MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elres Structured version   Visualization version   GIF version

Theorem elres 5930
Description: Membership in a restriction. (Contributed by Scott Fenton, 17-Mar-2011.) (Proof shortened by Peter Mazsa, 9-Sep-2022.)
Assertion
Ref Expression
elres (𝐴 ∈ (𝐵𝐶) ↔ ∃𝑥𝐶𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦

Proof of Theorem elres
StepHypRef Expression
1 df-res 5601 . . 3 (𝐵𝐶) = (𝐵 ∩ (𝐶 × V))
21eleq2i 2830 . 2 (𝐴 ∈ (𝐵𝐶) ↔ 𝐴 ∈ (𝐵 ∩ (𝐶 × V)))
3 elinxp 5929 . 2 (𝐴 ∈ (𝐵 ∩ (𝐶 × V)) ↔ ∃𝑥𝐶𝑦 ∈ V (𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵))
4 rexv 3457 . . 3 (∃𝑦 ∈ V (𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵) ↔ ∃𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵))
54rexbii 3181 . 2 (∃𝑥𝐶𝑦 ∈ V (𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵) ↔ ∃𝑥𝐶𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵))
62, 3, 53bitri 297 1 (𝐴 ∈ (𝐵𝐶) ↔ ∃𝑥𝐶𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1539  wex 1782  wcel 2106  wrex 3065  Vcvv 3432  cin 3886  cop 4567   × cxp 5587  cres 5591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-xp 5595  df-rel 5596  df-res 5601
This theorem is referenced by:  elsnres  5931  eldm3  33728
  Copyright terms: Public domain W3C validator