![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prnmax | Structured version Visualization version GIF version |
Description: A positive real has no largest member. Definition 9-3.1(iii) of [Gleason] p. 121. (Contributed by NM, 9-Mar-1996.) (Revised by Mario Carneiro, 11-May-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
prnmax | ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ 𝐴) → ∃𝑥 ∈ 𝐴 𝐵 <Q 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2826 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝑦 ∈ 𝐴 ↔ 𝐵 ∈ 𝐴)) | |
2 | 1 | anbi2d 630 | . . . 4 ⊢ (𝑦 = 𝐵 → ((𝐴 ∈ P ∧ 𝑦 ∈ 𝐴) ↔ (𝐴 ∈ P ∧ 𝐵 ∈ 𝐴))) |
3 | breq1 5113 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝑦 <Q 𝑥 ↔ 𝐵 <Q 𝑥)) | |
4 | 3 | rexbidv 3176 | . . . 4 ⊢ (𝑦 = 𝐵 → (∃𝑥 ∈ 𝐴 𝑦 <Q 𝑥 ↔ ∃𝑥 ∈ 𝐴 𝐵 <Q 𝑥)) |
5 | 2, 4 | imbi12d 345 | . . 3 ⊢ (𝑦 = 𝐵 → (((𝐴 ∈ P ∧ 𝑦 ∈ 𝐴) → ∃𝑥 ∈ 𝐴 𝑦 <Q 𝑥) ↔ ((𝐴 ∈ P ∧ 𝐵 ∈ 𝐴) → ∃𝑥 ∈ 𝐴 𝐵 <Q 𝑥))) |
6 | elnpi 10931 | . . . . . 6 ⊢ (𝐴 ∈ P ↔ ((𝐴 ∈ V ∧ ∅ ⊊ 𝐴 ∧ 𝐴 ⊊ Q) ∧ ∀𝑦 ∈ 𝐴 (∀𝑥(𝑥 <Q 𝑦 → 𝑥 ∈ 𝐴) ∧ ∃𝑥 ∈ 𝐴 𝑦 <Q 𝑥))) | |
7 | 6 | simprbi 498 | . . . . 5 ⊢ (𝐴 ∈ P → ∀𝑦 ∈ 𝐴 (∀𝑥(𝑥 <Q 𝑦 → 𝑥 ∈ 𝐴) ∧ ∃𝑥 ∈ 𝐴 𝑦 <Q 𝑥)) |
8 | 7 | r19.21bi 3237 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝑦 ∈ 𝐴) → (∀𝑥(𝑥 <Q 𝑦 → 𝑥 ∈ 𝐴) ∧ ∃𝑥 ∈ 𝐴 𝑦 <Q 𝑥)) |
9 | 8 | simprd 497 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝑦 ∈ 𝐴) → ∃𝑥 ∈ 𝐴 𝑦 <Q 𝑥) |
10 | 5, 9 | vtoclg 3528 | . 2 ⊢ (𝐵 ∈ 𝐴 → ((𝐴 ∈ P ∧ 𝐵 ∈ 𝐴) → ∃𝑥 ∈ 𝐴 𝐵 <Q 𝑥)) |
11 | 10 | anabsi7 670 | 1 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ 𝐴) → ∃𝑥 ∈ 𝐴 𝐵 <Q 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1088 ∀wal 1540 = wceq 1542 ∈ wcel 2107 ∀wral 3065 ∃wrex 3074 Vcvv 3448 ⊊ wpss 3916 ∅c0 4287 class class class wbr 5110 Qcnq 10795 <Q cltq 10801 Pcnp 10802 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-12 2172 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2715 df-cleq 2729 df-clel 2815 df-ne 2945 df-ral 3066 df-rex 3075 df-rab 3411 df-v 3450 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-pss 3934 df-nul 4288 df-if 4492 df-sn 4592 df-pr 4594 df-op 4598 df-br 5111 df-np 10924 |
This theorem is referenced by: npomex 10939 prnmadd 10940 genpnmax 10950 1idpr 10972 ltexprlem4 10982 reclem3pr 10992 suplem1pr 10995 |
Copyright terms: Public domain | W3C validator |