Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldm3 Structured version   Visualization version   GIF version

Theorem eldm3 32028
Description: Quantifier-free definition of membership in a domain. (Contributed by Scott Fenton, 21-Jan-2017.)
Assertion
Ref Expression
eldm3 (𝐴 ∈ dom 𝐵 ↔ (𝐵 ↾ {𝐴}) ≠ ∅)

Proof of Theorem eldm3
Dummy variables 𝑥 𝑦 𝑧 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3365 . 2 (𝐴 ∈ dom 𝐵𝐴 ∈ V)
2 snprc 4408 . . . 4 𝐴 ∈ V ↔ {𝐴} = ∅)
3 reseq2 5560 . . . . 5 ({𝐴} = ∅ → (𝐵 ↾ {𝐴}) = (𝐵 ↾ ∅))
4 res0 5569 . . . . 5 (𝐵 ↾ ∅) = ∅
53, 4syl6eq 2815 . . . 4 ({𝐴} = ∅ → (𝐵 ↾ {𝐴}) = ∅)
62, 5sylbi 208 . . 3 𝐴 ∈ V → (𝐵 ↾ {𝐴}) = ∅)
76necon1ai 2964 . 2 ((𝐵 ↾ {𝐴}) ≠ ∅ → 𝐴 ∈ V)
8 eleq1 2832 . . 3 (𝑥 = 𝐴 → (𝑥 ∈ dom 𝐵𝐴 ∈ dom 𝐵))
9 sneq 4344 . . . . 5 (𝑥 = 𝐴 → {𝑥} = {𝐴})
109reseq2d 5565 . . . 4 (𝑥 = 𝐴 → (𝐵 ↾ {𝑥}) = (𝐵 ↾ {𝐴}))
1110neeq1d 2996 . . 3 (𝑥 = 𝐴 → ((𝐵 ↾ {𝑥}) ≠ ∅ ↔ (𝐵 ↾ {𝐴}) ≠ ∅))
12 df-clel 2761 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ 𝐵 ↔ ∃𝑝(𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑝𝐵))
1312exbii 1943 . . . 4 (∃𝑦𝑥, 𝑦⟩ ∈ 𝐵 ↔ ∃𝑦𝑝(𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑝𝐵))
14 vex 3353 . . . . 5 𝑥 ∈ V
1514eldm2 5490 . . . 4 (𝑥 ∈ dom 𝐵 ↔ ∃𝑦𝑥, 𝑦⟩ ∈ 𝐵)
16 n0 4095 . . . . 5 ((𝐵 ↾ {𝑥}) ≠ ∅ ↔ ∃𝑝 𝑝 ∈ (𝐵 ↾ {𝑥}))
17 elres 5610 . . . . . . 7 (𝑝 ∈ (𝐵 ↾ {𝑥}) ↔ ∃𝑧 ∈ {𝑥}∃𝑦(𝑝 = ⟨𝑧, 𝑦⟩ ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐵))
18 eleq1 2832 . . . . . . . . . . 11 (𝑝 = ⟨𝑧, 𝑦⟩ → (𝑝𝐵 ↔ ⟨𝑧, 𝑦⟩ ∈ 𝐵))
1918pm5.32i 570 . . . . . . . . . 10 ((𝑝 = ⟨𝑧, 𝑦⟩ ∧ 𝑝𝐵) ↔ (𝑝 = ⟨𝑧, 𝑦⟩ ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐵))
20 opeq1 4559 . . . . . . . . . . . 12 (𝑧 = 𝑥 → ⟨𝑧, 𝑦⟩ = ⟨𝑥, 𝑦⟩)
2120eqeq2d 2775 . . . . . . . . . . 11 (𝑧 = 𝑥 → (𝑝 = ⟨𝑧, 𝑦⟩ ↔ 𝑝 = ⟨𝑥, 𝑦⟩))
2221anbi1d 623 . . . . . . . . . 10 (𝑧 = 𝑥 → ((𝑝 = ⟨𝑧, 𝑦⟩ ∧ 𝑝𝐵) ↔ (𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑝𝐵)))
2319, 22syl5bbr 276 . . . . . . . . 9 (𝑧 = 𝑥 → ((𝑝 = ⟨𝑧, 𝑦⟩ ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐵) ↔ (𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑝𝐵)))
2423exbidv 2016 . . . . . . . 8 (𝑧 = 𝑥 → (∃𝑦(𝑝 = ⟨𝑧, 𝑦⟩ ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐵) ↔ ∃𝑦(𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑝𝐵)))
2514, 24rexsn 4380 . . . . . . 7 (∃𝑧 ∈ {𝑥}∃𝑦(𝑝 = ⟨𝑧, 𝑦⟩ ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐵) ↔ ∃𝑦(𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑝𝐵))
2617, 25bitri 266 . . . . . 6 (𝑝 ∈ (𝐵 ↾ {𝑥}) ↔ ∃𝑦(𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑝𝐵))
2726exbii 1943 . . . . 5 (∃𝑝 𝑝 ∈ (𝐵 ↾ {𝑥}) ↔ ∃𝑝𝑦(𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑝𝐵))
28 excom 2206 . . . . 5 (∃𝑝𝑦(𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑝𝐵) ↔ ∃𝑦𝑝(𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑝𝐵))
2916, 27, 283bitri 288 . . . 4 ((𝐵 ↾ {𝑥}) ≠ ∅ ↔ ∃𝑦𝑝(𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑝𝐵))
3013, 15, 293bitr4i 294 . . 3 (𝑥 ∈ dom 𝐵 ↔ (𝐵 ↾ {𝑥}) ≠ ∅)
318, 11, 30vtoclbg 3419 . 2 (𝐴 ∈ V → (𝐴 ∈ dom 𝐵 ↔ (𝐵 ↾ {𝐴}) ≠ ∅))
321, 7, 31pm5.21nii 369 1 (𝐴 ∈ dom 𝐵 ↔ (𝐵 ↾ {𝐴}) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 197  wa 384   = wceq 1652  wex 1874  wcel 2155  wne 2937  wrex 3056  Vcvv 3350  c0 4079  {csn 4334  cop 4340  dom cdm 5277  cres 5279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4941  ax-nul 4949  ax-pr 5062
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-ral 3060  df-rex 3061  df-rab 3064  df-v 3352  df-sbc 3597  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-nul 4080  df-if 4244  df-sn 4335  df-pr 4337  df-op 4341  df-br 4810  df-opab 4872  df-xp 5283  df-rel 5284  df-dm 5287  df-res 5289
This theorem is referenced by:  elrn3  32029
  Copyright terms: Public domain W3C validator