MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nsgacs Structured version   Visualization version   GIF version

Theorem nsgacs 18308
Description: Normal subgroups form an algebraic closure system. (Contributed by Stefan O'Rear, 4-Sep-2015.)
Hypothesis
Ref Expression
subgacs.b 𝐵 = (Base‘𝐺)
Assertion
Ref Expression
nsgacs (𝐺 ∈ Grp → (NrmSGrp‘𝐺) ∈ (ACS‘𝐵))

Proof of Theorem nsgacs
Dummy variables 𝑠 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subgacs.b . . . . . . . . 9 𝐵 = (Base‘𝐺)
21subgss 18274 . . . . . . . 8 (𝑠 ∈ (SubGrp‘𝐺) → 𝑠𝐵)
3 velpw 4546 . . . . . . . 8 (𝑠 ∈ 𝒫 𝐵𝑠𝐵)
42, 3sylibr 236 . . . . . . 7 (𝑠 ∈ (SubGrp‘𝐺) → 𝑠 ∈ 𝒫 𝐵)
5 eleq2w 2896 . . . . . . . . . 10 (𝑧 = 𝑠 → (((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑧 ↔ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑠))
65raleqbi1dv 3403 . . . . . . . . 9 (𝑧 = 𝑠 → (∀𝑦𝑧 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑧 ↔ ∀𝑦𝑠 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑠))
76ralbidv 3197 . . . . . . . 8 (𝑧 = 𝑠 → (∀𝑥𝐵𝑦𝑧 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑧 ↔ ∀𝑥𝐵𝑦𝑠 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑠))
87elrab3 3680 . . . . . . 7 (𝑠 ∈ 𝒫 𝐵 → (𝑠 ∈ {𝑧 ∈ 𝒫 𝐵 ∣ ∀𝑥𝐵𝑦𝑧 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑧} ↔ ∀𝑥𝐵𝑦𝑠 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑠))
94, 8syl 17 . . . . . 6 (𝑠 ∈ (SubGrp‘𝐺) → (𝑠 ∈ {𝑧 ∈ 𝒫 𝐵 ∣ ∀𝑥𝐵𝑦𝑧 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑧} ↔ ∀𝑥𝐵𝑦𝑠 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑠))
109bicomd 225 . . . . 5 (𝑠 ∈ (SubGrp‘𝐺) → (∀𝑥𝐵𝑦𝑠 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑠𝑠 ∈ {𝑧 ∈ 𝒫 𝐵 ∣ ∀𝑥𝐵𝑦𝑧 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑧}))
1110pm5.32i 577 . . . 4 ((𝑠 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝐵𝑦𝑠 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑠) ↔ (𝑠 ∈ (SubGrp‘𝐺) ∧ 𝑠 ∈ {𝑧 ∈ 𝒫 𝐵 ∣ ∀𝑥𝐵𝑦𝑧 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑧}))
12 eqid 2821 . . . . 5 (+g𝐺) = (+g𝐺)
13 eqid 2821 . . . . 5 (-g𝐺) = (-g𝐺)
141, 12, 13isnsg3 18306 . . . 4 (𝑠 ∈ (NrmSGrp‘𝐺) ↔ (𝑠 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝐵𝑦𝑠 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑠))
15 elin 4168 . . . 4 (𝑠 ∈ ((SubGrp‘𝐺) ∩ {𝑧 ∈ 𝒫 𝐵 ∣ ∀𝑥𝐵𝑦𝑧 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑧}) ↔ (𝑠 ∈ (SubGrp‘𝐺) ∧ 𝑠 ∈ {𝑧 ∈ 𝒫 𝐵 ∣ ∀𝑥𝐵𝑦𝑧 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑧}))
1611, 14, 153bitr4i 305 . . 3 (𝑠 ∈ (NrmSGrp‘𝐺) ↔ 𝑠 ∈ ((SubGrp‘𝐺) ∩ {𝑧 ∈ 𝒫 𝐵 ∣ ∀𝑥𝐵𝑦𝑧 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑧}))
1716eqriv 2818 . 2 (NrmSGrp‘𝐺) = ((SubGrp‘𝐺) ∩ {𝑧 ∈ 𝒫 𝐵 ∣ ∀𝑥𝐵𝑦𝑧 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑧})
181fvexi 6678 . . . 4 𝐵 ∈ V
19 mreacs 16923 . . . 4 (𝐵 ∈ V → (ACS‘𝐵) ∈ (Moore‘𝒫 𝐵))
2018, 19mp1i 13 . . 3 (𝐺 ∈ Grp → (ACS‘𝐵) ∈ (Moore‘𝒫 𝐵))
211subgacs 18307 . . 3 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘𝐵))
22 simpl 485 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → 𝐺 ∈ Grp)
231, 12grpcl 18105 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑥𝐵𝑦𝐵) → (𝑥(+g𝐺)𝑦) ∈ 𝐵)
24233expb 1116 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐺)𝑦) ∈ 𝐵)
25 simprl 769 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → 𝑥𝐵)
261, 13grpsubcl 18173 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑥(+g𝐺)𝑦) ∈ 𝐵𝑥𝐵) → ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝐵)
2722, 24, 25, 26syl3anc 1367 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝐵)
2827ralrimivva 3191 . . . 4 (𝐺 ∈ Grp → ∀𝑥𝐵𝑦𝐵 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝐵)
29 acsfn1c 16927 . . . 4 ((𝐵 ∈ V ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝐵) → {𝑧 ∈ 𝒫 𝐵 ∣ ∀𝑥𝐵𝑦𝑧 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑧} ∈ (ACS‘𝐵))
3018, 28, 29sylancr 589 . . 3 (𝐺 ∈ Grp → {𝑧 ∈ 𝒫 𝐵 ∣ ∀𝑥𝐵𝑦𝑧 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑧} ∈ (ACS‘𝐵))
31 mreincl 16864 . . 3 (((ACS‘𝐵) ∈ (Moore‘𝒫 𝐵) ∧ (SubGrp‘𝐺) ∈ (ACS‘𝐵) ∧ {𝑧 ∈ 𝒫 𝐵 ∣ ∀𝑥𝐵𝑦𝑧 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑧} ∈ (ACS‘𝐵)) → ((SubGrp‘𝐺) ∩ {𝑧 ∈ 𝒫 𝐵 ∣ ∀𝑥𝐵𝑦𝑧 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑧}) ∈ (ACS‘𝐵))
3220, 21, 30, 31syl3anc 1367 . 2 (𝐺 ∈ Grp → ((SubGrp‘𝐺) ∩ {𝑧 ∈ 𝒫 𝐵 ∣ ∀𝑥𝐵𝑦𝑧 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑧}) ∈ (ACS‘𝐵))
3317, 32eqeltrid 2917 1 (𝐺 ∈ Grp → (NrmSGrp‘𝐺) ∈ (ACS‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wral 3138  {crab 3142  Vcvv 3494  cin 3934  wss 3935  𝒫 cpw 4538  cfv 6349  (class class class)co 7150  Basecbs 16477  +gcplusg 16559  Moorecmre 16847  ACScacs 16850  Grpcgrp 18097  -gcsg 18099  SubGrpcsubg 18267  NrmSGrpcnsg 18268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-iin 4914  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-0g 16709  df-mre 16851  df-mrc 16852  df-acs 16854  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-submnd 17951  df-grp 18100  df-minusg 18101  df-sbg 18102  df-subg 18270  df-nsg 18271
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator