![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elres | Structured version Visualization version GIF version |
Description: Membership in a restriction. (Contributed by Scott Fenton, 17-Mar-2011.) (Proof shortened by Peter Mazsa, 9-Sep-2022.) |
Ref | Expression |
---|---|
elres | ⊢ (𝐴 ∈ (𝐵 ↾ 𝐶) ↔ ∃𝑥 ∈ 𝐶 ∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 〈𝑥, 𝑦〉 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-res 5712 | . . 3 ⊢ (𝐵 ↾ 𝐶) = (𝐵 ∩ (𝐶 × V)) | |
2 | 1 | eleq2i 2836 | . 2 ⊢ (𝐴 ∈ (𝐵 ↾ 𝐶) ↔ 𝐴 ∈ (𝐵 ∩ (𝐶 × V))) |
3 | elinxp 6048 | . 2 ⊢ (𝐴 ∈ (𝐵 ∩ (𝐶 × V)) ↔ ∃𝑥 ∈ 𝐶 ∃𝑦 ∈ V (𝐴 = 〈𝑥, 𝑦〉 ∧ 〈𝑥, 𝑦〉 ∈ 𝐵)) | |
4 | rexv 3517 | . . 3 ⊢ (∃𝑦 ∈ V (𝐴 = 〈𝑥, 𝑦〉 ∧ 〈𝑥, 𝑦〉 ∈ 𝐵) ↔ ∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 〈𝑥, 𝑦〉 ∈ 𝐵)) | |
5 | 4 | rexbii 3100 | . 2 ⊢ (∃𝑥 ∈ 𝐶 ∃𝑦 ∈ V (𝐴 = 〈𝑥, 𝑦〉 ∧ 〈𝑥, 𝑦〉 ∈ 𝐵) ↔ ∃𝑥 ∈ 𝐶 ∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 〈𝑥, 𝑦〉 ∈ 𝐵)) |
6 | 2, 3, 5 | 3bitri 297 | 1 ⊢ (𝐴 ∈ (𝐵 ↾ 𝐶) ↔ ∃𝑥 ∈ 𝐶 ∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 〈𝑥, 𝑦〉 ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∃wex 1777 ∈ wcel 2108 ∃wrex 3076 Vcvv 3488 ∩ cin 3975 〈cop 4654 × cxp 5698 ↾ cres 5702 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-res 5712 |
This theorem is referenced by: elsnres 6050 eldm3 35723 |
Copyright terms: Public domain | W3C validator |