![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prnmax | Structured version Visualization version GIF version |
Description: A positive real has no largest member. Definition 9-3.1(iii) of [Gleason] p. 121. (Contributed by NM, 9-Mar-1996.) (Revised by Mario Carneiro, 11-May-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
prnmax | ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ 𝐴) → ∃𝑥 ∈ 𝐴 𝐵 <Q 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2832 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝑦 ∈ 𝐴 ↔ 𝐵 ∈ 𝐴)) | |
2 | 1 | anbi2d 629 | . . . 4 ⊢ (𝑦 = 𝐵 → ((𝐴 ∈ P ∧ 𝑦 ∈ 𝐴) ↔ (𝐴 ∈ P ∧ 𝐵 ∈ 𝐴))) |
3 | breq1 5169 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝑦 <Q 𝑥 ↔ 𝐵 <Q 𝑥)) | |
4 | 3 | rexbidv 3185 | . . . 4 ⊢ (𝑦 = 𝐵 → (∃𝑥 ∈ 𝐴 𝑦 <Q 𝑥 ↔ ∃𝑥 ∈ 𝐴 𝐵 <Q 𝑥)) |
5 | 2, 4 | imbi12d 344 | . . 3 ⊢ (𝑦 = 𝐵 → (((𝐴 ∈ P ∧ 𝑦 ∈ 𝐴) → ∃𝑥 ∈ 𝐴 𝑦 <Q 𝑥) ↔ ((𝐴 ∈ P ∧ 𝐵 ∈ 𝐴) → ∃𝑥 ∈ 𝐴 𝐵 <Q 𝑥))) |
6 | elnpi 11057 | . . . . . 6 ⊢ (𝐴 ∈ P ↔ ((𝐴 ∈ V ∧ ∅ ⊊ 𝐴 ∧ 𝐴 ⊊ Q) ∧ ∀𝑦 ∈ 𝐴 (∀𝑥(𝑥 <Q 𝑦 → 𝑥 ∈ 𝐴) ∧ ∃𝑥 ∈ 𝐴 𝑦 <Q 𝑥))) | |
7 | 6 | simprbi 496 | . . . . 5 ⊢ (𝐴 ∈ P → ∀𝑦 ∈ 𝐴 (∀𝑥(𝑥 <Q 𝑦 → 𝑥 ∈ 𝐴) ∧ ∃𝑥 ∈ 𝐴 𝑦 <Q 𝑥)) |
8 | 7 | r19.21bi 3257 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝑦 ∈ 𝐴) → (∀𝑥(𝑥 <Q 𝑦 → 𝑥 ∈ 𝐴) ∧ ∃𝑥 ∈ 𝐴 𝑦 <Q 𝑥)) |
9 | 8 | simprd 495 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝑦 ∈ 𝐴) → ∃𝑥 ∈ 𝐴 𝑦 <Q 𝑥) |
10 | 5, 9 | vtoclg 3566 | . 2 ⊢ (𝐵 ∈ 𝐴 → ((𝐴 ∈ P ∧ 𝐵 ∈ 𝐴) → ∃𝑥 ∈ 𝐴 𝐵 <Q 𝑥)) |
11 | 10 | anabsi7 670 | 1 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ 𝐴) → ∃𝑥 ∈ 𝐴 𝐵 <Q 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 ∀wal 1535 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ∃wrex 3076 Vcvv 3488 ⊊ wpss 3977 ∅c0 4352 class class class wbr 5166 Qcnq 10921 <Q cltq 10927 Pcnp 10928 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-np 11050 |
This theorem is referenced by: npomex 11065 prnmadd 11066 genpnmax 11076 1idpr 11098 ltexprlem4 11108 reclem3pr 11118 suplem1pr 11121 |
Copyright terms: Public domain | W3C validator |