MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  conjnmzb Structured version   Visualization version   GIF version

Theorem conjnmzb 18392
Description: Alternative condition for elementhood in the normalizer. (Contributed by Mario Carneiro, 18-Jan-2015.)
Hypotheses
Ref Expression
conjghm.x 𝑋 = (Base‘𝐺)
conjghm.p + = (+g𝐺)
conjghm.m = (-g𝐺)
conjsubg.f 𝐹 = (𝑥𝑆 ↦ ((𝐴 + 𝑥) 𝐴))
conjnmz.1 𝑁 = {𝑦𝑋 ∣ ∀𝑧𝑋 ((𝑦 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑦) ∈ 𝑆)}
Assertion
Ref Expression
conjnmzb (𝑆 ∈ (SubGrp‘𝐺) → (𝐴𝑁 ↔ (𝐴𝑋𝑆 = ran 𝐹)))
Distinct variable groups:   𝑥,𝑦,   𝑥,𝑧, + ,𝑦   𝑥,𝐴,𝑦,𝑧   𝑦,𝐹,𝑧   𝑥,𝑁   𝑥,𝐺,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝑥,𝑋,𝑦,𝑧
Allowed substitution hints:   𝐹(𝑥)   (𝑧)   𝑁(𝑦,𝑧)

Proof of Theorem conjnmzb
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 conjnmz.1 . . . . 5 𝑁 = {𝑦𝑋 ∣ ∀𝑧𝑋 ((𝑦 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑦) ∈ 𝑆)}
21ssrab3 4056 . . . 4 𝑁𝑋
3 simpr 487 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) → 𝐴𝑁)
42, 3sseldi 3964 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) → 𝐴𝑋)
5 conjghm.x . . . 4 𝑋 = (Base‘𝐺)
6 conjghm.p . . . 4 + = (+g𝐺)
7 conjghm.m . . . 4 = (-g𝐺)
8 conjsubg.f . . . 4 𝐹 = (𝑥𝑆 ↦ ((𝐴 + 𝑥) 𝐴))
95, 6, 7, 8, 1conjnmz 18391 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) → 𝑆 = ran 𝐹)
104, 9jca 514 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) → (𝐴𝑋𝑆 = ran 𝐹))
11 simprl 769 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝐴𝑋𝑆 = ran 𝐹)) → 𝐴𝑋)
12 simplrr 776 . . . . . 6 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝐴𝑋𝑆 = ran 𝐹)) ∧ 𝑤𝑋) → 𝑆 = ran 𝐹)
1312eleq2d 2898 . . . . 5 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝐴𝑋𝑆 = ran 𝐹)) ∧ 𝑤𝑋) → ((𝐴 + 𝑤) ∈ 𝑆 ↔ (𝐴 + 𝑤) ∈ ran 𝐹))
14 subgrcl 18283 . . . . . . . . . . . . 13 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
1514ad3antrrr 728 . . . . . . . . . . . 12 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) ∧ 𝑤𝑋) ∧ 𝑥𝑆) → 𝐺 ∈ Grp)
16 simpllr 774 . . . . . . . . . . . 12 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) ∧ 𝑤𝑋) ∧ 𝑥𝑆) → 𝐴𝑋)
175subgss 18279 . . . . . . . . . . . . . 14 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆𝑋)
1817ad2antrr 724 . . . . . . . . . . . . 13 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) ∧ 𝑤𝑋) → 𝑆𝑋)
1918sselda 3966 . . . . . . . . . . . 12 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) ∧ 𝑤𝑋) ∧ 𝑥𝑆) → 𝑥𝑋)
205, 6, 7grpaddsubass 18188 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ (𝐴𝑋𝑥𝑋𝐴𝑋)) → ((𝐴 + 𝑥) 𝐴) = (𝐴 + (𝑥 𝐴)))
2115, 16, 19, 16, 20syl13anc 1368 . . . . . . . . . . 11 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) ∧ 𝑤𝑋) ∧ 𝑥𝑆) → ((𝐴 + 𝑥) 𝐴) = (𝐴 + (𝑥 𝐴)))
2221eqeq1d 2823 . . . . . . . . . 10 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) ∧ 𝑤𝑋) ∧ 𝑥𝑆) → (((𝐴 + 𝑥) 𝐴) = (𝐴 + 𝑤) ↔ (𝐴 + (𝑥 𝐴)) = (𝐴 + 𝑤)))
235, 7grpsubcl 18178 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑥𝑋𝐴𝑋) → (𝑥 𝐴) ∈ 𝑋)
2415, 19, 16, 23syl3anc 1367 . . . . . . . . . . 11 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) ∧ 𝑤𝑋) ∧ 𝑥𝑆) → (𝑥 𝐴) ∈ 𝑋)
25 simplr 767 . . . . . . . . . . 11 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) ∧ 𝑤𝑋) ∧ 𝑥𝑆) → 𝑤𝑋)
265, 6grplcan 18160 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ ((𝑥 𝐴) ∈ 𝑋𝑤𝑋𝐴𝑋)) → ((𝐴 + (𝑥 𝐴)) = (𝐴 + 𝑤) ↔ (𝑥 𝐴) = 𝑤))
2715, 24, 25, 16, 26syl13anc 1368 . . . . . . . . . 10 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) ∧ 𝑤𝑋) ∧ 𝑥𝑆) → ((𝐴 + (𝑥 𝐴)) = (𝐴 + 𝑤) ↔ (𝑥 𝐴) = 𝑤))
285, 6, 7grpsubadd 18186 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (𝑥𝑋𝐴𝑋𝑤𝑋)) → ((𝑥 𝐴) = 𝑤 ↔ (𝑤 + 𝐴) = 𝑥))
2915, 19, 16, 25, 28syl13anc 1368 . . . . . . . . . 10 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) ∧ 𝑤𝑋) ∧ 𝑥𝑆) → ((𝑥 𝐴) = 𝑤 ↔ (𝑤 + 𝐴) = 𝑥))
3022, 27, 293bitrd 307 . . . . . . . . 9 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) ∧ 𝑤𝑋) ∧ 𝑥𝑆) → (((𝐴 + 𝑥) 𝐴) = (𝐴 + 𝑤) ↔ (𝑤 + 𝐴) = 𝑥))
31 eqcom 2828 . . . . . . . . 9 ((𝐴 + 𝑤) = ((𝐴 + 𝑥) 𝐴) ↔ ((𝐴 + 𝑥) 𝐴) = (𝐴 + 𝑤))
32 eqcom 2828 . . . . . . . . 9 (𝑥 = (𝑤 + 𝐴) ↔ (𝑤 + 𝐴) = 𝑥)
3330, 31, 323bitr4g 316 . . . . . . . 8 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) ∧ 𝑤𝑋) ∧ 𝑥𝑆) → ((𝐴 + 𝑤) = ((𝐴 + 𝑥) 𝐴) ↔ 𝑥 = (𝑤 + 𝐴)))
3433rexbidva 3296 . . . . . . 7 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) ∧ 𝑤𝑋) → (∃𝑥𝑆 (𝐴 + 𝑤) = ((𝐴 + 𝑥) 𝐴) ↔ ∃𝑥𝑆 𝑥 = (𝑤 + 𝐴)))
3534adantlrr 719 . . . . . 6 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝐴𝑋𝑆 = ran 𝐹)) ∧ 𝑤𝑋) → (∃𝑥𝑆 (𝐴 + 𝑤) = ((𝐴 + 𝑥) 𝐴) ↔ ∃𝑥𝑆 𝑥 = (𝑤 + 𝐴)))
36 ovex 7188 . . . . . . 7 (𝐴 + 𝑤) ∈ V
37 eqeq1 2825 . . . . . . . 8 (𝑦 = (𝐴 + 𝑤) → (𝑦 = ((𝐴 + 𝑥) 𝐴) ↔ (𝐴 + 𝑤) = ((𝐴 + 𝑥) 𝐴)))
3837rexbidv 3297 . . . . . . 7 (𝑦 = (𝐴 + 𝑤) → (∃𝑥𝑆 𝑦 = ((𝐴 + 𝑥) 𝐴) ↔ ∃𝑥𝑆 (𝐴 + 𝑤) = ((𝐴 + 𝑥) 𝐴)))
398rnmpt 5826 . . . . . . 7 ran 𝐹 = {𝑦 ∣ ∃𝑥𝑆 𝑦 = ((𝐴 + 𝑥) 𝐴)}
4036, 38, 39elab2 3669 . . . . . 6 ((𝐴 + 𝑤) ∈ ran 𝐹 ↔ ∃𝑥𝑆 (𝐴 + 𝑤) = ((𝐴 + 𝑥) 𝐴))
41 risset 3267 . . . . . 6 ((𝑤 + 𝐴) ∈ 𝑆 ↔ ∃𝑥𝑆 𝑥 = (𝑤 + 𝐴))
4235, 40, 413bitr4g 316 . . . . 5 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝐴𝑋𝑆 = ran 𝐹)) ∧ 𝑤𝑋) → ((𝐴 + 𝑤) ∈ ran 𝐹 ↔ (𝑤 + 𝐴) ∈ 𝑆))
4313, 42bitrd 281 . . . 4 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝐴𝑋𝑆 = ran 𝐹)) ∧ 𝑤𝑋) → ((𝐴 + 𝑤) ∈ 𝑆 ↔ (𝑤 + 𝐴) ∈ 𝑆))
4443ralrimiva 3182 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝐴𝑋𝑆 = ran 𝐹)) → ∀𝑤𝑋 ((𝐴 + 𝑤) ∈ 𝑆 ↔ (𝑤 + 𝐴) ∈ 𝑆))
451elnmz 18314 . . 3 (𝐴𝑁 ↔ (𝐴𝑋 ∧ ∀𝑤𝑋 ((𝐴 + 𝑤) ∈ 𝑆 ↔ (𝑤 + 𝐴) ∈ 𝑆)))
4611, 44, 45sylanbrc 585 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝐴𝑋𝑆 = ran 𝐹)) → 𝐴𝑁)
4710, 46impbida 799 1 (𝑆 ∈ (SubGrp‘𝐺) → (𝐴𝑁 ↔ (𝐴𝑋𝑆 = ran 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wral 3138  wrex 3139  {crab 3142  wss 3935  cmpt 5145  ran crn 5555  cfv 6354  (class class class)co 7155  Basecbs 16482  +gcplusg 16564  Grpcgrp 18102  -gcsg 18104  SubGrpcsubg 18272
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-1st 7688  df-2nd 7689  df-0g 16714  df-mgm 17851  df-sgrp 17900  df-mnd 17911  df-grp 18105  df-minusg 18106  df-sbg 18107  df-subg 18275
This theorem is referenced by:  sylow3lem6  18756
  Copyright terms: Public domain W3C validator