Step | Hyp | Ref
| Expression |
1 | | subgacs.b |
. . . . . . . . 9
⊢ 𝐵 = (Base‘𝐺) |
2 | 1 | subgss 18671 |
. . . . . . . 8
⊢ (𝑠 ∈ (SubGrp‘𝐺) → 𝑠 ⊆ 𝐵) |
3 | | velpw 4535 |
. . . . . . . 8
⊢ (𝑠 ∈ 𝒫 𝐵 ↔ 𝑠 ⊆ 𝐵) |
4 | 2, 3 | sylibr 233 |
. . . . . . 7
⊢ (𝑠 ∈ (SubGrp‘𝐺) → 𝑠 ∈ 𝒫 𝐵) |
5 | | eleq2w 2822 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑠 → (((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ 𝑧 ↔ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ 𝑠)) |
6 | 5 | raleqbi1dv 3331 |
. . . . . . . . 9
⊢ (𝑧 = 𝑠 → (∀𝑦 ∈ 𝑧 ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ 𝑧 ↔ ∀𝑦 ∈ 𝑠 ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ 𝑠)) |
7 | 6 | ralbidv 3120 |
. . . . . . . 8
⊢ (𝑧 = 𝑠 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝑧 ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ 𝑧 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝑠 ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ 𝑠)) |
8 | 7 | elrab3 3618 |
. . . . . . 7
⊢ (𝑠 ∈ 𝒫 𝐵 → (𝑠 ∈ {𝑧 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝑧 ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ 𝑧} ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝑠 ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ 𝑠)) |
9 | 4, 8 | syl 17 |
. . . . . 6
⊢ (𝑠 ∈ (SubGrp‘𝐺) → (𝑠 ∈ {𝑧 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝑧 ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ 𝑧} ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝑠 ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ 𝑠)) |
10 | 9 | bicomd 222 |
. . . . 5
⊢ (𝑠 ∈ (SubGrp‘𝐺) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝑠 ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ 𝑠 ↔ 𝑠 ∈ {𝑧 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝑧 ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ 𝑧})) |
11 | 10 | pm5.32i 574 |
. . . 4
⊢ ((𝑠 ∈ (SubGrp‘𝐺) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝑠 ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ 𝑠) ↔ (𝑠 ∈ (SubGrp‘𝐺) ∧ 𝑠 ∈ {𝑧 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝑧 ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ 𝑧})) |
12 | | eqid 2738 |
. . . . 5
⊢
(+g‘𝐺) = (+g‘𝐺) |
13 | | eqid 2738 |
. . . . 5
⊢
(-g‘𝐺) = (-g‘𝐺) |
14 | 1, 12, 13 | isnsg3 18703 |
. . . 4
⊢ (𝑠 ∈ (NrmSGrp‘𝐺) ↔ (𝑠 ∈ (SubGrp‘𝐺) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝑠 ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ 𝑠)) |
15 | | elin 3899 |
. . . 4
⊢ (𝑠 ∈ ((SubGrp‘𝐺) ∩ {𝑧 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝑧 ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ 𝑧}) ↔ (𝑠 ∈ (SubGrp‘𝐺) ∧ 𝑠 ∈ {𝑧 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝑧 ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ 𝑧})) |
16 | 11, 14, 15 | 3bitr4i 302 |
. . 3
⊢ (𝑠 ∈ (NrmSGrp‘𝐺) ↔ 𝑠 ∈ ((SubGrp‘𝐺) ∩ {𝑧 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝑧 ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ 𝑧})) |
17 | 16 | eqriv 2735 |
. 2
⊢
(NrmSGrp‘𝐺) =
((SubGrp‘𝐺) ∩
{𝑧 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝑧 ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ 𝑧}) |
18 | 1 | fvexi 6770 |
. . . 4
⊢ 𝐵 ∈ V |
19 | | mreacs 17284 |
. . . 4
⊢ (𝐵 ∈ V →
(ACS‘𝐵) ∈
(Moore‘𝒫 𝐵)) |
20 | 18, 19 | mp1i 13 |
. . 3
⊢ (𝐺 ∈ Grp →
(ACS‘𝐵) ∈
(Moore‘𝒫 𝐵)) |
21 | 1 | subgacs 18704 |
. . 3
⊢ (𝐺 ∈ Grp →
(SubGrp‘𝐺) ∈
(ACS‘𝐵)) |
22 | | simpl 482 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐺 ∈ Grp) |
23 | 1, 12 | grpcl 18500 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥(+g‘𝐺)𝑦) ∈ 𝐵) |
24 | 23 | 3expb 1118 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐺)𝑦) ∈ 𝐵) |
25 | | simprl 767 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑥 ∈ 𝐵) |
26 | 1, 13 | grpsubcl 18570 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ (𝑥(+g‘𝐺)𝑦) ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ 𝐵) |
27 | 22, 24, 25, 26 | syl3anc 1369 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ 𝐵) |
28 | 27 | ralrimivva 3114 |
. . . 4
⊢ (𝐺 ∈ Grp → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ 𝐵) |
29 | | acsfn1c 17288 |
. . . 4
⊢ ((𝐵 ∈ V ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ 𝐵) → {𝑧 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝑧 ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ 𝑧} ∈ (ACS‘𝐵)) |
30 | 18, 28, 29 | sylancr 586 |
. . 3
⊢ (𝐺 ∈ Grp → {𝑧 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝑧 ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ 𝑧} ∈ (ACS‘𝐵)) |
31 | | mreincl 17225 |
. . 3
⊢
(((ACS‘𝐵)
∈ (Moore‘𝒫 𝐵) ∧ (SubGrp‘𝐺) ∈ (ACS‘𝐵) ∧ {𝑧 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝑧 ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ 𝑧} ∈ (ACS‘𝐵)) → ((SubGrp‘𝐺) ∩ {𝑧 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝑧 ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ 𝑧}) ∈ (ACS‘𝐵)) |
32 | 20, 21, 30, 31 | syl3anc 1369 |
. 2
⊢ (𝐺 ∈ Grp →
((SubGrp‘𝐺) ∩
{𝑧 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝑧 ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ 𝑧}) ∈ (ACS‘𝐵)) |
33 | 17, 32 | eqeltrid 2843 |
1
⊢ (𝐺 ∈ Grp →
(NrmSGrp‘𝐺) ∈
(ACS‘𝐵)) |