![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prnmax | Structured version Visualization version GIF version |
Description: A positive real has no largest member. Definition 9-3.1(iii) of [Gleason] p. 121. (Contributed by NM, 9-Mar-1996.) (Revised by Mario Carneiro, 11-May-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
prnmax | ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ 𝐴) → ∃𝑥 ∈ 𝐴 𝐵 <Q 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2815 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝑦 ∈ 𝐴 ↔ 𝐵 ∈ 𝐴)) | |
2 | 1 | anbi2d 628 | . . . 4 ⊢ (𝑦 = 𝐵 → ((𝐴 ∈ P ∧ 𝑦 ∈ 𝐴) ↔ (𝐴 ∈ P ∧ 𝐵 ∈ 𝐴))) |
3 | breq1 5144 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝑦 <Q 𝑥 ↔ 𝐵 <Q 𝑥)) | |
4 | 3 | rexbidv 3172 | . . . 4 ⊢ (𝑦 = 𝐵 → (∃𝑥 ∈ 𝐴 𝑦 <Q 𝑥 ↔ ∃𝑥 ∈ 𝐴 𝐵 <Q 𝑥)) |
5 | 2, 4 | imbi12d 344 | . . 3 ⊢ (𝑦 = 𝐵 → (((𝐴 ∈ P ∧ 𝑦 ∈ 𝐴) → ∃𝑥 ∈ 𝐴 𝑦 <Q 𝑥) ↔ ((𝐴 ∈ P ∧ 𝐵 ∈ 𝐴) → ∃𝑥 ∈ 𝐴 𝐵 <Q 𝑥))) |
6 | elnpi 10982 | . . . . . 6 ⊢ (𝐴 ∈ P ↔ ((𝐴 ∈ V ∧ ∅ ⊊ 𝐴 ∧ 𝐴 ⊊ Q) ∧ ∀𝑦 ∈ 𝐴 (∀𝑥(𝑥 <Q 𝑦 → 𝑥 ∈ 𝐴) ∧ ∃𝑥 ∈ 𝐴 𝑦 <Q 𝑥))) | |
7 | 6 | simprbi 496 | . . . . 5 ⊢ (𝐴 ∈ P → ∀𝑦 ∈ 𝐴 (∀𝑥(𝑥 <Q 𝑦 → 𝑥 ∈ 𝐴) ∧ ∃𝑥 ∈ 𝐴 𝑦 <Q 𝑥)) |
8 | 7 | r19.21bi 3242 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝑦 ∈ 𝐴) → (∀𝑥(𝑥 <Q 𝑦 → 𝑥 ∈ 𝐴) ∧ ∃𝑥 ∈ 𝐴 𝑦 <Q 𝑥)) |
9 | 8 | simprd 495 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝑦 ∈ 𝐴) → ∃𝑥 ∈ 𝐴 𝑦 <Q 𝑥) |
10 | 5, 9 | vtoclg 3537 | . 2 ⊢ (𝐵 ∈ 𝐴 → ((𝐴 ∈ P ∧ 𝐵 ∈ 𝐴) → ∃𝑥 ∈ 𝐴 𝐵 <Q 𝑥)) |
11 | 10 | anabsi7 668 | 1 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ 𝐴) → ∃𝑥 ∈ 𝐴 𝐵 <Q 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1084 ∀wal 1531 = wceq 1533 ∈ wcel 2098 ∀wral 3055 ∃wrex 3064 Vcvv 3468 ⊊ wpss 3944 ∅c0 4317 class class class wbr 5141 Qcnq 10846 <Q cltq 10852 Pcnp 10853 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-12 2163 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-br 5142 df-np 10975 |
This theorem is referenced by: npomex 10990 prnmadd 10991 genpnmax 11001 1idpr 11023 ltexprlem4 11033 reclem3pr 11043 suplem1pr 11046 |
Copyright terms: Public domain | W3C validator |