Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldm3 Structured version   Visualization version   GIF version

Theorem eldm3 33470
Description: Quantifier-free definition of membership in a domain. (Contributed by Scott Fenton, 21-Jan-2017.)
Assertion
Ref Expression
eldm3 (𝐴 ∈ dom 𝐵 ↔ (𝐵 ↾ {𝐴}) ≠ ∅)

Proof of Theorem eldm3
Dummy variables 𝑥 𝑦 𝑧 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3438 . 2 (𝐴 ∈ dom 𝐵𝐴 ∈ V)
2 snprc 4647 . . . 4 𝐴 ∈ V ↔ {𝐴} = ∅)
3 reseq2 5860 . . . . 5 ({𝐴} = ∅ → (𝐵 ↾ {𝐴}) = (𝐵 ↾ ∅))
4 res0 5869 . . . . 5 (𝐵 ↾ ∅) = ∅
53, 4eqtrdi 2795 . . . 4 ({𝐴} = ∅ → (𝐵 ↾ {𝐴}) = ∅)
62, 5sylbi 220 . . 3 𝐴 ∈ V → (𝐵 ↾ {𝐴}) = ∅)
76necon1ai 2969 . 2 ((𝐵 ↾ {𝐴}) ≠ ∅ → 𝐴 ∈ V)
8 eleq1 2826 . . 3 (𝑥 = 𝐴 → (𝑥 ∈ dom 𝐵𝐴 ∈ dom 𝐵))
9 sneq 4565 . . . . 5 (𝑥 = 𝐴 → {𝑥} = {𝐴})
109reseq2d 5865 . . . 4 (𝑥 = 𝐴 → (𝐵 ↾ {𝑥}) = (𝐵 ↾ {𝐴}))
1110neeq1d 3001 . . 3 (𝑥 = 𝐴 → ((𝐵 ↾ {𝑥}) ≠ ∅ ↔ (𝐵 ↾ {𝐴}) ≠ ∅))
12 dfclel 2818 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ 𝐵 ↔ ∃𝑝(𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑝𝐵))
1312exbii 1855 . . . 4 (∃𝑦𝑥, 𝑦⟩ ∈ 𝐵 ↔ ∃𝑦𝑝(𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑝𝐵))
14 vex 3424 . . . . 5 𝑥 ∈ V
1514eldm2 5784 . . . 4 (𝑥 ∈ dom 𝐵 ↔ ∃𝑦𝑥, 𝑦⟩ ∈ 𝐵)
16 n0 4275 . . . . 5 ((𝐵 ↾ {𝑥}) ≠ ∅ ↔ ∃𝑝 𝑝 ∈ (𝐵 ↾ {𝑥}))
17 elres 5904 . . . . . . 7 (𝑝 ∈ (𝐵 ↾ {𝑥}) ↔ ∃𝑧 ∈ {𝑥}∃𝑦(𝑝 = ⟨𝑧, 𝑦⟩ ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐵))
18 eleq1 2826 . . . . . . . . . . 11 (𝑝 = ⟨𝑧, 𝑦⟩ → (𝑝𝐵 ↔ ⟨𝑧, 𝑦⟩ ∈ 𝐵))
1918pm5.32i 578 . . . . . . . . . 10 ((𝑝 = ⟨𝑧, 𝑦⟩ ∧ 𝑝𝐵) ↔ (𝑝 = ⟨𝑧, 𝑦⟩ ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐵))
20 opeq1 4798 . . . . . . . . . . . 12 (𝑧 = 𝑥 → ⟨𝑧, 𝑦⟩ = ⟨𝑥, 𝑦⟩)
2120eqeq2d 2749 . . . . . . . . . . 11 (𝑧 = 𝑥 → (𝑝 = ⟨𝑧, 𝑦⟩ ↔ 𝑝 = ⟨𝑥, 𝑦⟩))
2221anbi1d 633 . . . . . . . . . 10 (𝑧 = 𝑥 → ((𝑝 = ⟨𝑧, 𝑦⟩ ∧ 𝑝𝐵) ↔ (𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑝𝐵)))
2319, 22bitr3id 288 . . . . . . . . 9 (𝑧 = 𝑥 → ((𝑝 = ⟨𝑧, 𝑦⟩ ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐵) ↔ (𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑝𝐵)))
2423exbidv 1929 . . . . . . . 8 (𝑧 = 𝑥 → (∃𝑦(𝑝 = ⟨𝑧, 𝑦⟩ ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐵) ↔ ∃𝑦(𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑝𝐵)))
2514, 24rexsn 4612 . . . . . . 7 (∃𝑧 ∈ {𝑥}∃𝑦(𝑝 = ⟨𝑧, 𝑦⟩ ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐵) ↔ ∃𝑦(𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑝𝐵))
2617, 25bitri 278 . . . . . 6 (𝑝 ∈ (𝐵 ↾ {𝑥}) ↔ ∃𝑦(𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑝𝐵))
2726exbii 1855 . . . . 5 (∃𝑝 𝑝 ∈ (𝐵 ↾ {𝑥}) ↔ ∃𝑝𝑦(𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑝𝐵))
28 excom 2167 . . . . 5 (∃𝑝𝑦(𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑝𝐵) ↔ ∃𝑦𝑝(𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑝𝐵))
2916, 27, 283bitri 300 . . . 4 ((𝐵 ↾ {𝑥}) ≠ ∅ ↔ ∃𝑦𝑝(𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑝𝐵))
3013, 15, 293bitr4i 306 . . 3 (𝑥 ∈ dom 𝐵 ↔ (𝐵 ↾ {𝑥}) ≠ ∅)
318, 11, 30vtoclbg 3495 . 2 (𝐴 ∈ V → (𝐴 ∈ dom 𝐵 ↔ (𝐵 ↾ {𝐴}) ≠ ∅))
321, 7, 31pm5.21nii 383 1 (𝐴 ∈ dom 𝐵 ↔ (𝐵 ↾ {𝐴}) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 209  wa 399   = wceq 1543  wex 1787  wcel 2111  wne 2941  wrex 3063  Vcvv 3420  c0 4251  {csn 4555  cop 4561  dom cdm 5565  cres 5567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2113  ax-9 2121  ax-11 2159  ax-ext 2709  ax-sep 5206  ax-nul 5213  ax-pr 5336
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-sb 2072  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2942  df-ral 3067  df-rex 3068  df-rab 3071  df-v 3422  df-dif 3883  df-un 3885  df-in 3887  df-ss 3897  df-nul 4252  df-if 4454  df-sn 4556  df-pr 4558  df-op 4562  df-br 5068  df-opab 5130  df-xp 5571  df-rel 5572  df-dm 5575  df-res 5577
This theorem is referenced by:  elrn3  33471
  Copyright terms: Public domain W3C validator