MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prnmax Structured version   Visualization version   GIF version

Theorem prnmax 11036
Description: A positive real has no largest member. Definition 9-3.1(iii) of [Gleason] p. 121. (Contributed by NM, 9-Mar-1996.) (Revised by Mario Carneiro, 11-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
prnmax ((𝐴P𝐵𝐴) → ∃𝑥𝐴 𝐵 <Q 𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem prnmax
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eleq1 2828 . . . . 5 (𝑦 = 𝐵 → (𝑦𝐴𝐵𝐴))
21anbi2d 630 . . . 4 (𝑦 = 𝐵 → ((𝐴P𝑦𝐴) ↔ (𝐴P𝐵𝐴)))
3 breq1 5145 . . . . 5 (𝑦 = 𝐵 → (𝑦 <Q 𝑥𝐵 <Q 𝑥))
43rexbidv 3178 . . . 4 (𝑦 = 𝐵 → (∃𝑥𝐴 𝑦 <Q 𝑥 ↔ ∃𝑥𝐴 𝐵 <Q 𝑥))
52, 4imbi12d 344 . . 3 (𝑦 = 𝐵 → (((𝐴P𝑦𝐴) → ∃𝑥𝐴 𝑦 <Q 𝑥) ↔ ((𝐴P𝐵𝐴) → ∃𝑥𝐴 𝐵 <Q 𝑥)))
6 elnpi 11029 . . . . . 6 (𝐴P ↔ ((𝐴 ∈ V ∧ ∅ ⊊ 𝐴𝐴Q) ∧ ∀𝑦𝐴 (∀𝑥(𝑥 <Q 𝑦𝑥𝐴) ∧ ∃𝑥𝐴 𝑦 <Q 𝑥)))
76simprbi 496 . . . . 5 (𝐴P → ∀𝑦𝐴 (∀𝑥(𝑥 <Q 𝑦𝑥𝐴) ∧ ∃𝑥𝐴 𝑦 <Q 𝑥))
87r19.21bi 3250 . . . 4 ((𝐴P𝑦𝐴) → (∀𝑥(𝑥 <Q 𝑦𝑥𝐴) ∧ ∃𝑥𝐴 𝑦 <Q 𝑥))
98simprd 495 . . 3 ((𝐴P𝑦𝐴) → ∃𝑥𝐴 𝑦 <Q 𝑥)
105, 9vtoclg 3553 . 2 (𝐵𝐴 → ((𝐴P𝐵𝐴) → ∃𝑥𝐴 𝐵 <Q 𝑥))
1110anabsi7 671 1 ((𝐴P𝐵𝐴) → ∃𝑥𝐴 𝐵 <Q 𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wal 1537   = wceq 1539  wcel 2107  wral 3060  wrex 3069  Vcvv 3479  wpss 3951  c0 4332   class class class wbr 5142  Qcnq 10893   <Q cltq 10899  Pcnp 10900
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-12 2176  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-br 5143  df-np 11022
This theorem is referenced by:  npomex  11037  prnmadd  11038  genpnmax  11048  1idpr  11070  ltexprlem4  11080  reclem3pr  11090  suplem1pr  11093
  Copyright terms: Public domain W3C validator