MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elres Structured version   Visualization version   GIF version

Theorem elres 5976
Description: Membership in a restriction. (Contributed by Scott Fenton, 17-Mar-2011.) (Proof shortened by Peter Mazsa, 9-Sep-2022.)
Assertion
Ref Expression
elres (𝐴 ∈ (𝐵𝐶) ↔ ∃𝑥𝐶𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦

Proof of Theorem elres
StepHypRef Expression
1 df-res 5633 . . 3 (𝐵𝐶) = (𝐵 ∩ (𝐶 × V))
21eleq2i 2825 . 2 (𝐴 ∈ (𝐵𝐶) ↔ 𝐴 ∈ (𝐵 ∩ (𝐶 × V)))
3 elinxp 5975 . 2 (𝐴 ∈ (𝐵 ∩ (𝐶 × V)) ↔ ∃𝑥𝐶𝑦 ∈ V (𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵))
4 rexv 3465 . . 3 (∃𝑦 ∈ V (𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵) ↔ ∃𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵))
54rexbii 3080 . 2 (∃𝑥𝐶𝑦 ∈ V (𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵) ↔ ∃𝑥𝐶𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵))
62, 3, 53bitri 297 1 (𝐴 ∈ (𝐵𝐶) ↔ ∃𝑥𝐶𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wex 1780  wcel 2113  wrex 3057  Vcvv 3437  cin 3897  cop 4583   × cxp 5619  cres 5623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5096  df-opab 5158  df-xp 5627  df-rel 5628  df-res 5633
This theorem is referenced by:  elsnres  5977  eldm3  35877
  Copyright terms: Public domain W3C validator