| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | subgacs.b | . . . . . . . . 9
⊢ 𝐵 = (Base‘𝐺) | 
| 2 | 1 | subgss 19146 | . . . . . . . 8
⊢ (𝑠 ∈ (SubGrp‘𝐺) → 𝑠 ⊆ 𝐵) | 
| 3 |  | velpw 4604 | . . . . . . . 8
⊢ (𝑠 ∈ 𝒫 𝐵 ↔ 𝑠 ⊆ 𝐵) | 
| 4 | 2, 3 | sylibr 234 | . . . . . . 7
⊢ (𝑠 ∈ (SubGrp‘𝐺) → 𝑠 ∈ 𝒫 𝐵) | 
| 5 |  | eleq2w 2824 | . . . . . . . . . 10
⊢ (𝑧 = 𝑠 → (((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ 𝑧 ↔ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ 𝑠)) | 
| 6 | 5 | raleqbi1dv 3337 | . . . . . . . . 9
⊢ (𝑧 = 𝑠 → (∀𝑦 ∈ 𝑧 ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ 𝑧 ↔ ∀𝑦 ∈ 𝑠 ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ 𝑠)) | 
| 7 | 6 | ralbidv 3177 | . . . . . . . 8
⊢ (𝑧 = 𝑠 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝑧 ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ 𝑧 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝑠 ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ 𝑠)) | 
| 8 | 7 | elrab3 3692 | . . . . . . 7
⊢ (𝑠 ∈ 𝒫 𝐵 → (𝑠 ∈ {𝑧 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝑧 ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ 𝑧} ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝑠 ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ 𝑠)) | 
| 9 | 4, 8 | syl 17 | . . . . . 6
⊢ (𝑠 ∈ (SubGrp‘𝐺) → (𝑠 ∈ {𝑧 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝑧 ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ 𝑧} ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝑠 ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ 𝑠)) | 
| 10 | 9 | bicomd 223 | . . . . 5
⊢ (𝑠 ∈ (SubGrp‘𝐺) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝑠 ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ 𝑠 ↔ 𝑠 ∈ {𝑧 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝑧 ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ 𝑧})) | 
| 11 | 10 | pm5.32i 574 | . . . 4
⊢ ((𝑠 ∈ (SubGrp‘𝐺) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝑠 ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ 𝑠) ↔ (𝑠 ∈ (SubGrp‘𝐺) ∧ 𝑠 ∈ {𝑧 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝑧 ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ 𝑧})) | 
| 12 |  | eqid 2736 | . . . . 5
⊢
(+g‘𝐺) = (+g‘𝐺) | 
| 13 |  | eqid 2736 | . . . . 5
⊢
(-g‘𝐺) = (-g‘𝐺) | 
| 14 | 1, 12, 13 | isnsg3 19179 | . . . 4
⊢ (𝑠 ∈ (NrmSGrp‘𝐺) ↔ (𝑠 ∈ (SubGrp‘𝐺) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝑠 ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ 𝑠)) | 
| 15 |  | elin 3966 | . . . 4
⊢ (𝑠 ∈ ((SubGrp‘𝐺) ∩ {𝑧 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝑧 ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ 𝑧}) ↔ (𝑠 ∈ (SubGrp‘𝐺) ∧ 𝑠 ∈ {𝑧 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝑧 ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ 𝑧})) | 
| 16 | 11, 14, 15 | 3bitr4i 303 | . . 3
⊢ (𝑠 ∈ (NrmSGrp‘𝐺) ↔ 𝑠 ∈ ((SubGrp‘𝐺) ∩ {𝑧 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝑧 ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ 𝑧})) | 
| 17 | 16 | eqriv 2733 | . 2
⊢
(NrmSGrp‘𝐺) =
((SubGrp‘𝐺) ∩
{𝑧 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝑧 ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ 𝑧}) | 
| 18 | 1 | fvexi 6919 | . . . 4
⊢ 𝐵 ∈ V | 
| 19 |  | mreacs 17702 | . . . 4
⊢ (𝐵 ∈ V →
(ACS‘𝐵) ∈
(Moore‘𝒫 𝐵)) | 
| 20 | 18, 19 | mp1i 13 | . . 3
⊢ (𝐺 ∈ Grp →
(ACS‘𝐵) ∈
(Moore‘𝒫 𝐵)) | 
| 21 | 1 | subgacs 19180 | . . 3
⊢ (𝐺 ∈ Grp →
(SubGrp‘𝐺) ∈
(ACS‘𝐵)) | 
| 22 |  | simpl 482 | . . . . . 6
⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐺 ∈ Grp) | 
| 23 | 1, 12 | grpcl 18960 | . . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥(+g‘𝐺)𝑦) ∈ 𝐵) | 
| 24 | 23 | 3expb 1120 | . . . . . 6
⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐺)𝑦) ∈ 𝐵) | 
| 25 |  | simprl 770 | . . . . . 6
⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑥 ∈ 𝐵) | 
| 26 | 1, 13 | grpsubcl 19039 | . . . . . 6
⊢ ((𝐺 ∈ Grp ∧ (𝑥(+g‘𝐺)𝑦) ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ 𝐵) | 
| 27 | 22, 24, 25, 26 | syl3anc 1372 | . . . . 5
⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ 𝐵) | 
| 28 | 27 | ralrimivva 3201 | . . . 4
⊢ (𝐺 ∈ Grp → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ 𝐵) | 
| 29 |  | acsfn1c 17706 | . . . 4
⊢ ((𝐵 ∈ V ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ 𝐵) → {𝑧 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝑧 ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ 𝑧} ∈ (ACS‘𝐵)) | 
| 30 | 18, 28, 29 | sylancr 587 | . . 3
⊢ (𝐺 ∈ Grp → {𝑧 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝑧 ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ 𝑧} ∈ (ACS‘𝐵)) | 
| 31 |  | mreincl 17643 | . . 3
⊢
(((ACS‘𝐵)
∈ (Moore‘𝒫 𝐵) ∧ (SubGrp‘𝐺) ∈ (ACS‘𝐵) ∧ {𝑧 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝑧 ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ 𝑧} ∈ (ACS‘𝐵)) → ((SubGrp‘𝐺) ∩ {𝑧 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝑧 ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ 𝑧}) ∈ (ACS‘𝐵)) | 
| 32 | 20, 21, 30, 31 | syl3anc 1372 | . 2
⊢ (𝐺 ∈ Grp →
((SubGrp‘𝐺) ∩
{𝑧 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝑧 ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ 𝑧}) ∈ (ACS‘𝐵)) | 
| 33 | 17, 32 | eqeltrid 2844 | 1
⊢ (𝐺 ∈ Grp →
(NrmSGrp‘𝐺) ∈
(ACS‘𝐵)) |