| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elnp | Structured version Visualization version GIF version | ||
| Description: Membership in positive reals. (Contributed by NM, 16-Feb-1996.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| elnp | ⊢ (𝐴 ∈ P ↔ ((∅ ⊊ 𝐴 ∧ 𝐴 ⊊ Q) ∧ ∀𝑥 ∈ 𝐴 (∀𝑦(𝑦 <Q 𝑥 → 𝑦 ∈ 𝐴) ∧ ∃𝑦 ∈ 𝐴 𝑥 <Q 𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3485 | . 2 ⊢ (𝐴 ∈ P → 𝐴 ∈ V) | |
| 2 | pssss 4078 | . . . 4 ⊢ (𝐴 ⊊ Q → 𝐴 ⊆ Q) | |
| 3 | nqex 10942 | . . . . 5 ⊢ Q ∈ V | |
| 4 | 3 | ssex 5296 | . . . 4 ⊢ (𝐴 ⊆ Q → 𝐴 ∈ V) |
| 5 | 2, 4 | syl 17 | . . 3 ⊢ (𝐴 ⊊ Q → 𝐴 ∈ V) |
| 6 | 5 | ad2antlr 727 | . 2 ⊢ (((∅ ⊊ 𝐴 ∧ 𝐴 ⊊ Q) ∧ ∀𝑥 ∈ 𝐴 (∀𝑦(𝑦 <Q 𝑥 → 𝑦 ∈ 𝐴) ∧ ∃𝑦 ∈ 𝐴 𝑥 <Q 𝑦)) → 𝐴 ∈ V) |
| 7 | psseq2 4071 | . . . . 5 ⊢ (𝑧 = 𝐴 → (∅ ⊊ 𝑧 ↔ ∅ ⊊ 𝐴)) | |
| 8 | psseq1 4070 | . . . . 5 ⊢ (𝑧 = 𝐴 → (𝑧 ⊊ Q ↔ 𝐴 ⊊ Q)) | |
| 9 | 7, 8 | anbi12d 632 | . . . 4 ⊢ (𝑧 = 𝐴 → ((∅ ⊊ 𝑧 ∧ 𝑧 ⊊ Q) ↔ (∅ ⊊ 𝐴 ∧ 𝐴 ⊊ Q))) |
| 10 | eleq2 2824 | . . . . . . . 8 ⊢ (𝑧 = 𝐴 → (𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝐴)) | |
| 11 | 10 | imbi2d 340 | . . . . . . 7 ⊢ (𝑧 = 𝐴 → ((𝑦 <Q 𝑥 → 𝑦 ∈ 𝑧) ↔ (𝑦 <Q 𝑥 → 𝑦 ∈ 𝐴))) |
| 12 | 11 | albidv 1920 | . . . . . 6 ⊢ (𝑧 = 𝐴 → (∀𝑦(𝑦 <Q 𝑥 → 𝑦 ∈ 𝑧) ↔ ∀𝑦(𝑦 <Q 𝑥 → 𝑦 ∈ 𝐴))) |
| 13 | rexeq 3305 | . . . . . 6 ⊢ (𝑧 = 𝐴 → (∃𝑦 ∈ 𝑧 𝑥 <Q 𝑦 ↔ ∃𝑦 ∈ 𝐴 𝑥 <Q 𝑦)) | |
| 14 | 12, 13 | anbi12d 632 | . . . . 5 ⊢ (𝑧 = 𝐴 → ((∀𝑦(𝑦 <Q 𝑥 → 𝑦 ∈ 𝑧) ∧ ∃𝑦 ∈ 𝑧 𝑥 <Q 𝑦) ↔ (∀𝑦(𝑦 <Q 𝑥 → 𝑦 ∈ 𝐴) ∧ ∃𝑦 ∈ 𝐴 𝑥 <Q 𝑦))) |
| 15 | 14 | raleqbi1dv 3321 | . . . 4 ⊢ (𝑧 = 𝐴 → (∀𝑥 ∈ 𝑧 (∀𝑦(𝑦 <Q 𝑥 → 𝑦 ∈ 𝑧) ∧ ∃𝑦 ∈ 𝑧 𝑥 <Q 𝑦) ↔ ∀𝑥 ∈ 𝐴 (∀𝑦(𝑦 <Q 𝑥 → 𝑦 ∈ 𝐴) ∧ ∃𝑦 ∈ 𝐴 𝑥 <Q 𝑦))) |
| 16 | 9, 15 | anbi12d 632 | . . 3 ⊢ (𝑧 = 𝐴 → (((∅ ⊊ 𝑧 ∧ 𝑧 ⊊ Q) ∧ ∀𝑥 ∈ 𝑧 (∀𝑦(𝑦 <Q 𝑥 → 𝑦 ∈ 𝑧) ∧ ∃𝑦 ∈ 𝑧 𝑥 <Q 𝑦)) ↔ ((∅ ⊊ 𝐴 ∧ 𝐴 ⊊ Q) ∧ ∀𝑥 ∈ 𝐴 (∀𝑦(𝑦 <Q 𝑥 → 𝑦 ∈ 𝐴) ∧ ∃𝑦 ∈ 𝐴 𝑥 <Q 𝑦)))) |
| 17 | df-np 11000 | . . 3 ⊢ P = {𝑧 ∣ ((∅ ⊊ 𝑧 ∧ 𝑧 ⊊ Q) ∧ ∀𝑥 ∈ 𝑧 (∀𝑦(𝑦 <Q 𝑥 → 𝑦 ∈ 𝑧) ∧ ∃𝑦 ∈ 𝑧 𝑥 <Q 𝑦))} | |
| 18 | 16, 17 | elab2g 3664 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ P ↔ ((∅ ⊊ 𝐴 ∧ 𝐴 ⊊ Q) ∧ ∀𝑥 ∈ 𝐴 (∀𝑦(𝑦 <Q 𝑥 → 𝑦 ∈ 𝐴) ∧ ∃𝑦 ∈ 𝐴 𝑥 <Q 𝑦)))) |
| 19 | 1, 6, 18 | pm5.21nii 378 | 1 ⊢ (𝐴 ∈ P ↔ ((∅ ⊊ 𝐴 ∧ 𝐴 ⊊ Q) ∧ ∀𝑥 ∈ 𝐴 (∀𝑦(𝑦 <Q 𝑥 → 𝑦 ∈ 𝐴) ∧ ∃𝑦 ∈ 𝐴 𝑥 <Q 𝑦))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 ∈ wcel 2109 ∀wral 3052 ∃wrex 3061 Vcvv 3464 ⊆ wss 3931 ⊊ wpss 3932 ∅c0 4313 class class class wbr 5124 Qcnq 10871 <Q cltq 10877 Pcnp 10878 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-inf2 9660 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-tr 5235 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-om 7867 df-ni 10891 df-nq 10931 df-np 11000 |
| This theorem is referenced by: genpcl 11027 nqpr 11033 ltexprlem5 11059 reclem2pr 11067 suplem1pr 11071 |
| Copyright terms: Public domain | W3C validator |