MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elnp Structured version   Visualization version   GIF version

Theorem elnp 10881
Description: Membership in positive reals. (Contributed by NM, 16-Feb-1996.) (New usage is discouraged.)
Assertion
Ref Expression
elnp (𝐴P ↔ ((∅ ⊊ 𝐴𝐴Q) ∧ ∀𝑥𝐴 (∀𝑦(𝑦 <Q 𝑥𝑦𝐴) ∧ ∃𝑦𝐴 𝑥 <Q 𝑦)))
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem elnp
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 elex 3461 . 2 (𝐴P𝐴 ∈ V)
2 pssss 4053 . . . 4 (𝐴Q𝐴Q)
3 nqex 10817 . . . . 5 Q ∈ V
43ssex 5276 . . . 4 (𝐴Q𝐴 ∈ V)
52, 4syl 17 . . 3 (𝐴Q𝐴 ∈ V)
65ad2antlr 725 . 2 (((∅ ⊊ 𝐴𝐴Q) ∧ ∀𝑥𝐴 (∀𝑦(𝑦 <Q 𝑥𝑦𝐴) ∧ ∃𝑦𝐴 𝑥 <Q 𝑦)) → 𝐴 ∈ V)
7 psseq2 4046 . . . . 5 (𝑧 = 𝐴 → (∅ ⊊ 𝑧 ↔ ∅ ⊊ 𝐴))
8 psseq1 4045 . . . . 5 (𝑧 = 𝐴 → (𝑧Q𝐴Q))
97, 8anbi12d 631 . . . 4 (𝑧 = 𝐴 → ((∅ ⊊ 𝑧𝑧Q) ↔ (∅ ⊊ 𝐴𝐴Q)))
10 eleq2 2826 . . . . . . . 8 (𝑧 = 𝐴 → (𝑦𝑧𝑦𝐴))
1110imbi2d 340 . . . . . . 7 (𝑧 = 𝐴 → ((𝑦 <Q 𝑥𝑦𝑧) ↔ (𝑦 <Q 𝑥𝑦𝐴)))
1211albidv 1923 . . . . . 6 (𝑧 = 𝐴 → (∀𝑦(𝑦 <Q 𝑥𝑦𝑧) ↔ ∀𝑦(𝑦 <Q 𝑥𝑦𝐴)))
13 rexeq 3308 . . . . . 6 (𝑧 = 𝐴 → (∃𝑦𝑧 𝑥 <Q 𝑦 ↔ ∃𝑦𝐴 𝑥 <Q 𝑦))
1412, 13anbi12d 631 . . . . 5 (𝑧 = 𝐴 → ((∀𝑦(𝑦 <Q 𝑥𝑦𝑧) ∧ ∃𝑦𝑧 𝑥 <Q 𝑦) ↔ (∀𝑦(𝑦 <Q 𝑥𝑦𝐴) ∧ ∃𝑦𝐴 𝑥 <Q 𝑦)))
1514raleqbi1dv 3305 . . . 4 (𝑧 = 𝐴 → (∀𝑥𝑧 (∀𝑦(𝑦 <Q 𝑥𝑦𝑧) ∧ ∃𝑦𝑧 𝑥 <Q 𝑦) ↔ ∀𝑥𝐴 (∀𝑦(𝑦 <Q 𝑥𝑦𝐴) ∧ ∃𝑦𝐴 𝑥 <Q 𝑦)))
169, 15anbi12d 631 . . 3 (𝑧 = 𝐴 → (((∅ ⊊ 𝑧𝑧Q) ∧ ∀𝑥𝑧 (∀𝑦(𝑦 <Q 𝑥𝑦𝑧) ∧ ∃𝑦𝑧 𝑥 <Q 𝑦)) ↔ ((∅ ⊊ 𝐴𝐴Q) ∧ ∀𝑥𝐴 (∀𝑦(𝑦 <Q 𝑥𝑦𝐴) ∧ ∃𝑦𝐴 𝑥 <Q 𝑦))))
17 df-np 10875 . . 3 P = {𝑧 ∣ ((∅ ⊊ 𝑧𝑧Q) ∧ ∀𝑥𝑧 (∀𝑦(𝑦 <Q 𝑥𝑦𝑧) ∧ ∃𝑦𝑧 𝑥 <Q 𝑦))}
1816, 17elab2g 3630 . 2 (𝐴 ∈ V → (𝐴P ↔ ((∅ ⊊ 𝐴𝐴Q) ∧ ∀𝑥𝐴 (∀𝑦(𝑦 <Q 𝑥𝑦𝐴) ∧ ∃𝑦𝐴 𝑥 <Q 𝑦))))
191, 6, 18pm5.21nii 379 1 (𝐴P ↔ ((∅ ⊊ 𝐴𝐴Q) ∧ ∀𝑥𝐴 (∀𝑦(𝑦 <Q 𝑥𝑦𝐴) ∧ ∃𝑦𝐴 𝑥 <Q 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wal 1539   = wceq 1541  wcel 2106  wral 3062  wrex 3071  Vcvv 3443  wss 3908  wpss 3909  c0 4280   class class class wbr 5103  Qcnq 10746   <Q cltq 10752  Pcnp 10753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2708  ax-sep 5254  ax-nul 5261  ax-pow 5318  ax-pr 5382  ax-un 7664  ax-inf2 9535
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2715  df-cleq 2729  df-clel 2815  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3406  df-v 3445  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4281  df-if 4485  df-pw 4560  df-sn 4585  df-pr 4587  df-op 4591  df-uni 4864  df-br 5104  df-opab 5166  df-tr 5221  df-eprel 5535  df-po 5543  df-so 5544  df-fr 5586  df-we 5588  df-xp 5637  df-rel 5638  df-ord 6318  df-on 6319  df-lim 6320  df-suc 6321  df-om 7795  df-ni 10766  df-nq 10806  df-np 10875
This theorem is referenced by:  genpcl  10902  nqpr  10908  ltexprlem5  10934  reclem2pr  10942  suplem1pr  10946
  Copyright terms: Public domain W3C validator