| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elsnres | Structured version Visualization version GIF version | ||
| Description: Membership in restriction to a singleton. (Contributed by Scott Fenton, 17-Mar-2011.) |
| Ref | Expression |
|---|---|
| elsnres.1 | ⊢ 𝐶 ∈ V |
| Ref | Expression |
|---|---|
| elsnres | ⊢ (𝐴 ∈ (𝐵 ↾ {𝐶}) ↔ ∃𝑦(𝐴 = 〈𝐶, 𝑦〉 ∧ 〈𝐶, 𝑦〉 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elres 6012 | . 2 ⊢ (𝐴 ∈ (𝐵 ↾ {𝐶}) ↔ ∃𝑥 ∈ {𝐶}∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 〈𝑥, 𝑦〉 ∈ 𝐵)) | |
| 2 | rexcom4 3273 | . 2 ⊢ (∃𝑥 ∈ {𝐶}∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 〈𝑥, 𝑦〉 ∈ 𝐵) ↔ ∃𝑦∃𝑥 ∈ {𝐶} (𝐴 = 〈𝑥, 𝑦〉 ∧ 〈𝑥, 𝑦〉 ∈ 𝐵)) | |
| 3 | elsnres.1 | . . . 4 ⊢ 𝐶 ∈ V | |
| 4 | opeq1 4854 | . . . . . 6 ⊢ (𝑥 = 𝐶 → 〈𝑥, 𝑦〉 = 〈𝐶, 𝑦〉) | |
| 5 | 4 | eqeq2d 2747 | . . . . 5 ⊢ (𝑥 = 𝐶 → (𝐴 = 〈𝑥, 𝑦〉 ↔ 𝐴 = 〈𝐶, 𝑦〉)) |
| 6 | 4 | eleq1d 2820 | . . . . 5 ⊢ (𝑥 = 𝐶 → (〈𝑥, 𝑦〉 ∈ 𝐵 ↔ 〈𝐶, 𝑦〉 ∈ 𝐵)) |
| 7 | 5, 6 | anbi12d 632 | . . . 4 ⊢ (𝑥 = 𝐶 → ((𝐴 = 〈𝑥, 𝑦〉 ∧ 〈𝑥, 𝑦〉 ∈ 𝐵) ↔ (𝐴 = 〈𝐶, 𝑦〉 ∧ 〈𝐶, 𝑦〉 ∈ 𝐵))) |
| 8 | 3, 7 | rexsn 4663 | . . 3 ⊢ (∃𝑥 ∈ {𝐶} (𝐴 = 〈𝑥, 𝑦〉 ∧ 〈𝑥, 𝑦〉 ∈ 𝐵) ↔ (𝐴 = 〈𝐶, 𝑦〉 ∧ 〈𝐶, 𝑦〉 ∈ 𝐵)) |
| 9 | 8 | exbii 1848 | . 2 ⊢ (∃𝑦∃𝑥 ∈ {𝐶} (𝐴 = 〈𝑥, 𝑦〉 ∧ 〈𝑥, 𝑦〉 ∈ 𝐵) ↔ ∃𝑦(𝐴 = 〈𝐶, 𝑦〉 ∧ 〈𝐶, 𝑦〉 ∈ 𝐵)) |
| 10 | 1, 2, 9 | 3bitri 297 | 1 ⊢ (𝐴 ∈ (𝐵 ↾ {𝐶}) ↔ ∃𝑦(𝐴 = 〈𝐶, 𝑦〉 ∧ 〈𝐶, 𝑦〉 ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∃wrex 3061 Vcvv 3464 {csn 4606 〈cop 4612 ↾ cres 5661 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-xp 5665 df-rel 5666 df-res 5671 |
| This theorem is referenced by: fvn0ssdmfun 7069 frxp 8130 gsumhashmul 33060 |
| Copyright terms: Public domain | W3C validator |