Step | Hyp | Ref
| Expression |
1 | | sylow3lem2.n |
. . . . 5
⊢ 𝑁 = {𝑥 ∈ 𝑋 ∣ ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝐾 ↔ (𝑦 + 𝑥) ∈ 𝐾)} |
2 | 1 | ssrab3 3984 |
. . . 4
⊢ 𝑁 ⊆ 𝑋 |
3 | | sseqin2 4118 |
. . . 4
⊢ (𝑁 ⊆ 𝑋 ↔ (𝑋 ∩ 𝑁) = 𝑁) |
4 | 2, 3 | mpbi 231 |
. . 3
⊢ (𝑋 ∩ 𝑁) = 𝑁 |
5 | | simpr 485 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑋) → 𝑢 ∈ 𝑋) |
6 | | sylow3lem2.k |
. . . . . . . . 9
⊢ (𝜑 → 𝐾 ∈ (𝑃 pSyl 𝐺)) |
7 | 6 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑋) → 𝐾 ∈ (𝑃 pSyl 𝐺)) |
8 | | mptexg 6857 |
. . . . . . . . 9
⊢ (𝐾 ∈ (𝑃 pSyl 𝐺) → (𝑧 ∈ 𝐾 ↦ ((𝑢 + 𝑧) − 𝑢)) ∈ V) |
9 | | rnexg 7477 |
. . . . . . . . 9
⊢ ((𝑧 ∈ 𝐾 ↦ ((𝑢 + 𝑧) − 𝑢)) ∈ V → ran (𝑧 ∈ 𝐾 ↦ ((𝑢 + 𝑧) − 𝑢)) ∈ V) |
10 | 7, 8, 9 | 3syl 18 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑋) → ran (𝑧 ∈ 𝐾 ↦ ((𝑢 + 𝑧) − 𝑢)) ∈ V) |
11 | | simpr 485 |
. . . . . . . . . . 11
⊢ ((𝑥 = 𝑢 ∧ 𝑦 = 𝐾) → 𝑦 = 𝐾) |
12 | | simpl 483 |
. . . . . . . . . . . . 13
⊢ ((𝑥 = 𝑢 ∧ 𝑦 = 𝐾) → 𝑥 = 𝑢) |
13 | 12 | oveq1d 7038 |
. . . . . . . . . . . 12
⊢ ((𝑥 = 𝑢 ∧ 𝑦 = 𝐾) → (𝑥 + 𝑧) = (𝑢 + 𝑧)) |
14 | 13, 12 | oveq12d 7041 |
. . . . . . . . . . 11
⊢ ((𝑥 = 𝑢 ∧ 𝑦 = 𝐾) → ((𝑥 + 𝑧) − 𝑥) = ((𝑢 + 𝑧) − 𝑢)) |
15 | 11, 14 | mpteq12dv 5052 |
. . . . . . . . . 10
⊢ ((𝑥 = 𝑢 ∧ 𝑦 = 𝐾) → (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥)) = (𝑧 ∈ 𝐾 ↦ ((𝑢 + 𝑧) − 𝑢))) |
16 | 15 | rneqd 5697 |
. . . . . . . . 9
⊢ ((𝑥 = 𝑢 ∧ 𝑦 = 𝐾) → ran (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥)) = ran (𝑧 ∈ 𝐾 ↦ ((𝑢 + 𝑧) − 𝑢))) |
17 | | sylow3lem1.m |
. . . . . . . . 9
⊢ ⊕ =
(𝑥 ∈ 𝑋, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥))) |
18 | 16, 17 | ovmpoga 7167 |
. . . . . . . 8
⊢ ((𝑢 ∈ 𝑋 ∧ 𝐾 ∈ (𝑃 pSyl 𝐺) ∧ ran (𝑧 ∈ 𝐾 ↦ ((𝑢 + 𝑧) − 𝑢)) ∈ V) → (𝑢 ⊕ 𝐾) = ran (𝑧 ∈ 𝐾 ↦ ((𝑢 + 𝑧) − 𝑢))) |
19 | 5, 7, 10, 18 | syl3anc 1364 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑋) → (𝑢 ⊕ 𝐾) = ran (𝑧 ∈ 𝐾 ↦ ((𝑢 + 𝑧) − 𝑢))) |
20 | 19 | adantr 481 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑋) ∧ 𝑢 ∈ 𝑁) → (𝑢 ⊕ 𝐾) = ran (𝑧 ∈ 𝐾 ↦ ((𝑢 + 𝑧) − 𝑢))) |
21 | | slwsubg 18469 |
. . . . . . . . 9
⊢ (𝐾 ∈ (𝑃 pSyl 𝐺) → 𝐾 ∈ (SubGrp‘𝐺)) |
22 | 6, 21 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝐾 ∈ (SubGrp‘𝐺)) |
23 | 22 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑋) → 𝐾 ∈ (SubGrp‘𝐺)) |
24 | | sylow3.x |
. . . . . . . 8
⊢ 𝑋 = (Base‘𝐺) |
25 | | sylow3lem1.a |
. . . . . . . 8
⊢ + =
(+g‘𝐺) |
26 | | sylow3lem1.d |
. . . . . . . 8
⊢ − =
(-g‘𝐺) |
27 | | eqid 2797 |
. . . . . . . 8
⊢ (𝑧 ∈ 𝐾 ↦ ((𝑢 + 𝑧) − 𝑢)) = (𝑧 ∈ 𝐾 ↦ ((𝑢 + 𝑧) − 𝑢)) |
28 | 24, 25, 26, 27, 1 | conjnmz 18137 |
. . . . . . 7
⊢ ((𝐾 ∈ (SubGrp‘𝐺) ∧ 𝑢 ∈ 𝑁) → 𝐾 = ran (𝑧 ∈ 𝐾 ↦ ((𝑢 + 𝑧) − 𝑢))) |
29 | 23, 28 | sylan 580 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑋) ∧ 𝑢 ∈ 𝑁) → 𝐾 = ran (𝑧 ∈ 𝐾 ↦ ((𝑢 + 𝑧) − 𝑢))) |
30 | 20, 29 | eqtr4d 2836 |
. . . . 5
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑋) ∧ 𝑢 ∈ 𝑁) → (𝑢 ⊕ 𝐾) = 𝐾) |
31 | | simplr 765 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑋) ∧ (𝑢 ⊕ 𝐾) = 𝐾) → 𝑢 ∈ 𝑋) |
32 | | simprl 767 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑋) ∧ ((𝑢 ⊕ 𝐾) = 𝐾 ∧ 𝑤 ∈ 𝑋)) → (𝑢 ⊕ 𝐾) = 𝐾) |
33 | 19 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑋) ∧ ((𝑢 ⊕ 𝐾) = 𝐾 ∧ 𝑤 ∈ 𝑋)) → (𝑢 ⊕ 𝐾) = ran (𝑧 ∈ 𝐾 ↦ ((𝑢 + 𝑧) − 𝑢))) |
34 | 32, 33 | eqtr3d 2835 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑋) ∧ ((𝑢 ⊕ 𝐾) = 𝐾 ∧ 𝑤 ∈ 𝑋)) → 𝐾 = ran (𝑧 ∈ 𝐾 ↦ ((𝑢 + 𝑧) − 𝑢))) |
35 | 34 | eleq2d 2870 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑋) ∧ ((𝑢 ⊕ 𝐾) = 𝐾 ∧ 𝑤 ∈ 𝑋)) → ((𝑢 + 𝑤) ∈ 𝐾 ↔ (𝑢 + 𝑤) ∈ ran (𝑧 ∈ 𝐾 ↦ ((𝑢 + 𝑧) − 𝑢)))) |
36 | | ovex 7055 |
. . . . . . . . . . . 12
⊢ (𝑢 + 𝑤) ∈ V |
37 | | eqeq1 2801 |
. . . . . . . . . . . . 13
⊢ (𝑣 = (𝑢 + 𝑤) → (𝑣 = ((𝑢 + 𝑧) − 𝑢) ↔ (𝑢 + 𝑤) = ((𝑢 + 𝑧) − 𝑢))) |
38 | 37 | rexbidv 3262 |
. . . . . . . . . . . 12
⊢ (𝑣 = (𝑢 + 𝑤) → (∃𝑧 ∈ 𝐾 𝑣 = ((𝑢 + 𝑧) − 𝑢) ↔ ∃𝑧 ∈ 𝐾 (𝑢 + 𝑤) = ((𝑢 + 𝑧) − 𝑢))) |
39 | 27 | rnmpt 5716 |
. . . . . . . . . . . 12
⊢ ran
(𝑧 ∈ 𝐾 ↦ ((𝑢 + 𝑧) − 𝑢)) = {𝑣 ∣ ∃𝑧 ∈ 𝐾 𝑣 = ((𝑢 + 𝑧) − 𝑢)} |
40 | 36, 38, 39 | elab2 3611 |
. . . . . . . . . . 11
⊢ ((𝑢 + 𝑤) ∈ ran (𝑧 ∈ 𝐾 ↦ ((𝑢 + 𝑧) − 𝑢)) ↔ ∃𝑧 ∈ 𝐾 (𝑢 + 𝑤) = ((𝑢 + 𝑧) − 𝑢)) |
41 | | simprr 769 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑋) ∧ ((𝑢 ⊕ 𝐾) = 𝐾 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑧 ∈ 𝐾 ∧ (𝑢 + 𝑤) = ((𝑢 + 𝑧) − 𝑢))) → (𝑢 + 𝑤) = ((𝑢 + 𝑧) − 𝑢)) |
42 | | sylow3.g |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐺 ∈ Grp) |
43 | 42 | ad3antrrr 726 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑋) ∧ ((𝑢 ⊕ 𝐾) = 𝐾 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑧 ∈ 𝐾 ∧ (𝑢 + 𝑤) = ((𝑢 + 𝑧) − 𝑢))) → 𝐺 ∈ Grp) |
44 | | simpllr 772 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑋) ∧ ((𝑢 ⊕ 𝐾) = 𝐾 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑧 ∈ 𝐾 ∧ (𝑢 + 𝑤) = ((𝑢 + 𝑧) − 𝑢))) → 𝑢 ∈ 𝑋) |
45 | 24 | subgss 18038 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐾 ∈ (SubGrp‘𝐺) → 𝐾 ⊆ 𝑋) |
46 | 22, 45 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐾 ⊆ 𝑋) |
47 | 46 | ad3antrrr 726 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑋) ∧ ((𝑢 ⊕ 𝐾) = 𝐾 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑧 ∈ 𝐾 ∧ (𝑢 + 𝑤) = ((𝑢 + 𝑧) − 𝑢))) → 𝐾 ⊆ 𝑋) |
48 | | simprl 767 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑋) ∧ ((𝑢 ⊕ 𝐾) = 𝐾 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑧 ∈ 𝐾 ∧ (𝑢 + 𝑤) = ((𝑢 + 𝑧) − 𝑢))) → 𝑧 ∈ 𝐾) |
49 | 47, 48 | sseldd 3896 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑋) ∧ ((𝑢 ⊕ 𝐾) = 𝐾 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑧 ∈ 𝐾 ∧ (𝑢 + 𝑤) = ((𝑢 + 𝑧) − 𝑢))) → 𝑧 ∈ 𝑋) |
50 | 24, 25, 26 | grpaddsubass 17950 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐺 ∈ Grp ∧ (𝑢 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ 𝑢 ∈ 𝑋)) → ((𝑢 + 𝑧) − 𝑢) = (𝑢 + (𝑧 − 𝑢))) |
51 | 43, 44, 49, 44, 50 | syl13anc 1365 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑋) ∧ ((𝑢 ⊕ 𝐾) = 𝐾 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑧 ∈ 𝐾 ∧ (𝑢 + 𝑤) = ((𝑢 + 𝑧) − 𝑢))) → ((𝑢 + 𝑧) − 𝑢) = (𝑢 + (𝑧 − 𝑢))) |
52 | 41, 51 | eqtr2d 2834 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑋) ∧ ((𝑢 ⊕ 𝐾) = 𝐾 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑧 ∈ 𝐾 ∧ (𝑢 + 𝑤) = ((𝑢 + 𝑧) − 𝑢))) → (𝑢 + (𝑧 − 𝑢)) = (𝑢 + 𝑤)) |
53 | 24, 26 | grpsubcl 17940 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑋 ∧ 𝑢 ∈ 𝑋) → (𝑧 − 𝑢) ∈ 𝑋) |
54 | 43, 49, 44, 53 | syl3anc 1364 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑋) ∧ ((𝑢 ⊕ 𝐾) = 𝐾 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑧 ∈ 𝐾 ∧ (𝑢 + 𝑤) = ((𝑢 + 𝑧) − 𝑢))) → (𝑧 − 𝑢) ∈ 𝑋) |
55 | | simplrr 774 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑋) ∧ ((𝑢 ⊕ 𝐾) = 𝐾 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑧 ∈ 𝐾 ∧ (𝑢 + 𝑤) = ((𝑢 + 𝑧) − 𝑢))) → 𝑤 ∈ 𝑋) |
56 | 24, 25 | grplcan 17922 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐺 ∈ Grp ∧ ((𝑧 − 𝑢) ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ∧ 𝑢 ∈ 𝑋)) → ((𝑢 + (𝑧 − 𝑢)) = (𝑢 + 𝑤) ↔ (𝑧 − 𝑢) = 𝑤)) |
57 | 43, 54, 55, 44, 56 | syl13anc 1365 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑋) ∧ ((𝑢 ⊕ 𝐾) = 𝐾 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑧 ∈ 𝐾 ∧ (𝑢 + 𝑤) = ((𝑢 + 𝑧) − 𝑢))) → ((𝑢 + (𝑧 − 𝑢)) = (𝑢 + 𝑤) ↔ (𝑧 − 𝑢) = 𝑤)) |
58 | 52, 57 | mpbid 233 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑋) ∧ ((𝑢 ⊕ 𝐾) = 𝐾 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑧 ∈ 𝐾 ∧ (𝑢 + 𝑤) = ((𝑢 + 𝑧) − 𝑢))) → (𝑧 − 𝑢) = 𝑤) |
59 | 24, 25, 26 | grpsubadd 17948 |
. . . . . . . . . . . . . . 15
⊢ ((𝐺 ∈ Grp ∧ (𝑧 ∈ 𝑋 ∧ 𝑢 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → ((𝑧 − 𝑢) = 𝑤 ↔ (𝑤 + 𝑢) = 𝑧)) |
60 | 43, 49, 44, 55, 59 | syl13anc 1365 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑋) ∧ ((𝑢 ⊕ 𝐾) = 𝐾 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑧 ∈ 𝐾 ∧ (𝑢 + 𝑤) = ((𝑢 + 𝑧) − 𝑢))) → ((𝑧 − 𝑢) = 𝑤 ↔ (𝑤 + 𝑢) = 𝑧)) |
61 | 58, 60 | mpbid 233 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑋) ∧ ((𝑢 ⊕ 𝐾) = 𝐾 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑧 ∈ 𝐾 ∧ (𝑢 + 𝑤) = ((𝑢 + 𝑧) − 𝑢))) → (𝑤 + 𝑢) = 𝑧) |
62 | 61, 48 | eqeltrd 2885 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑋) ∧ ((𝑢 ⊕ 𝐾) = 𝐾 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑧 ∈ 𝐾 ∧ (𝑢 + 𝑤) = ((𝑢 + 𝑧) − 𝑢))) → (𝑤 + 𝑢) ∈ 𝐾) |
63 | 62 | rexlimdvaa 3250 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑋) ∧ ((𝑢 ⊕ 𝐾) = 𝐾 ∧ 𝑤 ∈ 𝑋)) → (∃𝑧 ∈ 𝐾 (𝑢 + 𝑤) = ((𝑢 + 𝑧) − 𝑢) → (𝑤 + 𝑢) ∈ 𝐾)) |
64 | 40, 63 | syl5bi 243 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑋) ∧ ((𝑢 ⊕ 𝐾) = 𝐾 ∧ 𝑤 ∈ 𝑋)) → ((𝑢 + 𝑤) ∈ ran (𝑧 ∈ 𝐾 ↦ ((𝑢 + 𝑧) − 𝑢)) → (𝑤 + 𝑢) ∈ 𝐾)) |
65 | | simpr 485 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑋) ∧ ((𝑢 ⊕ 𝐾) = 𝐾 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑤 + 𝑢) ∈ 𝐾) → (𝑤 + 𝑢) ∈ 𝐾) |
66 | | oveq2 7031 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = (𝑤 + 𝑢) → (𝑢 + 𝑧) = (𝑢 + (𝑤 + 𝑢))) |
67 | 66 | oveq1d 7038 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = (𝑤 + 𝑢) → ((𝑢 + 𝑧) − 𝑢) = ((𝑢 + (𝑤 + 𝑢)) − 𝑢)) |
68 | | ovex 7055 |
. . . . . . . . . . . . . . 15
⊢ ((𝑢 + (𝑤 + 𝑢)) − 𝑢) ∈ V |
69 | 67, 27, 68 | fvmpt 6642 |
. . . . . . . . . . . . . 14
⊢ ((𝑤 + 𝑢) ∈ 𝐾 → ((𝑧 ∈ 𝐾 ↦ ((𝑢 + 𝑧) − 𝑢))‘(𝑤 + 𝑢)) = ((𝑢 + (𝑤 + 𝑢)) − 𝑢)) |
70 | 65, 69 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑋) ∧ ((𝑢 ⊕ 𝐾) = 𝐾 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑤 + 𝑢) ∈ 𝐾) → ((𝑧 ∈ 𝐾 ↦ ((𝑢 + 𝑧) − 𝑢))‘(𝑤 + 𝑢)) = ((𝑢 + (𝑤 + 𝑢)) − 𝑢)) |
71 | 42 | ad3antrrr 726 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑋) ∧ ((𝑢 ⊕ 𝐾) = 𝐾 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑤 + 𝑢) ∈ 𝐾) → 𝐺 ∈ Grp) |
72 | | simpllr 772 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑋) ∧ ((𝑢 ⊕ 𝐾) = 𝐾 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑤 + 𝑢) ∈ 𝐾) → 𝑢 ∈ 𝑋) |
73 | | simplrr 774 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑋) ∧ ((𝑢 ⊕ 𝐾) = 𝐾 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑤 + 𝑢) ∈ 𝐾) → 𝑤 ∈ 𝑋) |
74 | 24, 25 | grpass 17874 |
. . . . . . . . . . . . . . 15
⊢ ((𝐺 ∈ Grp ∧ (𝑢 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ∧ 𝑢 ∈ 𝑋)) → ((𝑢 + 𝑤) + 𝑢) = (𝑢 + (𝑤 + 𝑢))) |
75 | 71, 72, 73, 72, 74 | syl13anc 1365 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑋) ∧ ((𝑢 ⊕ 𝐾) = 𝐾 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑤 + 𝑢) ∈ 𝐾) → ((𝑢 + 𝑤) + 𝑢) = (𝑢 + (𝑤 + 𝑢))) |
76 | 75 | oveq1d 7038 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑋) ∧ ((𝑢 ⊕ 𝐾) = 𝐾 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑤 + 𝑢) ∈ 𝐾) → (((𝑢 + 𝑤) + 𝑢) − 𝑢) = ((𝑢 + (𝑤 + 𝑢)) − 𝑢)) |
77 | 24, 25 | grpcl 17873 |
. . . . . . . . . . . . . . 15
⊢ ((𝐺 ∈ Grp ∧ 𝑢 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) → (𝑢 + 𝑤) ∈ 𝑋) |
78 | 71, 72, 73, 77 | syl3anc 1364 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑋) ∧ ((𝑢 ⊕ 𝐾) = 𝐾 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑤 + 𝑢) ∈ 𝐾) → (𝑢 + 𝑤) ∈ 𝑋) |
79 | 24, 25, 26 | grppncan 17951 |
. . . . . . . . . . . . . 14
⊢ ((𝐺 ∈ Grp ∧ (𝑢 + 𝑤) ∈ 𝑋 ∧ 𝑢 ∈ 𝑋) → (((𝑢 + 𝑤) + 𝑢) − 𝑢) = (𝑢 + 𝑤)) |
80 | 71, 78, 72, 79 | syl3anc 1364 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑋) ∧ ((𝑢 ⊕ 𝐾) = 𝐾 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑤 + 𝑢) ∈ 𝐾) → (((𝑢 + 𝑤) + 𝑢) − 𝑢) = (𝑢 + 𝑤)) |
81 | 70, 76, 80 | 3eqtr2d 2839 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑋) ∧ ((𝑢 ⊕ 𝐾) = 𝐾 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑤 + 𝑢) ∈ 𝐾) → ((𝑧 ∈ 𝐾 ↦ ((𝑢 + 𝑧) − 𝑢))‘(𝑤 + 𝑢)) = (𝑢 + 𝑤)) |
82 | | ovex 7055 |
. . . . . . . . . . . . . 14
⊢ ((𝑢 + 𝑧) − 𝑢) ∈ V |
83 | 82, 27 | fnmpti 6366 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ 𝐾 ↦ ((𝑢 + 𝑧) − 𝑢)) Fn 𝐾 |
84 | | fnfvelrn 6720 |
. . . . . . . . . . . . 13
⊢ (((𝑧 ∈ 𝐾 ↦ ((𝑢 + 𝑧) − 𝑢)) Fn 𝐾 ∧ (𝑤 + 𝑢) ∈ 𝐾) → ((𝑧 ∈ 𝐾 ↦ ((𝑢 + 𝑧) − 𝑢))‘(𝑤 + 𝑢)) ∈ ran (𝑧 ∈ 𝐾 ↦ ((𝑢 + 𝑧) − 𝑢))) |
85 | 83, 65, 84 | sylancr 587 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑋) ∧ ((𝑢 ⊕ 𝐾) = 𝐾 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑤 + 𝑢) ∈ 𝐾) → ((𝑧 ∈ 𝐾 ↦ ((𝑢 + 𝑧) − 𝑢))‘(𝑤 + 𝑢)) ∈ ran (𝑧 ∈ 𝐾 ↦ ((𝑢 + 𝑧) − 𝑢))) |
86 | 81, 85 | eqeltrrd 2886 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑋) ∧ ((𝑢 ⊕ 𝐾) = 𝐾 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑤 + 𝑢) ∈ 𝐾) → (𝑢 + 𝑤) ∈ ran (𝑧 ∈ 𝐾 ↦ ((𝑢 + 𝑧) − 𝑢))) |
87 | 86 | ex 413 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑋) ∧ ((𝑢 ⊕ 𝐾) = 𝐾 ∧ 𝑤 ∈ 𝑋)) → ((𝑤 + 𝑢) ∈ 𝐾 → (𝑢 + 𝑤) ∈ ran (𝑧 ∈ 𝐾 ↦ ((𝑢 + 𝑧) − 𝑢)))) |
88 | 64, 87 | impbid 213 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑋) ∧ ((𝑢 ⊕ 𝐾) = 𝐾 ∧ 𝑤 ∈ 𝑋)) → ((𝑢 + 𝑤) ∈ ran (𝑧 ∈ 𝐾 ↦ ((𝑢 + 𝑧) − 𝑢)) ↔ (𝑤 + 𝑢) ∈ 𝐾)) |
89 | 35, 88 | bitrd 280 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑋) ∧ ((𝑢 ⊕ 𝐾) = 𝐾 ∧ 𝑤 ∈ 𝑋)) → ((𝑢 + 𝑤) ∈ 𝐾 ↔ (𝑤 + 𝑢) ∈ 𝐾)) |
90 | 89 | anassrs 468 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑋) ∧ (𝑢 ⊕ 𝐾) = 𝐾) ∧ 𝑤 ∈ 𝑋) → ((𝑢 + 𝑤) ∈ 𝐾 ↔ (𝑤 + 𝑢) ∈ 𝐾)) |
91 | 90 | ralrimiva 3151 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑋) ∧ (𝑢 ⊕ 𝐾) = 𝐾) → ∀𝑤 ∈ 𝑋 ((𝑢 + 𝑤) ∈ 𝐾 ↔ (𝑤 + 𝑢) ∈ 𝐾)) |
92 | 1 | elnmz 18076 |
. . . . . 6
⊢ (𝑢 ∈ 𝑁 ↔ (𝑢 ∈ 𝑋 ∧ ∀𝑤 ∈ 𝑋 ((𝑢 + 𝑤) ∈ 𝐾 ↔ (𝑤 + 𝑢) ∈ 𝐾))) |
93 | 31, 91, 92 | sylanbrc 583 |
. . . . 5
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑋) ∧ (𝑢 ⊕ 𝐾) = 𝐾) → 𝑢 ∈ 𝑁) |
94 | 30, 93 | impbida 797 |
. . . 4
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑋) → (𝑢 ∈ 𝑁 ↔ (𝑢 ⊕ 𝐾) = 𝐾)) |
95 | 94 | rabbi2dva 4120 |
. . 3
⊢ (𝜑 → (𝑋 ∩ 𝑁) = {𝑢 ∈ 𝑋 ∣ (𝑢 ⊕ 𝐾) = 𝐾}) |
96 | 4, 95 | syl5eqr 2847 |
. 2
⊢ (𝜑 → 𝑁 = {𝑢 ∈ 𝑋 ∣ (𝑢 ⊕ 𝐾) = 𝐾}) |
97 | | sylow3lem2.h |
. 2
⊢ 𝐻 = {𝑢 ∈ 𝑋 ∣ (𝑢 ⊕ 𝐾) = 𝐾} |
98 | 96, 97 | syl6reqr 2852 |
1
⊢ (𝜑 → 𝐻 = 𝑁) |