MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elres Structured version   Visualization version   GIF version

Theorem elres 5643
Description: Membership in a restriction. (Contributed by Scott Fenton, 17-Mar-2011.) (Proof shortened by Peter Mazsa, 9-Sep-2022.)
Assertion
Ref Expression
elres (𝐴 ∈ (𝐵𝐶) ↔ ∃𝑥𝐶𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦

Proof of Theorem elres
StepHypRef Expression
1 df-res 5322 . . 3 (𝐵𝐶) = (𝐵 ∩ (𝐶 × V))
21eleq2i 2868 . 2 (𝐴 ∈ (𝐵𝐶) ↔ 𝐴 ∈ (𝐵 ∩ (𝐶 × V)))
3 elinxp 5642 . 2 (𝐴 ∈ (𝐵 ∩ (𝐶 × V)) ↔ ∃𝑥𝐶𝑦 ∈ V (𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵))
4 rexv 3406 . . 3 (∃𝑦 ∈ V (𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵) ↔ ∃𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵))
54rexbii 3220 . 2 (∃𝑥𝐶𝑦 ∈ V (𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵) ↔ ∃𝑥𝐶𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵))
62, 3, 53bitri 289 1 (𝐴 ∈ (𝐵𝐶) ↔ ∃𝑥𝐶𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 198  wa 385   = wceq 1653  wex 1875  wcel 2157  wrex 3088  Vcvv 3383  cin 3766  cop 4372   × cxp 5308  cres 5312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2354  ax-ext 2775  ax-sep 4973  ax-nul 4981  ax-pr 5095
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-clab 2784  df-cleq 2790  df-clel 2793  df-nfc 2928  df-ral 3092  df-rex 3093  df-rab 3096  df-v 3385  df-dif 3770  df-un 3772  df-in 3774  df-ss 3781  df-nul 4114  df-if 4276  df-sn 4367  df-pr 4369  df-op 4373  df-br 4842  df-opab 4904  df-xp 5316  df-rel 5317  df-res 5322
This theorem is referenced by:  elsnres  5645  elridOLD  5668  eldm3  32157
  Copyright terms: Public domain W3C validator