Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldm3 Structured version   Visualization version   GIF version

Theorem eldm3 33110
Description: Quantifier-free definition of membership in a domain. (Contributed by Scott Fenton, 21-Jan-2017.)
Assertion
Ref Expression
eldm3 (𝐴 ∈ dom 𝐵 ↔ (𝐵 ↾ {𝐴}) ≠ ∅)

Proof of Theorem eldm3
Dummy variables 𝑥 𝑦 𝑧 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3459 . 2 (𝐴 ∈ dom 𝐵𝐴 ∈ V)
2 snprc 4613 . . . 4 𝐴 ∈ V ↔ {𝐴} = ∅)
3 reseq2 5813 . . . . 5 ({𝐴} = ∅ → (𝐵 ↾ {𝐴}) = (𝐵 ↾ ∅))
4 res0 5822 . . . . 5 (𝐵 ↾ ∅) = ∅
53, 4eqtrdi 2849 . . . 4 ({𝐴} = ∅ → (𝐵 ↾ {𝐴}) = ∅)
62, 5sylbi 220 . . 3 𝐴 ∈ V → (𝐵 ↾ {𝐴}) = ∅)
76necon1ai 3014 . 2 ((𝐵 ↾ {𝐴}) ≠ ∅ → 𝐴 ∈ V)
8 eleq1 2877 . . 3 (𝑥 = 𝐴 → (𝑥 ∈ dom 𝐵𝐴 ∈ dom 𝐵))
9 sneq 4535 . . . . 5 (𝑥 = 𝐴 → {𝑥} = {𝐴})
109reseq2d 5818 . . . 4 (𝑥 = 𝐴 → (𝐵 ↾ {𝑥}) = (𝐵 ↾ {𝐴}))
1110neeq1d 3046 . . 3 (𝑥 = 𝐴 → ((𝐵 ↾ {𝑥}) ≠ ∅ ↔ (𝐵 ↾ {𝐴}) ≠ ∅))
12 dfclel 2871 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ 𝐵 ↔ ∃𝑝(𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑝𝐵))
1312exbii 1849 . . . 4 (∃𝑦𝑥, 𝑦⟩ ∈ 𝐵 ↔ ∃𝑦𝑝(𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑝𝐵))
14 vex 3444 . . . . 5 𝑥 ∈ V
1514eldm2 5734 . . . 4 (𝑥 ∈ dom 𝐵 ↔ ∃𝑦𝑥, 𝑦⟩ ∈ 𝐵)
16 n0 4260 . . . . 5 ((𝐵 ↾ {𝑥}) ≠ ∅ ↔ ∃𝑝 𝑝 ∈ (𝐵 ↾ {𝑥}))
17 elres 5857 . . . . . . 7 (𝑝 ∈ (𝐵 ↾ {𝑥}) ↔ ∃𝑧 ∈ {𝑥}∃𝑦(𝑝 = ⟨𝑧, 𝑦⟩ ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐵))
18 eleq1 2877 . . . . . . . . . . 11 (𝑝 = ⟨𝑧, 𝑦⟩ → (𝑝𝐵 ↔ ⟨𝑧, 𝑦⟩ ∈ 𝐵))
1918pm5.32i 578 . . . . . . . . . 10 ((𝑝 = ⟨𝑧, 𝑦⟩ ∧ 𝑝𝐵) ↔ (𝑝 = ⟨𝑧, 𝑦⟩ ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐵))
20 opeq1 4763 . . . . . . . . . . . 12 (𝑧 = 𝑥 → ⟨𝑧, 𝑦⟩ = ⟨𝑥, 𝑦⟩)
2120eqeq2d 2809 . . . . . . . . . . 11 (𝑧 = 𝑥 → (𝑝 = ⟨𝑧, 𝑦⟩ ↔ 𝑝 = ⟨𝑥, 𝑦⟩))
2221anbi1d 632 . . . . . . . . . 10 (𝑧 = 𝑥 → ((𝑝 = ⟨𝑧, 𝑦⟩ ∧ 𝑝𝐵) ↔ (𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑝𝐵)))
2319, 22bitr3id 288 . . . . . . . . 9 (𝑧 = 𝑥 → ((𝑝 = ⟨𝑧, 𝑦⟩ ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐵) ↔ (𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑝𝐵)))
2423exbidv 1922 . . . . . . . 8 (𝑧 = 𝑥 → (∃𝑦(𝑝 = ⟨𝑧, 𝑦⟩ ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐵) ↔ ∃𝑦(𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑝𝐵)))
2514, 24rexsn 4580 . . . . . . 7 (∃𝑧 ∈ {𝑥}∃𝑦(𝑝 = ⟨𝑧, 𝑦⟩ ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐵) ↔ ∃𝑦(𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑝𝐵))
2617, 25bitri 278 . . . . . 6 (𝑝 ∈ (𝐵 ↾ {𝑥}) ↔ ∃𝑦(𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑝𝐵))
2726exbii 1849 . . . . 5 (∃𝑝 𝑝 ∈ (𝐵 ↾ {𝑥}) ↔ ∃𝑝𝑦(𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑝𝐵))
28 excom 2166 . . . . 5 (∃𝑝𝑦(𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑝𝐵) ↔ ∃𝑦𝑝(𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑝𝐵))
2916, 27, 283bitri 300 . . . 4 ((𝐵 ↾ {𝑥}) ≠ ∅ ↔ ∃𝑦𝑝(𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑝𝐵))
3013, 15, 293bitr4i 306 . . 3 (𝑥 ∈ dom 𝐵 ↔ (𝐵 ↾ {𝑥}) ≠ ∅)
318, 11, 30vtoclbg 3517 . 2 (𝐴 ∈ V → (𝐴 ∈ dom 𝐵 ↔ (𝐵 ↾ {𝐴}) ≠ ∅))
321, 7, 31pm5.21nii 383 1 (𝐴 ∈ dom 𝐵 ↔ (𝐵 ↾ {𝐴}) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 209  wa 399   = wceq 1538  wex 1781  wcel 2111  wne 2987  wrex 3107  Vcvv 3441  c0 4243  {csn 4525  cop 4531  dom cdm 5519  cres 5521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-br 5031  df-opab 5093  df-xp 5525  df-rel 5526  df-dm 5529  df-res 5531
This theorem is referenced by:  elrn3  33111
  Copyright terms: Public domain W3C validator