MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvrnressn Structured version   Visualization version   GIF version

Theorem fvrnressn 7033
Description: If the value of a function is in the range of the function restricted to the singleton containing the argument, then the value of the function is in the range of the function. (Contributed by Alexander van der Vekens, 22-Jul-2018.)
Assertion
Ref Expression
fvrnressn (𝑋𝑉 → ((𝐹𝑋) ∈ ran (𝐹 ↾ {𝑋}) → (𝐹𝑋) ∈ ran 𝐹))

Proof of Theorem fvrnressn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-ima 5602 . . 3 (𝐹 “ {𝑋}) = ran (𝐹 ↾ {𝑋})
21eleq2i 2830 . 2 ((𝐹𝑋) ∈ (𝐹 “ {𝑋}) ↔ (𝐹𝑋) ∈ ran (𝐹 ↾ {𝑋}))
3 opeq1 4804 . . . . 5 (𝑥 = 𝑋 → ⟨𝑥, (𝐹𝑋)⟩ = ⟨𝑋, (𝐹𝑋)⟩)
43eleq1d 2823 . . . 4 (𝑥 = 𝑋 → (⟨𝑥, (𝐹𝑋)⟩ ∈ 𝐹 ↔ ⟨𝑋, (𝐹𝑋)⟩ ∈ 𝐹))
54spcegv 3536 . . 3 (𝑋𝑉 → (⟨𝑋, (𝐹𝑋)⟩ ∈ 𝐹 → ∃𝑥𝑥, (𝐹𝑋)⟩ ∈ 𝐹))
6 fvex 6787 . . . 4 (𝐹𝑋) ∈ V
7 elimasng 5996 . . . 4 ((𝑋𝑉 ∧ (𝐹𝑋) ∈ V) → ((𝐹𝑋) ∈ (𝐹 “ {𝑋}) ↔ ⟨𝑋, (𝐹𝑋)⟩ ∈ 𝐹))
86, 7mpan2 688 . . 3 (𝑋𝑉 → ((𝐹𝑋) ∈ (𝐹 “ {𝑋}) ↔ ⟨𝑋, (𝐹𝑋)⟩ ∈ 𝐹))
9 elrn2g 5799 . . . 4 ((𝐹𝑋) ∈ V → ((𝐹𝑋) ∈ ran 𝐹 ↔ ∃𝑥𝑥, (𝐹𝑋)⟩ ∈ 𝐹))
106, 9mp1i 13 . . 3 (𝑋𝑉 → ((𝐹𝑋) ∈ ran 𝐹 ↔ ∃𝑥𝑥, (𝐹𝑋)⟩ ∈ 𝐹))
115, 8, 103imtr4d 294 . 2 (𝑋𝑉 → ((𝐹𝑋) ∈ (𝐹 “ {𝑋}) → (𝐹𝑋) ∈ ran 𝐹))
122, 11syl5bir 242 1 (𝑋𝑉 → ((𝐹𝑋) ∈ ran (𝐹 ↾ {𝑋}) → (𝐹𝑋) ∈ ran 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wex 1782  wcel 2106  Vcvv 3432  {csn 4561  cop 4567  ran crn 5590  cres 5591  cima 5592  cfv 6433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-xp 5595  df-cnv 5597  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fv 6441
This theorem is referenced by:  fvn0fvelrn  7035  funressndmfvrn  44538
  Copyright terms: Public domain W3C validator