| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elrelscnveq | Structured version Visualization version GIF version | ||
| Description: Two ways of saying a relation is symmetric. (Contributed by Peter Mazsa, 22-Aug-2021.) |
| Ref | Expression |
|---|---|
| elrelscnveq | ⊢ (𝑅 ∈ Rels → (◡𝑅 ⊆ 𝑅 ↔ ◡𝑅 = 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrelscnveq3 38451 | . . 3 ⊢ (𝑅 ∈ Rels → (𝑅 = ◡𝑅 ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥))) | |
| 2 | cnvsym 6112 | . . 3 ⊢ (◡𝑅 ⊆ 𝑅 ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥)) | |
| 3 | 1, 2 | bitr4di 289 | . 2 ⊢ (𝑅 ∈ Rels → (𝑅 = ◡𝑅 ↔ ◡𝑅 ⊆ 𝑅)) |
| 4 | eqcom 2741 | . 2 ⊢ (𝑅 = ◡𝑅 ↔ ◡𝑅 = 𝑅) | |
| 5 | 3, 4 | bitr3di 286 | 1 ⊢ (𝑅 ∈ Rels → (◡𝑅 ⊆ 𝑅 ↔ ◡𝑅 = 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1537 = wceq 1539 ∈ wcel 2107 ⊆ wss 3931 class class class wbr 5123 ◡ccnv 5664 Rels crels 38143 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-br 5124 df-opab 5186 df-xp 5671 df-rel 5672 df-cnv 5673 df-rels 38445 |
| This theorem is referenced by: elrelscnveq4 38454 dfsymrels4 38507 |
| Copyright terms: Public domain | W3C validator |