| Step | Hyp | Ref
| Expression |
| 1 | | sylow3lem2.h |
. 2
⊢ 𝐻 = {𝑢 ∈ 𝑋 ∣ (𝑢 ⊕ 𝐾) = 𝐾} |
| 2 | | sylow3lem2.n |
. . . . 5
⊢ 𝑁 = {𝑥 ∈ 𝑋 ∣ ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝐾 ↔ (𝑦 + 𝑥) ∈ 𝐾)} |
| 3 | 2 | ssrab3 4081 |
. . . 4
⊢ 𝑁 ⊆ 𝑋 |
| 4 | | sseqin2 4222 |
. . . 4
⊢ (𝑁 ⊆ 𝑋 ↔ (𝑋 ∩ 𝑁) = 𝑁) |
| 5 | 3, 4 | mpbi 230 |
. . 3
⊢ (𝑋 ∩ 𝑁) = 𝑁 |
| 6 | | simpr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑋) → 𝑢 ∈ 𝑋) |
| 7 | | sylow3lem2.k |
. . . . . . . . 9
⊢ (𝜑 → 𝐾 ∈ (𝑃 pSyl 𝐺)) |
| 8 | 7 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑋) → 𝐾 ∈ (𝑃 pSyl 𝐺)) |
| 9 | | mptexg 7242 |
. . . . . . . . 9
⊢ (𝐾 ∈ (𝑃 pSyl 𝐺) → (𝑧 ∈ 𝐾 ↦ ((𝑢 + 𝑧) − 𝑢)) ∈ V) |
| 10 | | rnexg 7925 |
. . . . . . . . 9
⊢ ((𝑧 ∈ 𝐾 ↦ ((𝑢 + 𝑧) − 𝑢)) ∈ V → ran (𝑧 ∈ 𝐾 ↦ ((𝑢 + 𝑧) − 𝑢)) ∈ V) |
| 11 | 8, 9, 10 | 3syl 18 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑋) → ran (𝑧 ∈ 𝐾 ↦ ((𝑢 + 𝑧) − 𝑢)) ∈ V) |
| 12 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((𝑥 = 𝑢 ∧ 𝑦 = 𝐾) → 𝑦 = 𝐾) |
| 13 | | simpl 482 |
. . . . . . . . . . . . 13
⊢ ((𝑥 = 𝑢 ∧ 𝑦 = 𝐾) → 𝑥 = 𝑢) |
| 14 | 13 | oveq1d 7447 |
. . . . . . . . . . . 12
⊢ ((𝑥 = 𝑢 ∧ 𝑦 = 𝐾) → (𝑥 + 𝑧) = (𝑢 + 𝑧)) |
| 15 | 14, 13 | oveq12d 7450 |
. . . . . . . . . . 11
⊢ ((𝑥 = 𝑢 ∧ 𝑦 = 𝐾) → ((𝑥 + 𝑧) − 𝑥) = ((𝑢 + 𝑧) − 𝑢)) |
| 16 | 12, 15 | mpteq12dv 5232 |
. . . . . . . . . 10
⊢ ((𝑥 = 𝑢 ∧ 𝑦 = 𝐾) → (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥)) = (𝑧 ∈ 𝐾 ↦ ((𝑢 + 𝑧) − 𝑢))) |
| 17 | 16 | rneqd 5948 |
. . . . . . . . 9
⊢ ((𝑥 = 𝑢 ∧ 𝑦 = 𝐾) → ran (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥)) = ran (𝑧 ∈ 𝐾 ↦ ((𝑢 + 𝑧) − 𝑢))) |
| 18 | | sylow3lem1.m |
. . . . . . . . 9
⊢ ⊕ =
(𝑥 ∈ 𝑋, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥))) |
| 19 | 17, 18 | ovmpoga 7588 |
. . . . . . . 8
⊢ ((𝑢 ∈ 𝑋 ∧ 𝐾 ∈ (𝑃 pSyl 𝐺) ∧ ran (𝑧 ∈ 𝐾 ↦ ((𝑢 + 𝑧) − 𝑢)) ∈ V) → (𝑢 ⊕ 𝐾) = ran (𝑧 ∈ 𝐾 ↦ ((𝑢 + 𝑧) − 𝑢))) |
| 20 | 6, 8, 11, 19 | syl3anc 1372 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑋) → (𝑢 ⊕ 𝐾) = ran (𝑧 ∈ 𝐾 ↦ ((𝑢 + 𝑧) − 𝑢))) |
| 21 | 20 | adantr 480 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑋) ∧ 𝑢 ∈ 𝑁) → (𝑢 ⊕ 𝐾) = ran (𝑧 ∈ 𝐾 ↦ ((𝑢 + 𝑧) − 𝑢))) |
| 22 | | slwsubg 19629 |
. . . . . . . . 9
⊢ (𝐾 ∈ (𝑃 pSyl 𝐺) → 𝐾 ∈ (SubGrp‘𝐺)) |
| 23 | 7, 22 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝐾 ∈ (SubGrp‘𝐺)) |
| 24 | 23 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑋) → 𝐾 ∈ (SubGrp‘𝐺)) |
| 25 | | sylow3.x |
. . . . . . . 8
⊢ 𝑋 = (Base‘𝐺) |
| 26 | | sylow3lem1.a |
. . . . . . . 8
⊢ + =
(+g‘𝐺) |
| 27 | | sylow3lem1.d |
. . . . . . . 8
⊢ − =
(-g‘𝐺) |
| 28 | | eqid 2736 |
. . . . . . . 8
⊢ (𝑧 ∈ 𝐾 ↦ ((𝑢 + 𝑧) − 𝑢)) = (𝑧 ∈ 𝐾 ↦ ((𝑢 + 𝑧) − 𝑢)) |
| 29 | 25, 26, 27, 28, 2 | conjnmz 19271 |
. . . . . . 7
⊢ ((𝐾 ∈ (SubGrp‘𝐺) ∧ 𝑢 ∈ 𝑁) → 𝐾 = ran (𝑧 ∈ 𝐾 ↦ ((𝑢 + 𝑧) − 𝑢))) |
| 30 | 24, 29 | sylan 580 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑋) ∧ 𝑢 ∈ 𝑁) → 𝐾 = ran (𝑧 ∈ 𝐾 ↦ ((𝑢 + 𝑧) − 𝑢))) |
| 31 | 21, 30 | eqtr4d 2779 |
. . . . 5
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑋) ∧ 𝑢 ∈ 𝑁) → (𝑢 ⊕ 𝐾) = 𝐾) |
| 32 | | simplr 768 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑋) ∧ (𝑢 ⊕ 𝐾) = 𝐾) → 𝑢 ∈ 𝑋) |
| 33 | | simprl 770 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑋) ∧ ((𝑢 ⊕ 𝐾) = 𝐾 ∧ 𝑤 ∈ 𝑋)) → (𝑢 ⊕ 𝐾) = 𝐾) |
| 34 | 20 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑋) ∧ ((𝑢 ⊕ 𝐾) = 𝐾 ∧ 𝑤 ∈ 𝑋)) → (𝑢 ⊕ 𝐾) = ran (𝑧 ∈ 𝐾 ↦ ((𝑢 + 𝑧) − 𝑢))) |
| 35 | 33, 34 | eqtr3d 2778 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑋) ∧ ((𝑢 ⊕ 𝐾) = 𝐾 ∧ 𝑤 ∈ 𝑋)) → 𝐾 = ran (𝑧 ∈ 𝐾 ↦ ((𝑢 + 𝑧) − 𝑢))) |
| 36 | 35 | eleq2d 2826 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑋) ∧ ((𝑢 ⊕ 𝐾) = 𝐾 ∧ 𝑤 ∈ 𝑋)) → ((𝑢 + 𝑤) ∈ 𝐾 ↔ (𝑢 + 𝑤) ∈ ran (𝑧 ∈ 𝐾 ↦ ((𝑢 + 𝑧) − 𝑢)))) |
| 37 | | ovex 7465 |
. . . . . . . . . . . 12
⊢ (𝑢 + 𝑤) ∈ V |
| 38 | | eqeq1 2740 |
. . . . . . . . . . . . 13
⊢ (𝑣 = (𝑢 + 𝑤) → (𝑣 = ((𝑢 + 𝑧) − 𝑢) ↔ (𝑢 + 𝑤) = ((𝑢 + 𝑧) − 𝑢))) |
| 39 | 38 | rexbidv 3178 |
. . . . . . . . . . . 12
⊢ (𝑣 = (𝑢 + 𝑤) → (∃𝑧 ∈ 𝐾 𝑣 = ((𝑢 + 𝑧) − 𝑢) ↔ ∃𝑧 ∈ 𝐾 (𝑢 + 𝑤) = ((𝑢 + 𝑧) − 𝑢))) |
| 40 | 28 | rnmpt 5967 |
. . . . . . . . . . . 12
⊢ ran
(𝑧 ∈ 𝐾 ↦ ((𝑢 + 𝑧) − 𝑢)) = {𝑣 ∣ ∃𝑧 ∈ 𝐾 𝑣 = ((𝑢 + 𝑧) − 𝑢)} |
| 41 | 37, 39, 40 | elab2 3681 |
. . . . . . . . . . 11
⊢ ((𝑢 + 𝑤) ∈ ran (𝑧 ∈ 𝐾 ↦ ((𝑢 + 𝑧) − 𝑢)) ↔ ∃𝑧 ∈ 𝐾 (𝑢 + 𝑤) = ((𝑢 + 𝑧) − 𝑢)) |
| 42 | | simprr 772 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑋) ∧ ((𝑢 ⊕ 𝐾) = 𝐾 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑧 ∈ 𝐾 ∧ (𝑢 + 𝑤) = ((𝑢 + 𝑧) − 𝑢))) → (𝑢 + 𝑤) = ((𝑢 + 𝑧) − 𝑢)) |
| 43 | | sylow3.g |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐺 ∈ Grp) |
| 44 | 43 | ad3antrrr 730 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑋) ∧ ((𝑢 ⊕ 𝐾) = 𝐾 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑧 ∈ 𝐾 ∧ (𝑢 + 𝑤) = ((𝑢 + 𝑧) − 𝑢))) → 𝐺 ∈ Grp) |
| 45 | | simpllr 775 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑋) ∧ ((𝑢 ⊕ 𝐾) = 𝐾 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑧 ∈ 𝐾 ∧ (𝑢 + 𝑤) = ((𝑢 + 𝑧) − 𝑢))) → 𝑢 ∈ 𝑋) |
| 46 | 25 | subgss 19146 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐾 ∈ (SubGrp‘𝐺) → 𝐾 ⊆ 𝑋) |
| 47 | 23, 46 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐾 ⊆ 𝑋) |
| 48 | 47 | ad3antrrr 730 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑋) ∧ ((𝑢 ⊕ 𝐾) = 𝐾 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑧 ∈ 𝐾 ∧ (𝑢 + 𝑤) = ((𝑢 + 𝑧) − 𝑢))) → 𝐾 ⊆ 𝑋) |
| 49 | | simprl 770 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑋) ∧ ((𝑢 ⊕ 𝐾) = 𝐾 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑧 ∈ 𝐾 ∧ (𝑢 + 𝑤) = ((𝑢 + 𝑧) − 𝑢))) → 𝑧 ∈ 𝐾) |
| 50 | 48, 49 | sseldd 3983 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑋) ∧ ((𝑢 ⊕ 𝐾) = 𝐾 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑧 ∈ 𝐾 ∧ (𝑢 + 𝑤) = ((𝑢 + 𝑧) − 𝑢))) → 𝑧 ∈ 𝑋) |
| 51 | 25, 26, 27 | grpaddsubass 19049 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐺 ∈ Grp ∧ (𝑢 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ 𝑢 ∈ 𝑋)) → ((𝑢 + 𝑧) − 𝑢) = (𝑢 + (𝑧 − 𝑢))) |
| 52 | 44, 45, 50, 45, 51 | syl13anc 1373 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑋) ∧ ((𝑢 ⊕ 𝐾) = 𝐾 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑧 ∈ 𝐾 ∧ (𝑢 + 𝑤) = ((𝑢 + 𝑧) − 𝑢))) → ((𝑢 + 𝑧) − 𝑢) = (𝑢 + (𝑧 − 𝑢))) |
| 53 | 42, 52 | eqtr2d 2777 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑋) ∧ ((𝑢 ⊕ 𝐾) = 𝐾 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑧 ∈ 𝐾 ∧ (𝑢 + 𝑤) = ((𝑢 + 𝑧) − 𝑢))) → (𝑢 + (𝑧 − 𝑢)) = (𝑢 + 𝑤)) |
| 54 | 25, 27 | grpsubcl 19039 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑋 ∧ 𝑢 ∈ 𝑋) → (𝑧 − 𝑢) ∈ 𝑋) |
| 55 | 44, 50, 45, 54 | syl3anc 1372 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑋) ∧ ((𝑢 ⊕ 𝐾) = 𝐾 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑧 ∈ 𝐾 ∧ (𝑢 + 𝑤) = ((𝑢 + 𝑧) − 𝑢))) → (𝑧 − 𝑢) ∈ 𝑋) |
| 56 | | simplrr 777 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑋) ∧ ((𝑢 ⊕ 𝐾) = 𝐾 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑧 ∈ 𝐾 ∧ (𝑢 + 𝑤) = ((𝑢 + 𝑧) − 𝑢))) → 𝑤 ∈ 𝑋) |
| 57 | 25, 26 | grplcan 19019 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐺 ∈ Grp ∧ ((𝑧 − 𝑢) ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ∧ 𝑢 ∈ 𝑋)) → ((𝑢 + (𝑧 − 𝑢)) = (𝑢 + 𝑤) ↔ (𝑧 − 𝑢) = 𝑤)) |
| 58 | 44, 55, 56, 45, 57 | syl13anc 1373 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑋) ∧ ((𝑢 ⊕ 𝐾) = 𝐾 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑧 ∈ 𝐾 ∧ (𝑢 + 𝑤) = ((𝑢 + 𝑧) − 𝑢))) → ((𝑢 + (𝑧 − 𝑢)) = (𝑢 + 𝑤) ↔ (𝑧 − 𝑢) = 𝑤)) |
| 59 | 53, 58 | mpbid 232 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑋) ∧ ((𝑢 ⊕ 𝐾) = 𝐾 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑧 ∈ 𝐾 ∧ (𝑢 + 𝑤) = ((𝑢 + 𝑧) − 𝑢))) → (𝑧 − 𝑢) = 𝑤) |
| 60 | 25, 26, 27 | grpsubadd 19047 |
. . . . . . . . . . . . . . 15
⊢ ((𝐺 ∈ Grp ∧ (𝑧 ∈ 𝑋 ∧ 𝑢 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → ((𝑧 − 𝑢) = 𝑤 ↔ (𝑤 + 𝑢) = 𝑧)) |
| 61 | 44, 50, 45, 56, 60 | syl13anc 1373 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑋) ∧ ((𝑢 ⊕ 𝐾) = 𝐾 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑧 ∈ 𝐾 ∧ (𝑢 + 𝑤) = ((𝑢 + 𝑧) − 𝑢))) → ((𝑧 − 𝑢) = 𝑤 ↔ (𝑤 + 𝑢) = 𝑧)) |
| 62 | 59, 61 | mpbid 232 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑋) ∧ ((𝑢 ⊕ 𝐾) = 𝐾 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑧 ∈ 𝐾 ∧ (𝑢 + 𝑤) = ((𝑢 + 𝑧) − 𝑢))) → (𝑤 + 𝑢) = 𝑧) |
| 63 | 62, 49 | eqeltrd 2840 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑋) ∧ ((𝑢 ⊕ 𝐾) = 𝐾 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑧 ∈ 𝐾 ∧ (𝑢 + 𝑤) = ((𝑢 + 𝑧) − 𝑢))) → (𝑤 + 𝑢) ∈ 𝐾) |
| 64 | 63 | rexlimdvaa 3155 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑋) ∧ ((𝑢 ⊕ 𝐾) = 𝐾 ∧ 𝑤 ∈ 𝑋)) → (∃𝑧 ∈ 𝐾 (𝑢 + 𝑤) = ((𝑢 + 𝑧) − 𝑢) → (𝑤 + 𝑢) ∈ 𝐾)) |
| 65 | 41, 64 | biimtrid 242 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑋) ∧ ((𝑢 ⊕ 𝐾) = 𝐾 ∧ 𝑤 ∈ 𝑋)) → ((𝑢 + 𝑤) ∈ ran (𝑧 ∈ 𝐾 ↦ ((𝑢 + 𝑧) − 𝑢)) → (𝑤 + 𝑢) ∈ 𝐾)) |
| 66 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑋) ∧ ((𝑢 ⊕ 𝐾) = 𝐾 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑤 + 𝑢) ∈ 𝐾) → (𝑤 + 𝑢) ∈ 𝐾) |
| 67 | | oveq2 7440 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = (𝑤 + 𝑢) → (𝑢 + 𝑧) = (𝑢 + (𝑤 + 𝑢))) |
| 68 | 67 | oveq1d 7447 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = (𝑤 + 𝑢) → ((𝑢 + 𝑧) − 𝑢) = ((𝑢 + (𝑤 + 𝑢)) − 𝑢)) |
| 69 | | ovex 7465 |
. . . . . . . . . . . . . . 15
⊢ ((𝑢 + (𝑤 + 𝑢)) − 𝑢) ∈ V |
| 70 | 68, 28, 69 | fvmpt 7015 |
. . . . . . . . . . . . . 14
⊢ ((𝑤 + 𝑢) ∈ 𝐾 → ((𝑧 ∈ 𝐾 ↦ ((𝑢 + 𝑧) − 𝑢))‘(𝑤 + 𝑢)) = ((𝑢 + (𝑤 + 𝑢)) − 𝑢)) |
| 71 | 66, 70 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑋) ∧ ((𝑢 ⊕ 𝐾) = 𝐾 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑤 + 𝑢) ∈ 𝐾) → ((𝑧 ∈ 𝐾 ↦ ((𝑢 + 𝑧) − 𝑢))‘(𝑤 + 𝑢)) = ((𝑢 + (𝑤 + 𝑢)) − 𝑢)) |
| 72 | 43 | ad3antrrr 730 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑋) ∧ ((𝑢 ⊕ 𝐾) = 𝐾 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑤 + 𝑢) ∈ 𝐾) → 𝐺 ∈ Grp) |
| 73 | | simpllr 775 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑋) ∧ ((𝑢 ⊕ 𝐾) = 𝐾 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑤 + 𝑢) ∈ 𝐾) → 𝑢 ∈ 𝑋) |
| 74 | | simplrr 777 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑋) ∧ ((𝑢 ⊕ 𝐾) = 𝐾 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑤 + 𝑢) ∈ 𝐾) → 𝑤 ∈ 𝑋) |
| 75 | 25, 26 | grpass 18961 |
. . . . . . . . . . . . . . 15
⊢ ((𝐺 ∈ Grp ∧ (𝑢 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ∧ 𝑢 ∈ 𝑋)) → ((𝑢 + 𝑤) + 𝑢) = (𝑢 + (𝑤 + 𝑢))) |
| 76 | 72, 73, 74, 73, 75 | syl13anc 1373 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑋) ∧ ((𝑢 ⊕ 𝐾) = 𝐾 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑤 + 𝑢) ∈ 𝐾) → ((𝑢 + 𝑤) + 𝑢) = (𝑢 + (𝑤 + 𝑢))) |
| 77 | 76 | oveq1d 7447 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑋) ∧ ((𝑢 ⊕ 𝐾) = 𝐾 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑤 + 𝑢) ∈ 𝐾) → (((𝑢 + 𝑤) + 𝑢) − 𝑢) = ((𝑢 + (𝑤 + 𝑢)) − 𝑢)) |
| 78 | 25, 26 | grpcl 18960 |
. . . . . . . . . . . . . . 15
⊢ ((𝐺 ∈ Grp ∧ 𝑢 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) → (𝑢 + 𝑤) ∈ 𝑋) |
| 79 | 72, 73, 74, 78 | syl3anc 1372 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑋) ∧ ((𝑢 ⊕ 𝐾) = 𝐾 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑤 + 𝑢) ∈ 𝐾) → (𝑢 + 𝑤) ∈ 𝑋) |
| 80 | 25, 26, 27 | grppncan 19050 |
. . . . . . . . . . . . . 14
⊢ ((𝐺 ∈ Grp ∧ (𝑢 + 𝑤) ∈ 𝑋 ∧ 𝑢 ∈ 𝑋) → (((𝑢 + 𝑤) + 𝑢) − 𝑢) = (𝑢 + 𝑤)) |
| 81 | 72, 79, 73, 80 | syl3anc 1372 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑋) ∧ ((𝑢 ⊕ 𝐾) = 𝐾 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑤 + 𝑢) ∈ 𝐾) → (((𝑢 + 𝑤) + 𝑢) − 𝑢) = (𝑢 + 𝑤)) |
| 82 | 71, 77, 81 | 3eqtr2d 2782 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑋) ∧ ((𝑢 ⊕ 𝐾) = 𝐾 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑤 + 𝑢) ∈ 𝐾) → ((𝑧 ∈ 𝐾 ↦ ((𝑢 + 𝑧) − 𝑢))‘(𝑤 + 𝑢)) = (𝑢 + 𝑤)) |
| 83 | | ovex 7465 |
. . . . . . . . . . . . . 14
⊢ ((𝑢 + 𝑧) − 𝑢) ∈ V |
| 84 | 83, 28 | fnmpti 6710 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ 𝐾 ↦ ((𝑢 + 𝑧) − 𝑢)) Fn 𝐾 |
| 85 | | fnfvelrn 7099 |
. . . . . . . . . . . . 13
⊢ (((𝑧 ∈ 𝐾 ↦ ((𝑢 + 𝑧) − 𝑢)) Fn 𝐾 ∧ (𝑤 + 𝑢) ∈ 𝐾) → ((𝑧 ∈ 𝐾 ↦ ((𝑢 + 𝑧) − 𝑢))‘(𝑤 + 𝑢)) ∈ ran (𝑧 ∈ 𝐾 ↦ ((𝑢 + 𝑧) − 𝑢))) |
| 86 | 84, 66, 85 | sylancr 587 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑋) ∧ ((𝑢 ⊕ 𝐾) = 𝐾 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑤 + 𝑢) ∈ 𝐾) → ((𝑧 ∈ 𝐾 ↦ ((𝑢 + 𝑧) − 𝑢))‘(𝑤 + 𝑢)) ∈ ran (𝑧 ∈ 𝐾 ↦ ((𝑢 + 𝑧) − 𝑢))) |
| 87 | 82, 86 | eqeltrrd 2841 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑋) ∧ ((𝑢 ⊕ 𝐾) = 𝐾 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑤 + 𝑢) ∈ 𝐾) → (𝑢 + 𝑤) ∈ ran (𝑧 ∈ 𝐾 ↦ ((𝑢 + 𝑧) − 𝑢))) |
| 88 | 87 | ex 412 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑋) ∧ ((𝑢 ⊕ 𝐾) = 𝐾 ∧ 𝑤 ∈ 𝑋)) → ((𝑤 + 𝑢) ∈ 𝐾 → (𝑢 + 𝑤) ∈ ran (𝑧 ∈ 𝐾 ↦ ((𝑢 + 𝑧) − 𝑢)))) |
| 89 | 65, 88 | impbid 212 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑋) ∧ ((𝑢 ⊕ 𝐾) = 𝐾 ∧ 𝑤 ∈ 𝑋)) → ((𝑢 + 𝑤) ∈ ran (𝑧 ∈ 𝐾 ↦ ((𝑢 + 𝑧) − 𝑢)) ↔ (𝑤 + 𝑢) ∈ 𝐾)) |
| 90 | 36, 89 | bitrd 279 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑋) ∧ ((𝑢 ⊕ 𝐾) = 𝐾 ∧ 𝑤 ∈ 𝑋)) → ((𝑢 + 𝑤) ∈ 𝐾 ↔ (𝑤 + 𝑢) ∈ 𝐾)) |
| 91 | 90 | anassrs 467 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑋) ∧ (𝑢 ⊕ 𝐾) = 𝐾) ∧ 𝑤 ∈ 𝑋) → ((𝑢 + 𝑤) ∈ 𝐾 ↔ (𝑤 + 𝑢) ∈ 𝐾)) |
| 92 | 91 | ralrimiva 3145 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑋) ∧ (𝑢 ⊕ 𝐾) = 𝐾) → ∀𝑤 ∈ 𝑋 ((𝑢 + 𝑤) ∈ 𝐾 ↔ (𝑤 + 𝑢) ∈ 𝐾)) |
| 93 | 2 | elnmz 19182 |
. . . . . 6
⊢ (𝑢 ∈ 𝑁 ↔ (𝑢 ∈ 𝑋 ∧ ∀𝑤 ∈ 𝑋 ((𝑢 + 𝑤) ∈ 𝐾 ↔ (𝑤 + 𝑢) ∈ 𝐾))) |
| 94 | 32, 92, 93 | sylanbrc 583 |
. . . . 5
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑋) ∧ (𝑢 ⊕ 𝐾) = 𝐾) → 𝑢 ∈ 𝑁) |
| 95 | 31, 94 | impbida 800 |
. . . 4
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑋) → (𝑢 ∈ 𝑁 ↔ (𝑢 ⊕ 𝐾) = 𝐾)) |
| 96 | 95 | rabbi2dva 4225 |
. . 3
⊢ (𝜑 → (𝑋 ∩ 𝑁) = {𝑢 ∈ 𝑋 ∣ (𝑢 ⊕ 𝐾) = 𝐾}) |
| 97 | 5, 96 | eqtr3id 2790 |
. 2
⊢ (𝜑 → 𝑁 = {𝑢 ∈ 𝑋 ∣ (𝑢 ⊕ 𝐾) = 𝐾}) |
| 98 | 1, 97 | eqtr4id 2795 |
1
⊢ (𝜑 → 𝐻 = 𝑁) |