MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nsgacs Structured version   Visualization version   GIF version

Theorem nsgacs 18705
Description: Normal subgroups form an algebraic closure system. (Contributed by Stefan O'Rear, 4-Sep-2015.)
Hypothesis
Ref Expression
subgacs.b 𝐵 = (Base‘𝐺)
Assertion
Ref Expression
nsgacs (𝐺 ∈ Grp → (NrmSGrp‘𝐺) ∈ (ACS‘𝐵))

Proof of Theorem nsgacs
Dummy variables 𝑠 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subgacs.b . . . . . . . . 9 𝐵 = (Base‘𝐺)
21subgss 18671 . . . . . . . 8 (𝑠 ∈ (SubGrp‘𝐺) → 𝑠𝐵)
3 velpw 4535 . . . . . . . 8 (𝑠 ∈ 𝒫 𝐵𝑠𝐵)
42, 3sylibr 233 . . . . . . 7 (𝑠 ∈ (SubGrp‘𝐺) → 𝑠 ∈ 𝒫 𝐵)
5 eleq2w 2822 . . . . . . . . . 10 (𝑧 = 𝑠 → (((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑧 ↔ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑠))
65raleqbi1dv 3331 . . . . . . . . 9 (𝑧 = 𝑠 → (∀𝑦𝑧 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑧 ↔ ∀𝑦𝑠 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑠))
76ralbidv 3120 . . . . . . . 8 (𝑧 = 𝑠 → (∀𝑥𝐵𝑦𝑧 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑧 ↔ ∀𝑥𝐵𝑦𝑠 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑠))
87elrab3 3618 . . . . . . 7 (𝑠 ∈ 𝒫 𝐵 → (𝑠 ∈ {𝑧 ∈ 𝒫 𝐵 ∣ ∀𝑥𝐵𝑦𝑧 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑧} ↔ ∀𝑥𝐵𝑦𝑠 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑠))
94, 8syl 17 . . . . . 6 (𝑠 ∈ (SubGrp‘𝐺) → (𝑠 ∈ {𝑧 ∈ 𝒫 𝐵 ∣ ∀𝑥𝐵𝑦𝑧 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑧} ↔ ∀𝑥𝐵𝑦𝑠 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑠))
109bicomd 222 . . . . 5 (𝑠 ∈ (SubGrp‘𝐺) → (∀𝑥𝐵𝑦𝑠 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑠𝑠 ∈ {𝑧 ∈ 𝒫 𝐵 ∣ ∀𝑥𝐵𝑦𝑧 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑧}))
1110pm5.32i 574 . . . 4 ((𝑠 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝐵𝑦𝑠 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑠) ↔ (𝑠 ∈ (SubGrp‘𝐺) ∧ 𝑠 ∈ {𝑧 ∈ 𝒫 𝐵 ∣ ∀𝑥𝐵𝑦𝑧 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑧}))
12 eqid 2738 . . . . 5 (+g𝐺) = (+g𝐺)
13 eqid 2738 . . . . 5 (-g𝐺) = (-g𝐺)
141, 12, 13isnsg3 18703 . . . 4 (𝑠 ∈ (NrmSGrp‘𝐺) ↔ (𝑠 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝐵𝑦𝑠 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑠))
15 elin 3899 . . . 4 (𝑠 ∈ ((SubGrp‘𝐺) ∩ {𝑧 ∈ 𝒫 𝐵 ∣ ∀𝑥𝐵𝑦𝑧 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑧}) ↔ (𝑠 ∈ (SubGrp‘𝐺) ∧ 𝑠 ∈ {𝑧 ∈ 𝒫 𝐵 ∣ ∀𝑥𝐵𝑦𝑧 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑧}))
1611, 14, 153bitr4i 302 . . 3 (𝑠 ∈ (NrmSGrp‘𝐺) ↔ 𝑠 ∈ ((SubGrp‘𝐺) ∩ {𝑧 ∈ 𝒫 𝐵 ∣ ∀𝑥𝐵𝑦𝑧 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑧}))
1716eqriv 2735 . 2 (NrmSGrp‘𝐺) = ((SubGrp‘𝐺) ∩ {𝑧 ∈ 𝒫 𝐵 ∣ ∀𝑥𝐵𝑦𝑧 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑧})
181fvexi 6770 . . . 4 𝐵 ∈ V
19 mreacs 17284 . . . 4 (𝐵 ∈ V → (ACS‘𝐵) ∈ (Moore‘𝒫 𝐵))
2018, 19mp1i 13 . . 3 (𝐺 ∈ Grp → (ACS‘𝐵) ∈ (Moore‘𝒫 𝐵))
211subgacs 18704 . . 3 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘𝐵))
22 simpl 482 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → 𝐺 ∈ Grp)
231, 12grpcl 18500 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑥𝐵𝑦𝐵) → (𝑥(+g𝐺)𝑦) ∈ 𝐵)
24233expb 1118 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐺)𝑦) ∈ 𝐵)
25 simprl 767 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → 𝑥𝐵)
261, 13grpsubcl 18570 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑥(+g𝐺)𝑦) ∈ 𝐵𝑥𝐵) → ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝐵)
2722, 24, 25, 26syl3anc 1369 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝐵)
2827ralrimivva 3114 . . . 4 (𝐺 ∈ Grp → ∀𝑥𝐵𝑦𝐵 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝐵)
29 acsfn1c 17288 . . . 4 ((𝐵 ∈ V ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝐵) → {𝑧 ∈ 𝒫 𝐵 ∣ ∀𝑥𝐵𝑦𝑧 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑧} ∈ (ACS‘𝐵))
3018, 28, 29sylancr 586 . . 3 (𝐺 ∈ Grp → {𝑧 ∈ 𝒫 𝐵 ∣ ∀𝑥𝐵𝑦𝑧 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑧} ∈ (ACS‘𝐵))
31 mreincl 17225 . . 3 (((ACS‘𝐵) ∈ (Moore‘𝒫 𝐵) ∧ (SubGrp‘𝐺) ∈ (ACS‘𝐵) ∧ {𝑧 ∈ 𝒫 𝐵 ∣ ∀𝑥𝐵𝑦𝑧 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑧} ∈ (ACS‘𝐵)) → ((SubGrp‘𝐺) ∩ {𝑧 ∈ 𝒫 𝐵 ∣ ∀𝑥𝐵𝑦𝑧 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑧}) ∈ (ACS‘𝐵))
3220, 21, 30, 31syl3anc 1369 . 2 (𝐺 ∈ Grp → ((SubGrp‘𝐺) ∩ {𝑧 ∈ 𝒫 𝐵 ∣ ∀𝑥𝐵𝑦𝑧 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑧}) ∈ (ACS‘𝐵))
3317, 32eqeltrid 2843 1 (𝐺 ∈ Grp → (NrmSGrp‘𝐺) ∈ (ACS‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  {crab 3067  Vcvv 3422  cin 3882  wss 3883  𝒫 cpw 4530  cfv 6418  (class class class)co 7255  Basecbs 16840  +gcplusg 16888  Moorecmre 17208  ACScacs 17211  Grpcgrp 18492  -gcsg 18494  SubGrpcsubg 18664  NrmSGrpcnsg 18665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-0g 17069  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-grp 18495  df-minusg 18496  df-sbg 18497  df-subg 18667  df-nsg 18668
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator