Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrelscnveq Structured version   Visualization version   GIF version

Theorem elrelscnveq 38019
Description: Two ways of saying a relation is symmetric. (Contributed by Peter Mazsa, 22-Aug-2021.)
Assertion
Ref Expression
elrelscnveq (𝑅 ∈ Rels → (𝑅𝑅𝑅 = 𝑅))

Proof of Theorem elrelscnveq
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elrelscnveq3 38018 . . 3 (𝑅 ∈ Rels → (𝑅 = 𝑅 ↔ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥)))
2 cnvsym 6113 . . 3 (𝑅𝑅 ↔ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥))
31, 2bitr4di 288 . 2 (𝑅 ∈ Rels → (𝑅 = 𝑅𝑅𝑅))
4 eqcom 2732 . 2 (𝑅 = 𝑅𝑅 = 𝑅)
53, 4bitr3di 285 1 (𝑅 ∈ Rels → (𝑅𝑅𝑅 = 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1531   = wceq 1533  wcel 2098  wss 3940   class class class wbr 5143  ccnv 5671   Rels crels 37706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696  ax-sep 5294  ax-nul 5301  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-rab 3420  df-v 3465  df-dif 3943  df-un 3945  df-ss 3957  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-br 5144  df-opab 5206  df-xp 5678  df-rel 5679  df-cnv 5680  df-rels 38012
This theorem is referenced by:  elrelscnveq4  38021  dfsymrels4  38074
  Copyright terms: Public domain W3C validator