MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elnp Structured version   Visualization version   GIF version

Theorem elnp 10947
Description: Membership in positive reals. (Contributed by NM, 16-Feb-1996.) (New usage is discouraged.)
Assertion
Ref Expression
elnp (𝐴P ↔ ((∅ ⊊ 𝐴𝐴Q) ∧ ∀𝑥𝐴 (∀𝑦(𝑦 <Q 𝑥𝑦𝐴) ∧ ∃𝑦𝐴 𝑥 <Q 𝑦)))
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem elnp
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 elex 3471 . 2 (𝐴P𝐴 ∈ V)
2 pssss 4064 . . . 4 (𝐴Q𝐴Q)
3 nqex 10883 . . . . 5 Q ∈ V
43ssex 5279 . . . 4 (𝐴Q𝐴 ∈ V)
52, 4syl 17 . . 3 (𝐴Q𝐴 ∈ V)
65ad2antlr 727 . 2 (((∅ ⊊ 𝐴𝐴Q) ∧ ∀𝑥𝐴 (∀𝑦(𝑦 <Q 𝑥𝑦𝐴) ∧ ∃𝑦𝐴 𝑥 <Q 𝑦)) → 𝐴 ∈ V)
7 psseq2 4057 . . . . 5 (𝑧 = 𝐴 → (∅ ⊊ 𝑧 ↔ ∅ ⊊ 𝐴))
8 psseq1 4056 . . . . 5 (𝑧 = 𝐴 → (𝑧Q𝐴Q))
97, 8anbi12d 632 . . . 4 (𝑧 = 𝐴 → ((∅ ⊊ 𝑧𝑧Q) ↔ (∅ ⊊ 𝐴𝐴Q)))
10 eleq2 2818 . . . . . . . 8 (𝑧 = 𝐴 → (𝑦𝑧𝑦𝐴))
1110imbi2d 340 . . . . . . 7 (𝑧 = 𝐴 → ((𝑦 <Q 𝑥𝑦𝑧) ↔ (𝑦 <Q 𝑥𝑦𝐴)))
1211albidv 1920 . . . . . 6 (𝑧 = 𝐴 → (∀𝑦(𝑦 <Q 𝑥𝑦𝑧) ↔ ∀𝑦(𝑦 <Q 𝑥𝑦𝐴)))
13 rexeq 3297 . . . . . 6 (𝑧 = 𝐴 → (∃𝑦𝑧 𝑥 <Q 𝑦 ↔ ∃𝑦𝐴 𝑥 <Q 𝑦))
1412, 13anbi12d 632 . . . . 5 (𝑧 = 𝐴 → ((∀𝑦(𝑦 <Q 𝑥𝑦𝑧) ∧ ∃𝑦𝑧 𝑥 <Q 𝑦) ↔ (∀𝑦(𝑦 <Q 𝑥𝑦𝐴) ∧ ∃𝑦𝐴 𝑥 <Q 𝑦)))
1514raleqbi1dv 3313 . . . 4 (𝑧 = 𝐴 → (∀𝑥𝑧 (∀𝑦(𝑦 <Q 𝑥𝑦𝑧) ∧ ∃𝑦𝑧 𝑥 <Q 𝑦) ↔ ∀𝑥𝐴 (∀𝑦(𝑦 <Q 𝑥𝑦𝐴) ∧ ∃𝑦𝐴 𝑥 <Q 𝑦)))
169, 15anbi12d 632 . . 3 (𝑧 = 𝐴 → (((∅ ⊊ 𝑧𝑧Q) ∧ ∀𝑥𝑧 (∀𝑦(𝑦 <Q 𝑥𝑦𝑧) ∧ ∃𝑦𝑧 𝑥 <Q 𝑦)) ↔ ((∅ ⊊ 𝐴𝐴Q) ∧ ∀𝑥𝐴 (∀𝑦(𝑦 <Q 𝑥𝑦𝐴) ∧ ∃𝑦𝐴 𝑥 <Q 𝑦))))
17 df-np 10941 . . 3 P = {𝑧 ∣ ((∅ ⊊ 𝑧𝑧Q) ∧ ∀𝑥𝑧 (∀𝑦(𝑦 <Q 𝑥𝑦𝑧) ∧ ∃𝑦𝑧 𝑥 <Q 𝑦))}
1816, 17elab2g 3650 . 2 (𝐴 ∈ V → (𝐴P ↔ ((∅ ⊊ 𝐴𝐴Q) ∧ ∀𝑥𝐴 (∀𝑦(𝑦 <Q 𝑥𝑦𝐴) ∧ ∃𝑦𝐴 𝑥 <Q 𝑦))))
191, 6, 18pm5.21nii 378 1 (𝐴P ↔ ((∅ ⊊ 𝐴𝐴Q) ∧ ∀𝑥𝐴 (∀𝑦(𝑦 <Q 𝑥𝑦𝐴) ∧ ∃𝑦𝐴 𝑥 <Q 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wcel 2109  wral 3045  wrex 3054  Vcvv 3450  wss 3917  wpss 3918  c0 4299   class class class wbr 5110  Qcnq 10812   <Q cltq 10818  Pcnp 10819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-tr 5218  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-om 7846  df-ni 10832  df-nq 10872  df-np 10941
This theorem is referenced by:  genpcl  10968  nqpr  10974  ltexprlem5  11000  reclem2pr  11008  suplem1pr  11012
  Copyright terms: Public domain W3C validator