Step | Hyp | Ref
| Expression |
1 | | subgacs.b |
. . . . . . . . 9
β’ π΅ = (BaseβπΊ) |
2 | 1 | subgss 19006 |
. . . . . . . 8
β’ (π β (SubGrpβπΊ) β π β π΅) |
3 | | velpw 4607 |
. . . . . . . 8
β’ (π β π« π΅ β π β π΅) |
4 | 2, 3 | sylibr 233 |
. . . . . . 7
β’ (π β (SubGrpβπΊ) β π β π« π΅) |
5 | | eleq2w 2817 |
. . . . . . . . . 10
β’ (π§ = π β (((π₯(+gβπΊ)π¦)(-gβπΊ)π₯) β π§ β ((π₯(+gβπΊ)π¦)(-gβπΊ)π₯) β π )) |
6 | 5 | raleqbi1dv 3333 |
. . . . . . . . 9
β’ (π§ = π β (βπ¦ β π§ ((π₯(+gβπΊ)π¦)(-gβπΊ)π₯) β π§ β βπ¦ β π ((π₯(+gβπΊ)π¦)(-gβπΊ)π₯) β π )) |
7 | 6 | ralbidv 3177 |
. . . . . . . 8
β’ (π§ = π β (βπ₯ β π΅ βπ¦ β π§ ((π₯(+gβπΊ)π¦)(-gβπΊ)π₯) β π§ β βπ₯ β π΅ βπ¦ β π ((π₯(+gβπΊ)π¦)(-gβπΊ)π₯) β π )) |
8 | 7 | elrab3 3684 |
. . . . . . 7
β’ (π β π« π΅ β (π β {π§ β π« π΅ β£ βπ₯ β π΅ βπ¦ β π§ ((π₯(+gβπΊ)π¦)(-gβπΊ)π₯) β π§} β βπ₯ β π΅ βπ¦ β π ((π₯(+gβπΊ)π¦)(-gβπΊ)π₯) β π )) |
9 | 4, 8 | syl 17 |
. . . . . 6
β’ (π β (SubGrpβπΊ) β (π β {π§ β π« π΅ β£ βπ₯ β π΅ βπ¦ β π§ ((π₯(+gβπΊ)π¦)(-gβπΊ)π₯) β π§} β βπ₯ β π΅ βπ¦ β π ((π₯(+gβπΊ)π¦)(-gβπΊ)π₯) β π )) |
10 | 9 | bicomd 222 |
. . . . 5
β’ (π β (SubGrpβπΊ) β (βπ₯ β π΅ βπ¦ β π ((π₯(+gβπΊ)π¦)(-gβπΊ)π₯) β π β π β {π§ β π« π΅ β£ βπ₯ β π΅ βπ¦ β π§ ((π₯(+gβπΊ)π¦)(-gβπΊ)π₯) β π§})) |
11 | 10 | pm5.32i 575 |
. . . 4
β’ ((π β (SubGrpβπΊ) β§ βπ₯ β π΅ βπ¦ β π ((π₯(+gβπΊ)π¦)(-gβπΊ)π₯) β π ) β (π β (SubGrpβπΊ) β§ π β {π§ β π« π΅ β£ βπ₯ β π΅ βπ¦ β π§ ((π₯(+gβπΊ)π¦)(-gβπΊ)π₯) β π§})) |
12 | | eqid 2732 |
. . . . 5
β’
(+gβπΊ) = (+gβπΊ) |
13 | | eqid 2732 |
. . . . 5
β’
(-gβπΊ) = (-gβπΊ) |
14 | 1, 12, 13 | isnsg3 19039 |
. . . 4
β’ (π β (NrmSGrpβπΊ) β (π β (SubGrpβπΊ) β§ βπ₯ β π΅ βπ¦ β π ((π₯(+gβπΊ)π¦)(-gβπΊ)π₯) β π )) |
15 | | elin 3964 |
. . . 4
β’ (π β ((SubGrpβπΊ) β© {π§ β π« π΅ β£ βπ₯ β π΅ βπ¦ β π§ ((π₯(+gβπΊ)π¦)(-gβπΊ)π₯) β π§}) β (π β (SubGrpβπΊ) β§ π β {π§ β π« π΅ β£ βπ₯ β π΅ βπ¦ β π§ ((π₯(+gβπΊ)π¦)(-gβπΊ)π₯) β π§})) |
16 | 11, 14, 15 | 3bitr4i 302 |
. . 3
β’ (π β (NrmSGrpβπΊ) β π β ((SubGrpβπΊ) β© {π§ β π« π΅ β£ βπ₯ β π΅ βπ¦ β π§ ((π₯(+gβπΊ)π¦)(-gβπΊ)π₯) β π§})) |
17 | 16 | eqriv 2729 |
. 2
β’
(NrmSGrpβπΊ) =
((SubGrpβπΊ) β©
{π§ β π« π΅ β£ βπ₯ β π΅ βπ¦ β π§ ((π₯(+gβπΊ)π¦)(-gβπΊ)π₯) β π§}) |
18 | 1 | fvexi 6905 |
. . . 4
β’ π΅ β V |
19 | | mreacs 17601 |
. . . 4
β’ (π΅ β V β
(ACSβπ΅) β
(Mooreβπ« π΅)) |
20 | 18, 19 | mp1i 13 |
. . 3
β’ (πΊ β Grp β
(ACSβπ΅) β
(Mooreβπ« π΅)) |
21 | 1 | subgacs 19040 |
. . 3
β’ (πΊ β Grp β
(SubGrpβπΊ) β
(ACSβπ΅)) |
22 | | simpl 483 |
. . . . . 6
β’ ((πΊ β Grp β§ (π₯ β π΅ β§ π¦ β π΅)) β πΊ β Grp) |
23 | 1, 12 | grpcl 18826 |
. . . . . . 7
β’ ((πΊ β Grp β§ π₯ β π΅ β§ π¦ β π΅) β (π₯(+gβπΊ)π¦) β π΅) |
24 | 23 | 3expb 1120 |
. . . . . 6
β’ ((πΊ β Grp β§ (π₯ β π΅ β§ π¦ β π΅)) β (π₯(+gβπΊ)π¦) β π΅) |
25 | | simprl 769 |
. . . . . 6
β’ ((πΊ β Grp β§ (π₯ β π΅ β§ π¦ β π΅)) β π₯ β π΅) |
26 | 1, 13 | grpsubcl 18902 |
. . . . . 6
β’ ((πΊ β Grp β§ (π₯(+gβπΊ)π¦) β π΅ β§ π₯ β π΅) β ((π₯(+gβπΊ)π¦)(-gβπΊ)π₯) β π΅) |
27 | 22, 24, 25, 26 | syl3anc 1371 |
. . . . 5
β’ ((πΊ β Grp β§ (π₯ β π΅ β§ π¦ β π΅)) β ((π₯(+gβπΊ)π¦)(-gβπΊ)π₯) β π΅) |
28 | 27 | ralrimivva 3200 |
. . . 4
β’ (πΊ β Grp β βπ₯ β π΅ βπ¦ β π΅ ((π₯(+gβπΊ)π¦)(-gβπΊ)π₯) β π΅) |
29 | | acsfn1c 17605 |
. . . 4
β’ ((π΅ β V β§ βπ₯ β π΅ βπ¦ β π΅ ((π₯(+gβπΊ)π¦)(-gβπΊ)π₯) β π΅) β {π§ β π« π΅ β£ βπ₯ β π΅ βπ¦ β π§ ((π₯(+gβπΊ)π¦)(-gβπΊ)π₯) β π§} β (ACSβπ΅)) |
30 | 18, 28, 29 | sylancr 587 |
. . 3
β’ (πΊ β Grp β {π§ β π« π΅ β£ βπ₯ β π΅ βπ¦ β π§ ((π₯(+gβπΊ)π¦)(-gβπΊ)π₯) β π§} β (ACSβπ΅)) |
31 | | mreincl 17542 |
. . 3
β’
(((ACSβπ΅)
β (Mooreβπ« π΅) β§ (SubGrpβπΊ) β (ACSβπ΅) β§ {π§ β π« π΅ β£ βπ₯ β π΅ βπ¦ β π§ ((π₯(+gβπΊ)π¦)(-gβπΊ)π₯) β π§} β (ACSβπ΅)) β ((SubGrpβπΊ) β© {π§ β π« π΅ β£ βπ₯ β π΅ βπ¦ β π§ ((π₯(+gβπΊ)π¦)(-gβπΊ)π₯) β π§}) β (ACSβπ΅)) |
32 | 20, 21, 30, 31 | syl3anc 1371 |
. 2
β’ (πΊ β Grp β
((SubGrpβπΊ) β©
{π§ β π« π΅ β£ βπ₯ β π΅ βπ¦ β π§ ((π₯(+gβπΊ)π¦)(-gβπΊ)π₯) β π§}) β (ACSβπ΅)) |
33 | 17, 32 | eqeltrid 2837 |
1
β’ (πΊ β Grp β
(NrmSGrpβπΊ) β
(ACSβπ΅)) |