![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elres | Structured version Visualization version GIF version |
Description: Membership in a restriction. (Contributed by Scott Fenton, 17-Mar-2011.) (Proof shortened by Peter Mazsa, 9-Sep-2022.) |
Ref | Expression |
---|---|
elres | ⊢ (𝐴 ∈ (𝐵 ↾ 𝐶) ↔ ∃𝑥 ∈ 𝐶 ∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 〈𝑥, 𝑦〉 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-res 5322 | . . 3 ⊢ (𝐵 ↾ 𝐶) = (𝐵 ∩ (𝐶 × V)) | |
2 | 1 | eleq2i 2868 | . 2 ⊢ (𝐴 ∈ (𝐵 ↾ 𝐶) ↔ 𝐴 ∈ (𝐵 ∩ (𝐶 × V))) |
3 | elinxp 5642 | . 2 ⊢ (𝐴 ∈ (𝐵 ∩ (𝐶 × V)) ↔ ∃𝑥 ∈ 𝐶 ∃𝑦 ∈ V (𝐴 = 〈𝑥, 𝑦〉 ∧ 〈𝑥, 𝑦〉 ∈ 𝐵)) | |
4 | rexv 3406 | . . 3 ⊢ (∃𝑦 ∈ V (𝐴 = 〈𝑥, 𝑦〉 ∧ 〈𝑥, 𝑦〉 ∈ 𝐵) ↔ ∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 〈𝑥, 𝑦〉 ∈ 𝐵)) | |
5 | 4 | rexbii 3220 | . 2 ⊢ (∃𝑥 ∈ 𝐶 ∃𝑦 ∈ V (𝐴 = 〈𝑥, 𝑦〉 ∧ 〈𝑥, 𝑦〉 ∈ 𝐵) ↔ ∃𝑥 ∈ 𝐶 ∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 〈𝑥, 𝑦〉 ∈ 𝐵)) |
6 | 2, 3, 5 | 3bitri 289 | 1 ⊢ (𝐴 ∈ (𝐵 ↾ 𝐶) ↔ ∃𝑥 ∈ 𝐶 ∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 〈𝑥, 𝑦〉 ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∧ wa 385 = wceq 1653 ∃wex 1875 ∈ wcel 2157 ∃wrex 3088 Vcvv 3383 ∩ cin 3766 〈cop 4372 × cxp 5308 ↾ cres 5312 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 ax-sep 4973 ax-nul 4981 ax-pr 5095 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ral 3092 df-rex 3093 df-rab 3096 df-v 3385 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-nul 4114 df-if 4276 df-sn 4367 df-pr 4369 df-op 4373 df-br 4842 df-opab 4904 df-xp 5316 df-rel 5317 df-res 5322 |
This theorem is referenced by: elsnres 5645 elridOLD 5668 eldm3 32157 |
Copyright terms: Public domain | W3C validator |