MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nsgacs Structured version   Visualization version   GIF version

Theorem nsgacs 19150
Description: Normal subgroups form an algebraic closure system. (Contributed by Stefan O'Rear, 4-Sep-2015.)
Hypothesis
Ref Expression
subgacs.b 𝐵 = (Base‘𝐺)
Assertion
Ref Expression
nsgacs (𝐺 ∈ Grp → (NrmSGrp‘𝐺) ∈ (ACS‘𝐵))

Proof of Theorem nsgacs
Dummy variables 𝑠 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subgacs.b . . . . . . . . 9 𝐵 = (Base‘𝐺)
21subgss 19115 . . . . . . . 8 (𝑠 ∈ (SubGrp‘𝐺) → 𝑠𝐵)
3 velpw 4585 . . . . . . . 8 (𝑠 ∈ 𝒫 𝐵𝑠𝐵)
42, 3sylibr 234 . . . . . . 7 (𝑠 ∈ (SubGrp‘𝐺) → 𝑠 ∈ 𝒫 𝐵)
5 eleq2w 2819 . . . . . . . . . 10 (𝑧 = 𝑠 → (((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑧 ↔ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑠))
65raleqbi1dv 3321 . . . . . . . . 9 (𝑧 = 𝑠 → (∀𝑦𝑧 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑧 ↔ ∀𝑦𝑠 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑠))
76ralbidv 3164 . . . . . . . 8 (𝑧 = 𝑠 → (∀𝑥𝐵𝑦𝑧 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑧 ↔ ∀𝑥𝐵𝑦𝑠 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑠))
87elrab3 3677 . . . . . . 7 (𝑠 ∈ 𝒫 𝐵 → (𝑠 ∈ {𝑧 ∈ 𝒫 𝐵 ∣ ∀𝑥𝐵𝑦𝑧 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑧} ↔ ∀𝑥𝐵𝑦𝑠 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑠))
94, 8syl 17 . . . . . 6 (𝑠 ∈ (SubGrp‘𝐺) → (𝑠 ∈ {𝑧 ∈ 𝒫 𝐵 ∣ ∀𝑥𝐵𝑦𝑧 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑧} ↔ ∀𝑥𝐵𝑦𝑠 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑠))
109bicomd 223 . . . . 5 (𝑠 ∈ (SubGrp‘𝐺) → (∀𝑥𝐵𝑦𝑠 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑠𝑠 ∈ {𝑧 ∈ 𝒫 𝐵 ∣ ∀𝑥𝐵𝑦𝑧 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑧}))
1110pm5.32i 574 . . . 4 ((𝑠 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝐵𝑦𝑠 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑠) ↔ (𝑠 ∈ (SubGrp‘𝐺) ∧ 𝑠 ∈ {𝑧 ∈ 𝒫 𝐵 ∣ ∀𝑥𝐵𝑦𝑧 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑧}))
12 eqid 2736 . . . . 5 (+g𝐺) = (+g𝐺)
13 eqid 2736 . . . . 5 (-g𝐺) = (-g𝐺)
141, 12, 13isnsg3 19148 . . . 4 (𝑠 ∈ (NrmSGrp‘𝐺) ↔ (𝑠 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝐵𝑦𝑠 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑠))
15 elin 3947 . . . 4 (𝑠 ∈ ((SubGrp‘𝐺) ∩ {𝑧 ∈ 𝒫 𝐵 ∣ ∀𝑥𝐵𝑦𝑧 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑧}) ↔ (𝑠 ∈ (SubGrp‘𝐺) ∧ 𝑠 ∈ {𝑧 ∈ 𝒫 𝐵 ∣ ∀𝑥𝐵𝑦𝑧 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑧}))
1611, 14, 153bitr4i 303 . . 3 (𝑠 ∈ (NrmSGrp‘𝐺) ↔ 𝑠 ∈ ((SubGrp‘𝐺) ∩ {𝑧 ∈ 𝒫 𝐵 ∣ ∀𝑥𝐵𝑦𝑧 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑧}))
1716eqriv 2733 . 2 (NrmSGrp‘𝐺) = ((SubGrp‘𝐺) ∩ {𝑧 ∈ 𝒫 𝐵 ∣ ∀𝑥𝐵𝑦𝑧 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑧})
181fvexi 6895 . . . 4 𝐵 ∈ V
19 mreacs 17675 . . . 4 (𝐵 ∈ V → (ACS‘𝐵) ∈ (Moore‘𝒫 𝐵))
2018, 19mp1i 13 . . 3 (𝐺 ∈ Grp → (ACS‘𝐵) ∈ (Moore‘𝒫 𝐵))
211subgacs 19149 . . 3 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘𝐵))
22 simpl 482 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → 𝐺 ∈ Grp)
231, 12grpcl 18929 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑥𝐵𝑦𝐵) → (𝑥(+g𝐺)𝑦) ∈ 𝐵)
24233expb 1120 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐺)𝑦) ∈ 𝐵)
25 simprl 770 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → 𝑥𝐵)
261, 13grpsubcl 19008 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑥(+g𝐺)𝑦) ∈ 𝐵𝑥𝐵) → ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝐵)
2722, 24, 25, 26syl3anc 1373 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝐵)
2827ralrimivva 3188 . . . 4 (𝐺 ∈ Grp → ∀𝑥𝐵𝑦𝐵 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝐵)
29 acsfn1c 17679 . . . 4 ((𝐵 ∈ V ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝐵) → {𝑧 ∈ 𝒫 𝐵 ∣ ∀𝑥𝐵𝑦𝑧 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑧} ∈ (ACS‘𝐵))
3018, 28, 29sylancr 587 . . 3 (𝐺 ∈ Grp → {𝑧 ∈ 𝒫 𝐵 ∣ ∀𝑥𝐵𝑦𝑧 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑧} ∈ (ACS‘𝐵))
31 mreincl 17616 . . 3 (((ACS‘𝐵) ∈ (Moore‘𝒫 𝐵) ∧ (SubGrp‘𝐺) ∈ (ACS‘𝐵) ∧ {𝑧 ∈ 𝒫 𝐵 ∣ ∀𝑥𝐵𝑦𝑧 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑧} ∈ (ACS‘𝐵)) → ((SubGrp‘𝐺) ∩ {𝑧 ∈ 𝒫 𝐵 ∣ ∀𝑥𝐵𝑦𝑧 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑧}) ∈ (ACS‘𝐵))
3220, 21, 30, 31syl3anc 1373 . 2 (𝐺 ∈ Grp → ((SubGrp‘𝐺) ∩ {𝑧 ∈ 𝒫 𝐵 ∣ ∀𝑥𝐵𝑦𝑧 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑧}) ∈ (ACS‘𝐵))
3317, 32eqeltrid 2839 1 (𝐺 ∈ Grp → (NrmSGrp‘𝐺) ∈ (ACS‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3052  {crab 3420  Vcvv 3464  cin 3930  wss 3931  𝒫 cpw 4580  cfv 6536  (class class class)co 7410  Basecbs 17233  +gcplusg 17276  Moorecmre 17599  ACScacs 17602  Grpcgrp 18921  -gcsg 18923  SubGrpcsubg 19108  NrmSGrpcnsg 19109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-0g 17460  df-mre 17603  df-mrc 17604  df-acs 17606  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-grp 18924  df-minusg 18925  df-sbg 18926  df-subg 19111  df-nsg 19112
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator