![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elsnres | Structured version Visualization version GIF version |
Description: Membership in restriction to a singleton. (Contributed by Scott Fenton, 17-Mar-2011.) |
Ref | Expression |
---|---|
elsnres.1 | ⊢ 𝐶 ∈ V |
Ref | Expression |
---|---|
elsnres | ⊢ (𝐴 ∈ (𝐵 ↾ {𝐶}) ↔ ∃𝑦(𝐴 = 〈𝐶, 𝑦〉 ∧ 〈𝐶, 𝑦〉 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elres 6049 | . 2 ⊢ (𝐴 ∈ (𝐵 ↾ {𝐶}) ↔ ∃𝑥 ∈ {𝐶}∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 〈𝑥, 𝑦〉 ∈ 𝐵)) | |
2 | rexcom4 3294 | . 2 ⊢ (∃𝑥 ∈ {𝐶}∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 〈𝑥, 𝑦〉 ∈ 𝐵) ↔ ∃𝑦∃𝑥 ∈ {𝐶} (𝐴 = 〈𝑥, 𝑦〉 ∧ 〈𝑥, 𝑦〉 ∈ 𝐵)) | |
3 | elsnres.1 | . . . 4 ⊢ 𝐶 ∈ V | |
4 | opeq1 4897 | . . . . . 6 ⊢ (𝑥 = 𝐶 → 〈𝑥, 𝑦〉 = 〈𝐶, 𝑦〉) | |
5 | 4 | eqeq2d 2751 | . . . . 5 ⊢ (𝑥 = 𝐶 → (𝐴 = 〈𝑥, 𝑦〉 ↔ 𝐴 = 〈𝐶, 𝑦〉)) |
6 | 4 | eleq1d 2829 | . . . . 5 ⊢ (𝑥 = 𝐶 → (〈𝑥, 𝑦〉 ∈ 𝐵 ↔ 〈𝐶, 𝑦〉 ∈ 𝐵)) |
7 | 5, 6 | anbi12d 631 | . . . 4 ⊢ (𝑥 = 𝐶 → ((𝐴 = 〈𝑥, 𝑦〉 ∧ 〈𝑥, 𝑦〉 ∈ 𝐵) ↔ (𝐴 = 〈𝐶, 𝑦〉 ∧ 〈𝐶, 𝑦〉 ∈ 𝐵))) |
8 | 3, 7 | rexsn 4706 | . . 3 ⊢ (∃𝑥 ∈ {𝐶} (𝐴 = 〈𝑥, 𝑦〉 ∧ 〈𝑥, 𝑦〉 ∈ 𝐵) ↔ (𝐴 = 〈𝐶, 𝑦〉 ∧ 〈𝐶, 𝑦〉 ∈ 𝐵)) |
9 | 8 | exbii 1846 | . 2 ⊢ (∃𝑦∃𝑥 ∈ {𝐶} (𝐴 = 〈𝑥, 𝑦〉 ∧ 〈𝑥, 𝑦〉 ∈ 𝐵) ↔ ∃𝑦(𝐴 = 〈𝐶, 𝑦〉 ∧ 〈𝐶, 𝑦〉 ∈ 𝐵)) |
10 | 1, 2, 9 | 3bitri 297 | 1 ⊢ (𝐴 ∈ (𝐵 ↾ {𝐶}) ↔ ∃𝑦(𝐴 = 〈𝐶, 𝑦〉 ∧ 〈𝐶, 𝑦〉 ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∃wex 1777 ∈ wcel 2108 ∃wrex 3076 Vcvv 3488 {csn 4648 〈cop 4654 ↾ cres 5702 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-11 2158 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-res 5712 |
This theorem is referenced by: fvn0ssdmfun 7108 frxp 8167 gsumhashmul 33040 |
Copyright terms: Public domain | W3C validator |