MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  conjnmzb Structured version   Visualization version   GIF version

Theorem conjnmzb 18385
Description: Alternative condition for elementhood in the normalizer. (Contributed by Mario Carneiro, 18-Jan-2015.)
Hypotheses
Ref Expression
conjghm.x 𝑋 = (Base‘𝐺)
conjghm.p + = (+g𝐺)
conjghm.m = (-g𝐺)
conjsubg.f 𝐹 = (𝑥𝑆 ↦ ((𝐴 + 𝑥) 𝐴))
conjnmz.1 𝑁 = {𝑦𝑋 ∣ ∀𝑧𝑋 ((𝑦 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑦) ∈ 𝑆)}
Assertion
Ref Expression
conjnmzb (𝑆 ∈ (SubGrp‘𝐺) → (𝐴𝑁 ↔ (𝐴𝑋𝑆 = ran 𝐹)))
Distinct variable groups:   𝑥,𝑦,   𝑥,𝑧, + ,𝑦   𝑥,𝐴,𝑦,𝑧   𝑦,𝐹,𝑧   𝑥,𝑁   𝑥,𝐺,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝑥,𝑋,𝑦,𝑧
Allowed substitution hints:   𝐹(𝑥)   (𝑧)   𝑁(𝑦,𝑧)

Proof of Theorem conjnmzb
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 conjnmz.1 . . . . 5 𝑁 = {𝑦𝑋 ∣ ∀𝑧𝑋 ((𝑦 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑦) ∈ 𝑆)}
21ssrab3 4008 . . . 4 𝑁𝑋
3 simpr 488 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) → 𝐴𝑁)
42, 3sseldi 3913 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) → 𝐴𝑋)
5 conjghm.x . . . 4 𝑋 = (Base‘𝐺)
6 conjghm.p . . . 4 + = (+g𝐺)
7 conjghm.m . . . 4 = (-g𝐺)
8 conjsubg.f . . . 4 𝐹 = (𝑥𝑆 ↦ ((𝐴 + 𝑥) 𝐴))
95, 6, 7, 8, 1conjnmz 18384 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) → 𝑆 = ran 𝐹)
104, 9jca 515 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) → (𝐴𝑋𝑆 = ran 𝐹))
11 simprl 770 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝐴𝑋𝑆 = ran 𝐹)) → 𝐴𝑋)
12 simplrr 777 . . . . . 6 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝐴𝑋𝑆 = ran 𝐹)) ∧ 𝑤𝑋) → 𝑆 = ran 𝐹)
1312eleq2d 2875 . . . . 5 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝐴𝑋𝑆 = ran 𝐹)) ∧ 𝑤𝑋) → ((𝐴 + 𝑤) ∈ 𝑆 ↔ (𝐴 + 𝑤) ∈ ran 𝐹))
14 subgrcl 18276 . . . . . . . . . . . . 13 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
1514ad3antrrr 729 . . . . . . . . . . . 12 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) ∧ 𝑤𝑋) ∧ 𝑥𝑆) → 𝐺 ∈ Grp)
16 simpllr 775 . . . . . . . . . . . 12 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) ∧ 𝑤𝑋) ∧ 𝑥𝑆) → 𝐴𝑋)
175subgss 18272 . . . . . . . . . . . . . 14 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆𝑋)
1817ad2antrr 725 . . . . . . . . . . . . 13 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) ∧ 𝑤𝑋) → 𝑆𝑋)
1918sselda 3915 . . . . . . . . . . . 12 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) ∧ 𝑤𝑋) ∧ 𝑥𝑆) → 𝑥𝑋)
205, 6, 7grpaddsubass 18181 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ (𝐴𝑋𝑥𝑋𝐴𝑋)) → ((𝐴 + 𝑥) 𝐴) = (𝐴 + (𝑥 𝐴)))
2115, 16, 19, 16, 20syl13anc 1369 . . . . . . . . . . 11 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) ∧ 𝑤𝑋) ∧ 𝑥𝑆) → ((𝐴 + 𝑥) 𝐴) = (𝐴 + (𝑥 𝐴)))
2221eqeq1d 2800 . . . . . . . . . 10 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) ∧ 𝑤𝑋) ∧ 𝑥𝑆) → (((𝐴 + 𝑥) 𝐴) = (𝐴 + 𝑤) ↔ (𝐴 + (𝑥 𝐴)) = (𝐴 + 𝑤)))
235, 7grpsubcl 18171 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑥𝑋𝐴𝑋) → (𝑥 𝐴) ∈ 𝑋)
2415, 19, 16, 23syl3anc 1368 . . . . . . . . . . 11 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) ∧ 𝑤𝑋) ∧ 𝑥𝑆) → (𝑥 𝐴) ∈ 𝑋)
25 simplr 768 . . . . . . . . . . 11 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) ∧ 𝑤𝑋) ∧ 𝑥𝑆) → 𝑤𝑋)
265, 6grplcan 18153 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ ((𝑥 𝐴) ∈ 𝑋𝑤𝑋𝐴𝑋)) → ((𝐴 + (𝑥 𝐴)) = (𝐴 + 𝑤) ↔ (𝑥 𝐴) = 𝑤))
2715, 24, 25, 16, 26syl13anc 1369 . . . . . . . . . 10 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) ∧ 𝑤𝑋) ∧ 𝑥𝑆) → ((𝐴 + (𝑥 𝐴)) = (𝐴 + 𝑤) ↔ (𝑥 𝐴) = 𝑤))
285, 6, 7grpsubadd 18179 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (𝑥𝑋𝐴𝑋𝑤𝑋)) → ((𝑥 𝐴) = 𝑤 ↔ (𝑤 + 𝐴) = 𝑥))
2915, 19, 16, 25, 28syl13anc 1369 . . . . . . . . . 10 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) ∧ 𝑤𝑋) ∧ 𝑥𝑆) → ((𝑥 𝐴) = 𝑤 ↔ (𝑤 + 𝐴) = 𝑥))
3022, 27, 293bitrd 308 . . . . . . . . 9 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) ∧ 𝑤𝑋) ∧ 𝑥𝑆) → (((𝐴 + 𝑥) 𝐴) = (𝐴 + 𝑤) ↔ (𝑤 + 𝐴) = 𝑥))
31 eqcom 2805 . . . . . . . . 9 ((𝐴 + 𝑤) = ((𝐴 + 𝑥) 𝐴) ↔ ((𝐴 + 𝑥) 𝐴) = (𝐴 + 𝑤))
32 eqcom 2805 . . . . . . . . 9 (𝑥 = (𝑤 + 𝐴) ↔ (𝑤 + 𝐴) = 𝑥)
3330, 31, 323bitr4g 317 . . . . . . . 8 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) ∧ 𝑤𝑋) ∧ 𝑥𝑆) → ((𝐴 + 𝑤) = ((𝐴 + 𝑥) 𝐴) ↔ 𝑥 = (𝑤 + 𝐴)))
3433rexbidva 3255 . . . . . . 7 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) ∧ 𝑤𝑋) → (∃𝑥𝑆 (𝐴 + 𝑤) = ((𝐴 + 𝑥) 𝐴) ↔ ∃𝑥𝑆 𝑥 = (𝑤 + 𝐴)))
3534adantlrr 720 . . . . . 6 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝐴𝑋𝑆 = ran 𝐹)) ∧ 𝑤𝑋) → (∃𝑥𝑆 (𝐴 + 𝑤) = ((𝐴 + 𝑥) 𝐴) ↔ ∃𝑥𝑆 𝑥 = (𝑤 + 𝐴)))
36 ovex 7168 . . . . . . 7 (𝐴 + 𝑤) ∈ V
37 eqeq1 2802 . . . . . . . 8 (𝑦 = (𝐴 + 𝑤) → (𝑦 = ((𝐴 + 𝑥) 𝐴) ↔ (𝐴 + 𝑤) = ((𝐴 + 𝑥) 𝐴)))
3837rexbidv 3256 . . . . . . 7 (𝑦 = (𝐴 + 𝑤) → (∃𝑥𝑆 𝑦 = ((𝐴 + 𝑥) 𝐴) ↔ ∃𝑥𝑆 (𝐴 + 𝑤) = ((𝐴 + 𝑥) 𝐴)))
398rnmpt 5791 . . . . . . 7 ran 𝐹 = {𝑦 ∣ ∃𝑥𝑆 𝑦 = ((𝐴 + 𝑥) 𝐴)}
4036, 38, 39elab2 3618 . . . . . 6 ((𝐴 + 𝑤) ∈ ran 𝐹 ↔ ∃𝑥𝑆 (𝐴 + 𝑤) = ((𝐴 + 𝑥) 𝐴))
41 risset 3226 . . . . . 6 ((𝑤 + 𝐴) ∈ 𝑆 ↔ ∃𝑥𝑆 𝑥 = (𝑤 + 𝐴))
4235, 40, 413bitr4g 317 . . . . 5 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝐴𝑋𝑆 = ran 𝐹)) ∧ 𝑤𝑋) → ((𝐴 + 𝑤) ∈ ran 𝐹 ↔ (𝑤 + 𝐴) ∈ 𝑆))
4313, 42bitrd 282 . . . 4 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝐴𝑋𝑆 = ran 𝐹)) ∧ 𝑤𝑋) → ((𝐴 + 𝑤) ∈ 𝑆 ↔ (𝑤 + 𝐴) ∈ 𝑆))
4443ralrimiva 3149 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝐴𝑋𝑆 = ran 𝐹)) → ∀𝑤𝑋 ((𝐴 + 𝑤) ∈ 𝑆 ↔ (𝑤 + 𝐴) ∈ 𝑆))
451elnmz 18307 . . 3 (𝐴𝑁 ↔ (𝐴𝑋 ∧ ∀𝑤𝑋 ((𝐴 + 𝑤) ∈ 𝑆 ↔ (𝑤 + 𝐴) ∈ 𝑆)))
4611, 44, 45sylanbrc 586 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝐴𝑋𝑆 = ran 𝐹)) → 𝐴𝑁)
4710, 46impbida 800 1 (𝑆 ∈ (SubGrp‘𝐺) → (𝐴𝑁 ↔ (𝐴𝑋𝑆 = ran 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wral 3106  wrex 3107  {crab 3110  wss 3881  cmpt 5110  ran crn 5520  cfv 6324  (class class class)co 7135  Basecbs 16475  +gcplusg 16557  Grpcgrp 18095  -gcsg 18097  SubGrpcsubg 18265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-1st 7671  df-2nd 7672  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-minusg 18099  df-sbg 18100  df-subg 18268
This theorem is referenced by:  sylow3lem6  18749
  Copyright terms: Public domain W3C validator