![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elnp | Structured version Visualization version GIF version |
Description: Membership in positive reals. (Contributed by NM, 16-Feb-1996.) (New usage is discouraged.) |
Ref | Expression |
---|---|
elnp | ⊢ (𝐴 ∈ P ↔ ((∅ ⊊ 𝐴 ∧ 𝐴 ⊊ Q) ∧ ∀𝑥 ∈ 𝐴 (∀𝑦(𝑦 <Q 𝑥 → 𝑦 ∈ 𝐴) ∧ ∃𝑦 ∈ 𝐴 𝑥 <Q 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3461 | . 2 ⊢ (𝐴 ∈ P → 𝐴 ∈ V) | |
2 | pssss 4053 | . . . 4 ⊢ (𝐴 ⊊ Q → 𝐴 ⊆ Q) | |
3 | nqex 10817 | . . . . 5 ⊢ Q ∈ V | |
4 | 3 | ssex 5276 | . . . 4 ⊢ (𝐴 ⊆ Q → 𝐴 ∈ V) |
5 | 2, 4 | syl 17 | . . 3 ⊢ (𝐴 ⊊ Q → 𝐴 ∈ V) |
6 | 5 | ad2antlr 725 | . 2 ⊢ (((∅ ⊊ 𝐴 ∧ 𝐴 ⊊ Q) ∧ ∀𝑥 ∈ 𝐴 (∀𝑦(𝑦 <Q 𝑥 → 𝑦 ∈ 𝐴) ∧ ∃𝑦 ∈ 𝐴 𝑥 <Q 𝑦)) → 𝐴 ∈ V) |
7 | psseq2 4046 | . . . . 5 ⊢ (𝑧 = 𝐴 → (∅ ⊊ 𝑧 ↔ ∅ ⊊ 𝐴)) | |
8 | psseq1 4045 | . . . . 5 ⊢ (𝑧 = 𝐴 → (𝑧 ⊊ Q ↔ 𝐴 ⊊ Q)) | |
9 | 7, 8 | anbi12d 631 | . . . 4 ⊢ (𝑧 = 𝐴 → ((∅ ⊊ 𝑧 ∧ 𝑧 ⊊ Q) ↔ (∅ ⊊ 𝐴 ∧ 𝐴 ⊊ Q))) |
10 | eleq2 2826 | . . . . . . . 8 ⊢ (𝑧 = 𝐴 → (𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝐴)) | |
11 | 10 | imbi2d 340 | . . . . . . 7 ⊢ (𝑧 = 𝐴 → ((𝑦 <Q 𝑥 → 𝑦 ∈ 𝑧) ↔ (𝑦 <Q 𝑥 → 𝑦 ∈ 𝐴))) |
12 | 11 | albidv 1923 | . . . . . 6 ⊢ (𝑧 = 𝐴 → (∀𝑦(𝑦 <Q 𝑥 → 𝑦 ∈ 𝑧) ↔ ∀𝑦(𝑦 <Q 𝑥 → 𝑦 ∈ 𝐴))) |
13 | rexeq 3308 | . . . . . 6 ⊢ (𝑧 = 𝐴 → (∃𝑦 ∈ 𝑧 𝑥 <Q 𝑦 ↔ ∃𝑦 ∈ 𝐴 𝑥 <Q 𝑦)) | |
14 | 12, 13 | anbi12d 631 | . . . . 5 ⊢ (𝑧 = 𝐴 → ((∀𝑦(𝑦 <Q 𝑥 → 𝑦 ∈ 𝑧) ∧ ∃𝑦 ∈ 𝑧 𝑥 <Q 𝑦) ↔ (∀𝑦(𝑦 <Q 𝑥 → 𝑦 ∈ 𝐴) ∧ ∃𝑦 ∈ 𝐴 𝑥 <Q 𝑦))) |
15 | 14 | raleqbi1dv 3305 | . . . 4 ⊢ (𝑧 = 𝐴 → (∀𝑥 ∈ 𝑧 (∀𝑦(𝑦 <Q 𝑥 → 𝑦 ∈ 𝑧) ∧ ∃𝑦 ∈ 𝑧 𝑥 <Q 𝑦) ↔ ∀𝑥 ∈ 𝐴 (∀𝑦(𝑦 <Q 𝑥 → 𝑦 ∈ 𝐴) ∧ ∃𝑦 ∈ 𝐴 𝑥 <Q 𝑦))) |
16 | 9, 15 | anbi12d 631 | . . 3 ⊢ (𝑧 = 𝐴 → (((∅ ⊊ 𝑧 ∧ 𝑧 ⊊ Q) ∧ ∀𝑥 ∈ 𝑧 (∀𝑦(𝑦 <Q 𝑥 → 𝑦 ∈ 𝑧) ∧ ∃𝑦 ∈ 𝑧 𝑥 <Q 𝑦)) ↔ ((∅ ⊊ 𝐴 ∧ 𝐴 ⊊ Q) ∧ ∀𝑥 ∈ 𝐴 (∀𝑦(𝑦 <Q 𝑥 → 𝑦 ∈ 𝐴) ∧ ∃𝑦 ∈ 𝐴 𝑥 <Q 𝑦)))) |
17 | df-np 10875 | . . 3 ⊢ P = {𝑧 ∣ ((∅ ⊊ 𝑧 ∧ 𝑧 ⊊ Q) ∧ ∀𝑥 ∈ 𝑧 (∀𝑦(𝑦 <Q 𝑥 → 𝑦 ∈ 𝑧) ∧ ∃𝑦 ∈ 𝑧 𝑥 <Q 𝑦))} | |
18 | 16, 17 | elab2g 3630 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ P ↔ ((∅ ⊊ 𝐴 ∧ 𝐴 ⊊ Q) ∧ ∀𝑥 ∈ 𝐴 (∀𝑦(𝑦 <Q 𝑥 → 𝑦 ∈ 𝐴) ∧ ∃𝑦 ∈ 𝐴 𝑥 <Q 𝑦)))) |
19 | 1, 6, 18 | pm5.21nii 379 | 1 ⊢ (𝐴 ∈ P ↔ ((∅ ⊊ 𝐴 ∧ 𝐴 ⊊ Q) ∧ ∀𝑥 ∈ 𝐴 (∀𝑦(𝑦 <Q 𝑥 → 𝑦 ∈ 𝐴) ∧ ∃𝑦 ∈ 𝐴 𝑥 <Q 𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∀wal 1539 = wceq 1541 ∈ wcel 2106 ∀wral 3062 ∃wrex 3071 Vcvv 3443 ⊆ wss 3908 ⊊ wpss 3909 ∅c0 4280 class class class wbr 5103 Qcnq 10746 <Q cltq 10752 Pcnp 10753 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2708 ax-sep 5254 ax-nul 5261 ax-pow 5318 ax-pr 5382 ax-un 7664 ax-inf2 9535 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2715 df-cleq 2729 df-clel 2815 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3406 df-v 3445 df-dif 3911 df-un 3913 df-in 3915 df-ss 3925 df-pss 3927 df-nul 4281 df-if 4485 df-pw 4560 df-sn 4585 df-pr 4587 df-op 4591 df-uni 4864 df-br 5104 df-opab 5166 df-tr 5221 df-eprel 5535 df-po 5543 df-so 5544 df-fr 5586 df-we 5588 df-xp 5637 df-rel 5638 df-ord 6318 df-on 6319 df-lim 6320 df-suc 6321 df-om 7795 df-ni 10766 df-nq 10806 df-np 10875 |
This theorem is referenced by: genpcl 10902 nqpr 10908 ltexprlem5 10934 reclem2pr 10942 suplem1pr 10946 |
Copyright terms: Public domain | W3C validator |