MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nsgacs Structured version   Visualization version   GIF version

Theorem nsgacs 19059
Description: Normal subgroups form an algebraic closure system. (Contributed by Stefan O'Rear, 4-Sep-2015.)
Hypothesis
Ref Expression
subgacs.b 𝐵 = (Base‘𝐺)
Assertion
Ref Expression
nsgacs (𝐺 ∈ Grp → (NrmSGrp‘𝐺) ∈ (ACS‘𝐵))

Proof of Theorem nsgacs
Dummy variables 𝑠 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subgacs.b . . . . . . . . 9 𝐵 = (Base‘𝐺)
21subgss 19024 . . . . . . . 8 (𝑠 ∈ (SubGrp‘𝐺) → 𝑠𝐵)
3 velpw 4558 . . . . . . . 8 (𝑠 ∈ 𝒫 𝐵𝑠𝐵)
42, 3sylibr 234 . . . . . . 7 (𝑠 ∈ (SubGrp‘𝐺) → 𝑠 ∈ 𝒫 𝐵)
5 eleq2w 2812 . . . . . . . . . 10 (𝑧 = 𝑠 → (((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑧 ↔ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑠))
65raleqbi1dv 3302 . . . . . . . . 9 (𝑧 = 𝑠 → (∀𝑦𝑧 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑧 ↔ ∀𝑦𝑠 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑠))
76ralbidv 3152 . . . . . . . 8 (𝑧 = 𝑠 → (∀𝑥𝐵𝑦𝑧 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑧 ↔ ∀𝑥𝐵𝑦𝑠 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑠))
87elrab3 3651 . . . . . . 7 (𝑠 ∈ 𝒫 𝐵 → (𝑠 ∈ {𝑧 ∈ 𝒫 𝐵 ∣ ∀𝑥𝐵𝑦𝑧 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑧} ↔ ∀𝑥𝐵𝑦𝑠 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑠))
94, 8syl 17 . . . . . 6 (𝑠 ∈ (SubGrp‘𝐺) → (𝑠 ∈ {𝑧 ∈ 𝒫 𝐵 ∣ ∀𝑥𝐵𝑦𝑧 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑧} ↔ ∀𝑥𝐵𝑦𝑠 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑠))
109bicomd 223 . . . . 5 (𝑠 ∈ (SubGrp‘𝐺) → (∀𝑥𝐵𝑦𝑠 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑠𝑠 ∈ {𝑧 ∈ 𝒫 𝐵 ∣ ∀𝑥𝐵𝑦𝑧 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑧}))
1110pm5.32i 574 . . . 4 ((𝑠 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝐵𝑦𝑠 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑠) ↔ (𝑠 ∈ (SubGrp‘𝐺) ∧ 𝑠 ∈ {𝑧 ∈ 𝒫 𝐵 ∣ ∀𝑥𝐵𝑦𝑧 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑧}))
12 eqid 2729 . . . . 5 (+g𝐺) = (+g𝐺)
13 eqid 2729 . . . . 5 (-g𝐺) = (-g𝐺)
141, 12, 13isnsg3 19057 . . . 4 (𝑠 ∈ (NrmSGrp‘𝐺) ↔ (𝑠 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝐵𝑦𝑠 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑠))
15 elin 3921 . . . 4 (𝑠 ∈ ((SubGrp‘𝐺) ∩ {𝑧 ∈ 𝒫 𝐵 ∣ ∀𝑥𝐵𝑦𝑧 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑧}) ↔ (𝑠 ∈ (SubGrp‘𝐺) ∧ 𝑠 ∈ {𝑧 ∈ 𝒫 𝐵 ∣ ∀𝑥𝐵𝑦𝑧 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑧}))
1611, 14, 153bitr4i 303 . . 3 (𝑠 ∈ (NrmSGrp‘𝐺) ↔ 𝑠 ∈ ((SubGrp‘𝐺) ∩ {𝑧 ∈ 𝒫 𝐵 ∣ ∀𝑥𝐵𝑦𝑧 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑧}))
1716eqriv 2726 . 2 (NrmSGrp‘𝐺) = ((SubGrp‘𝐺) ∩ {𝑧 ∈ 𝒫 𝐵 ∣ ∀𝑥𝐵𝑦𝑧 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑧})
181fvexi 6840 . . . 4 𝐵 ∈ V
19 mreacs 17582 . . . 4 (𝐵 ∈ V → (ACS‘𝐵) ∈ (Moore‘𝒫 𝐵))
2018, 19mp1i 13 . . 3 (𝐺 ∈ Grp → (ACS‘𝐵) ∈ (Moore‘𝒫 𝐵))
211subgacs 19058 . . 3 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘𝐵))
22 simpl 482 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → 𝐺 ∈ Grp)
231, 12grpcl 18838 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑥𝐵𝑦𝐵) → (𝑥(+g𝐺)𝑦) ∈ 𝐵)
24233expb 1120 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐺)𝑦) ∈ 𝐵)
25 simprl 770 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → 𝑥𝐵)
261, 13grpsubcl 18917 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑥(+g𝐺)𝑦) ∈ 𝐵𝑥𝐵) → ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝐵)
2722, 24, 25, 26syl3anc 1373 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝐵)
2827ralrimivva 3172 . . . 4 (𝐺 ∈ Grp → ∀𝑥𝐵𝑦𝐵 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝐵)
29 acsfn1c 17586 . . . 4 ((𝐵 ∈ V ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝐵) → {𝑧 ∈ 𝒫 𝐵 ∣ ∀𝑥𝐵𝑦𝑧 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑧} ∈ (ACS‘𝐵))
3018, 28, 29sylancr 587 . . 3 (𝐺 ∈ Grp → {𝑧 ∈ 𝒫 𝐵 ∣ ∀𝑥𝐵𝑦𝑧 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑧} ∈ (ACS‘𝐵))
31 mreincl 17519 . . 3 (((ACS‘𝐵) ∈ (Moore‘𝒫 𝐵) ∧ (SubGrp‘𝐺) ∈ (ACS‘𝐵) ∧ {𝑧 ∈ 𝒫 𝐵 ∣ ∀𝑥𝐵𝑦𝑧 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑧} ∈ (ACS‘𝐵)) → ((SubGrp‘𝐺) ∩ {𝑧 ∈ 𝒫 𝐵 ∣ ∀𝑥𝐵𝑦𝑧 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑧}) ∈ (ACS‘𝐵))
3220, 21, 30, 31syl3anc 1373 . 2 (𝐺 ∈ Grp → ((SubGrp‘𝐺) ∩ {𝑧 ∈ 𝒫 𝐵 ∣ ∀𝑥𝐵𝑦𝑧 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑧}) ∈ (ACS‘𝐵))
3317, 32eqeltrid 2832 1 (𝐺 ∈ Grp → (NrmSGrp‘𝐺) ∈ (ACS‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  {crab 3396  Vcvv 3438  cin 3904  wss 3905  𝒫 cpw 4553  cfv 6486  (class class class)co 7353  Basecbs 17138  +gcplusg 17179  Moorecmre 17502  ACScacs 17505  Grpcgrp 18830  -gcsg 18832  SubGrpcsubg 19017  NrmSGrpcnsg 19018
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-0g 17363  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-submnd 18676  df-grp 18833  df-minusg 18834  df-sbg 18835  df-subg 19020  df-nsg 19021
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator