . . . 11 ((((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) ∧ (𝑤 + 𝑢) ∈ 𝐾) → (𝑢 + 𝑤) ∈ ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)))
8786ex 413 . . . . . . . . . 10 (((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) → ((𝑤 + 𝑢) ∈ 𝐾 → (𝑢 + 𝑤) ∈ ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢))))
8864, 87impbid 213 . . . . . . . . 9 (((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) → ((𝑢 + 𝑤) ∈ ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)) ↔ (𝑤 + 𝑢) ∈ 𝐾))
8935, 88bitrd 280 . . . . . . . 8 (((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) → ((𝑢 + 𝑤) ∈ 𝐾 ↔ (𝑤 + 𝑢) ∈ 𝐾))
9089anassrs 468 . . . . . . 7 ((((𝜑𝑢𝑋) ∧ (𝑢 𝐾) = 𝐾) ∧ 𝑤𝑋) → ((𝑢 + 𝑤) ∈ 𝐾 ↔ (𝑤 + 𝑢) ∈ 𝐾))
9190ralrimiva 3179 . . . . . 6 (((𝜑𝑢𝑋) ∧ (𝑢 𝐾) = 𝐾) → ∀𝑤𝑋 ((𝑢 + 𝑤) ∈ 𝐾 ↔ (𝑤 + 𝑢) ∈ 𝐾))
921elnmz 18253 . . . . . 6 (𝑢𝑁 ↔ (𝑢𝑋 ∧ ∀𝑤𝑋 ((𝑢 + 𝑤) ∈ 𝐾 ↔ (𝑤 + 𝑢) ∈ 𝐾)))
9331, 91, 92sylanbrc 583 . . . . 5 (((𝜑𝑢𝑋) ∧ (𝑢 𝐾) = 𝐾) → 𝑢𝑁)
9430, 93impbida 797 . . . 4 ((𝜑𝑢𝑋) → (𝑢𝑁 ↔ (𝑢 𝐾) = 𝐾))
9594rabbi2dva 4191 . . 3 (𝜑 → (𝑋𝑁) = {𝑢𝑋 ∣ (𝑢 𝐾) = 𝐾})
964, 95syl5eqr 2867 . 2 (𝜑𝑁 = {𝑢𝑋 ∣ (𝑢 𝐾) = 𝐾})
97 sylow3lem2.h . 2 𝐻 = {𝑢𝑋 ∣ (𝑢 𝐾) = 𝐾}
9896, 97syl6reqr 2872 1 (𝜑𝐻 = 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1528  wcel 2105  wral 3135  wrex 3136  {crab 3139  Vcvv 3492  cin 3932  wss 3933  cmpt 5137  ran crn 5549   Fn wfn 6343  cfv 6348  (class class class)co 7145  cmpo 7147  Fincfn 8497  cprime 16003  Basecbs 16471  +gcplusg 16553  Grpcgrp 18041  -gcsg 18043  SubGrpcsubg 18211   pSyl cslw 18584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-1st 7678  df-2nd 7679  df-0g 16703  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-grp 18044  df-minusg 18045  df-sbg 18046  df-subg 18214  df-slw 18588
This theorem is referenced by:  sylow3lem3  18683
  Copyright terms: Public domain W3C validator