| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prnmax | Structured version Visualization version GIF version | ||
| Description: A positive real has no largest member. Definition 9-3.1(iii) of [Gleason] p. 121. (Contributed by NM, 9-Mar-1996.) (Revised by Mario Carneiro, 11-May-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| prnmax | ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ 𝐴) → ∃𝑥 ∈ 𝐴 𝐵 <Q 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2823 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝑦 ∈ 𝐴 ↔ 𝐵 ∈ 𝐴)) | |
| 2 | 1 | anbi2d 630 | . . . 4 ⊢ (𝑦 = 𝐵 → ((𝐴 ∈ P ∧ 𝑦 ∈ 𝐴) ↔ (𝐴 ∈ P ∧ 𝐵 ∈ 𝐴))) |
| 3 | breq1 5127 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝑦 <Q 𝑥 ↔ 𝐵 <Q 𝑥)) | |
| 4 | 3 | rexbidv 3165 | . . . 4 ⊢ (𝑦 = 𝐵 → (∃𝑥 ∈ 𝐴 𝑦 <Q 𝑥 ↔ ∃𝑥 ∈ 𝐴 𝐵 <Q 𝑥)) |
| 5 | 2, 4 | imbi12d 344 | . . 3 ⊢ (𝑦 = 𝐵 → (((𝐴 ∈ P ∧ 𝑦 ∈ 𝐴) → ∃𝑥 ∈ 𝐴 𝑦 <Q 𝑥) ↔ ((𝐴 ∈ P ∧ 𝐵 ∈ 𝐴) → ∃𝑥 ∈ 𝐴 𝐵 <Q 𝑥))) |
| 6 | elnpi 11007 | . . . . . 6 ⊢ (𝐴 ∈ P ↔ ((𝐴 ∈ V ∧ ∅ ⊊ 𝐴 ∧ 𝐴 ⊊ Q) ∧ ∀𝑦 ∈ 𝐴 (∀𝑥(𝑥 <Q 𝑦 → 𝑥 ∈ 𝐴) ∧ ∃𝑥 ∈ 𝐴 𝑦 <Q 𝑥))) | |
| 7 | 6 | simprbi 496 | . . . . 5 ⊢ (𝐴 ∈ P → ∀𝑦 ∈ 𝐴 (∀𝑥(𝑥 <Q 𝑦 → 𝑥 ∈ 𝐴) ∧ ∃𝑥 ∈ 𝐴 𝑦 <Q 𝑥)) |
| 8 | 7 | r19.21bi 3238 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝑦 ∈ 𝐴) → (∀𝑥(𝑥 <Q 𝑦 → 𝑥 ∈ 𝐴) ∧ ∃𝑥 ∈ 𝐴 𝑦 <Q 𝑥)) |
| 9 | 8 | simprd 495 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝑦 ∈ 𝐴) → ∃𝑥 ∈ 𝐴 𝑦 <Q 𝑥) |
| 10 | 5, 9 | vtoclg 3538 | . 2 ⊢ (𝐵 ∈ 𝐴 → ((𝐴 ∈ P ∧ 𝐵 ∈ 𝐴) → ∃𝑥 ∈ 𝐴 𝐵 <Q 𝑥)) |
| 11 | 10 | anabsi7 671 | 1 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ 𝐴) → ∃𝑥 ∈ 𝐴 𝐵 <Q 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∀wal 1538 = wceq 1540 ∈ wcel 2109 ∀wral 3052 ∃wrex 3061 Vcvv 3464 ⊊ wpss 3932 ∅c0 4313 class class class wbr 5124 Qcnq 10871 <Q cltq 10877 Pcnp 10878 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-np 11000 |
| This theorem is referenced by: npomex 11015 prnmadd 11016 genpnmax 11026 1idpr 11048 ltexprlem4 11058 reclem3pr 11068 suplem1pr 11071 |
| Copyright terms: Public domain | W3C validator |