MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nsgacs Structured version   Visualization version   GIF version

Theorem nsgacs 19094
Description: Normal subgroups form an algebraic closure system. (Contributed by Stefan O'Rear, 4-Sep-2015.)
Hypothesis
Ref Expression
subgacs.b 𝐵 = (Base‘𝐺)
Assertion
Ref Expression
nsgacs (𝐺 ∈ Grp → (NrmSGrp‘𝐺) ∈ (ACS‘𝐵))

Proof of Theorem nsgacs
Dummy variables 𝑠 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subgacs.b . . . . . . . . 9 𝐵 = (Base‘𝐺)
21subgss 19059 . . . . . . . 8 (𝑠 ∈ (SubGrp‘𝐺) → 𝑠𝐵)
3 velpw 4568 . . . . . . . 8 (𝑠 ∈ 𝒫 𝐵𝑠𝐵)
42, 3sylibr 234 . . . . . . 7 (𝑠 ∈ (SubGrp‘𝐺) → 𝑠 ∈ 𝒫 𝐵)
5 eleq2w 2812 . . . . . . . . . 10 (𝑧 = 𝑠 → (((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑧 ↔ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑠))
65raleqbi1dv 3311 . . . . . . . . 9 (𝑧 = 𝑠 → (∀𝑦𝑧 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑧 ↔ ∀𝑦𝑠 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑠))
76ralbidv 3156 . . . . . . . 8 (𝑧 = 𝑠 → (∀𝑥𝐵𝑦𝑧 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑧 ↔ ∀𝑥𝐵𝑦𝑠 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑠))
87elrab3 3660 . . . . . . 7 (𝑠 ∈ 𝒫 𝐵 → (𝑠 ∈ {𝑧 ∈ 𝒫 𝐵 ∣ ∀𝑥𝐵𝑦𝑧 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑧} ↔ ∀𝑥𝐵𝑦𝑠 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑠))
94, 8syl 17 . . . . . 6 (𝑠 ∈ (SubGrp‘𝐺) → (𝑠 ∈ {𝑧 ∈ 𝒫 𝐵 ∣ ∀𝑥𝐵𝑦𝑧 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑧} ↔ ∀𝑥𝐵𝑦𝑠 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑠))
109bicomd 223 . . . . 5 (𝑠 ∈ (SubGrp‘𝐺) → (∀𝑥𝐵𝑦𝑠 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑠𝑠 ∈ {𝑧 ∈ 𝒫 𝐵 ∣ ∀𝑥𝐵𝑦𝑧 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑧}))
1110pm5.32i 574 . . . 4 ((𝑠 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝐵𝑦𝑠 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑠) ↔ (𝑠 ∈ (SubGrp‘𝐺) ∧ 𝑠 ∈ {𝑧 ∈ 𝒫 𝐵 ∣ ∀𝑥𝐵𝑦𝑧 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑧}))
12 eqid 2729 . . . . 5 (+g𝐺) = (+g𝐺)
13 eqid 2729 . . . . 5 (-g𝐺) = (-g𝐺)
141, 12, 13isnsg3 19092 . . . 4 (𝑠 ∈ (NrmSGrp‘𝐺) ↔ (𝑠 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝐵𝑦𝑠 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑠))
15 elin 3930 . . . 4 (𝑠 ∈ ((SubGrp‘𝐺) ∩ {𝑧 ∈ 𝒫 𝐵 ∣ ∀𝑥𝐵𝑦𝑧 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑧}) ↔ (𝑠 ∈ (SubGrp‘𝐺) ∧ 𝑠 ∈ {𝑧 ∈ 𝒫 𝐵 ∣ ∀𝑥𝐵𝑦𝑧 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑧}))
1611, 14, 153bitr4i 303 . . 3 (𝑠 ∈ (NrmSGrp‘𝐺) ↔ 𝑠 ∈ ((SubGrp‘𝐺) ∩ {𝑧 ∈ 𝒫 𝐵 ∣ ∀𝑥𝐵𝑦𝑧 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑧}))
1716eqriv 2726 . 2 (NrmSGrp‘𝐺) = ((SubGrp‘𝐺) ∩ {𝑧 ∈ 𝒫 𝐵 ∣ ∀𝑥𝐵𝑦𝑧 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑧})
181fvexi 6872 . . . 4 𝐵 ∈ V
19 mreacs 17619 . . . 4 (𝐵 ∈ V → (ACS‘𝐵) ∈ (Moore‘𝒫 𝐵))
2018, 19mp1i 13 . . 3 (𝐺 ∈ Grp → (ACS‘𝐵) ∈ (Moore‘𝒫 𝐵))
211subgacs 19093 . . 3 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘𝐵))
22 simpl 482 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → 𝐺 ∈ Grp)
231, 12grpcl 18873 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑥𝐵𝑦𝐵) → (𝑥(+g𝐺)𝑦) ∈ 𝐵)
24233expb 1120 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐺)𝑦) ∈ 𝐵)
25 simprl 770 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → 𝑥𝐵)
261, 13grpsubcl 18952 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑥(+g𝐺)𝑦) ∈ 𝐵𝑥𝐵) → ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝐵)
2722, 24, 25, 26syl3anc 1373 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝐵)
2827ralrimivva 3180 . . . 4 (𝐺 ∈ Grp → ∀𝑥𝐵𝑦𝐵 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝐵)
29 acsfn1c 17623 . . . 4 ((𝐵 ∈ V ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝐵) → {𝑧 ∈ 𝒫 𝐵 ∣ ∀𝑥𝐵𝑦𝑧 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑧} ∈ (ACS‘𝐵))
3018, 28, 29sylancr 587 . . 3 (𝐺 ∈ Grp → {𝑧 ∈ 𝒫 𝐵 ∣ ∀𝑥𝐵𝑦𝑧 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑧} ∈ (ACS‘𝐵))
31 mreincl 17560 . . 3 (((ACS‘𝐵) ∈ (Moore‘𝒫 𝐵) ∧ (SubGrp‘𝐺) ∈ (ACS‘𝐵) ∧ {𝑧 ∈ 𝒫 𝐵 ∣ ∀𝑥𝐵𝑦𝑧 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑧} ∈ (ACS‘𝐵)) → ((SubGrp‘𝐺) ∩ {𝑧 ∈ 𝒫 𝐵 ∣ ∀𝑥𝐵𝑦𝑧 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑧}) ∈ (ACS‘𝐵))
3220, 21, 30, 31syl3anc 1373 . 2 (𝐺 ∈ Grp → ((SubGrp‘𝐺) ∩ {𝑧 ∈ 𝒫 𝐵 ∣ ∀𝑥𝐵𝑦𝑧 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑧}) ∈ (ACS‘𝐵))
3317, 32eqeltrid 2832 1 (𝐺 ∈ Grp → (NrmSGrp‘𝐺) ∈ (ACS‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  {crab 3405  Vcvv 3447  cin 3913  wss 3914  𝒫 cpw 4563  cfv 6511  (class class class)co 7387  Basecbs 17179  +gcplusg 17220  Moorecmre 17543  ACScacs 17546  Grpcgrp 18865  -gcsg 18867  SubGrpcsubg 19052  NrmSGrpcnsg 19053
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-0g 17404  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-subg 19055  df-nsg 19056
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator