Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > prnmax | Structured version Visualization version GIF version |
Description: A positive real has no largest member. Definition 9-3.1(iii) of [Gleason] p. 121. (Contributed by NM, 9-Mar-1996.) (Revised by Mario Carneiro, 11-May-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
prnmax | ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ 𝐴) → ∃𝑥 ∈ 𝐴 𝐵 <Q 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2826 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝑦 ∈ 𝐴 ↔ 𝐵 ∈ 𝐴)) | |
2 | 1 | anbi2d 628 | . . . 4 ⊢ (𝑦 = 𝐵 → ((𝐴 ∈ P ∧ 𝑦 ∈ 𝐴) ↔ (𝐴 ∈ P ∧ 𝐵 ∈ 𝐴))) |
3 | breq1 5073 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝑦 <Q 𝑥 ↔ 𝐵 <Q 𝑥)) | |
4 | 3 | rexbidv 3225 | . . . 4 ⊢ (𝑦 = 𝐵 → (∃𝑥 ∈ 𝐴 𝑦 <Q 𝑥 ↔ ∃𝑥 ∈ 𝐴 𝐵 <Q 𝑥)) |
5 | 2, 4 | imbi12d 344 | . . 3 ⊢ (𝑦 = 𝐵 → (((𝐴 ∈ P ∧ 𝑦 ∈ 𝐴) → ∃𝑥 ∈ 𝐴 𝑦 <Q 𝑥) ↔ ((𝐴 ∈ P ∧ 𝐵 ∈ 𝐴) → ∃𝑥 ∈ 𝐴 𝐵 <Q 𝑥))) |
6 | elnpi 10675 | . . . . . 6 ⊢ (𝐴 ∈ P ↔ ((𝐴 ∈ V ∧ ∅ ⊊ 𝐴 ∧ 𝐴 ⊊ Q) ∧ ∀𝑦 ∈ 𝐴 (∀𝑥(𝑥 <Q 𝑦 → 𝑥 ∈ 𝐴) ∧ ∃𝑥 ∈ 𝐴 𝑦 <Q 𝑥))) | |
7 | 6 | simprbi 496 | . . . . 5 ⊢ (𝐴 ∈ P → ∀𝑦 ∈ 𝐴 (∀𝑥(𝑥 <Q 𝑦 → 𝑥 ∈ 𝐴) ∧ ∃𝑥 ∈ 𝐴 𝑦 <Q 𝑥)) |
8 | 7 | r19.21bi 3132 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝑦 ∈ 𝐴) → (∀𝑥(𝑥 <Q 𝑦 → 𝑥 ∈ 𝐴) ∧ ∃𝑥 ∈ 𝐴 𝑦 <Q 𝑥)) |
9 | 8 | simprd 495 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝑦 ∈ 𝐴) → ∃𝑥 ∈ 𝐴 𝑦 <Q 𝑥) |
10 | 5, 9 | vtoclg 3495 | . 2 ⊢ (𝐵 ∈ 𝐴 → ((𝐴 ∈ P ∧ 𝐵 ∈ 𝐴) → ∃𝑥 ∈ 𝐴 𝐵 <Q 𝑥)) |
11 | 10 | anabsi7 667 | 1 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ 𝐴) → ∃𝑥 ∈ 𝐴 𝐵 <Q 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 ∀wal 1537 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∃wrex 3064 Vcvv 3422 ⊊ wpss 3884 ∅c0 4253 class class class wbr 5070 Qcnq 10539 <Q cltq 10545 Pcnp 10546 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-np 10668 |
This theorem is referenced by: npomex 10683 prnmadd 10684 genpnmax 10694 1idpr 10716 ltexprlem4 10726 reclem3pr 10736 suplem1pr 10739 |
Copyright terms: Public domain | W3C validator |