![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvrnressn | Structured version Visualization version GIF version |
Description: If the value of a function is in the range of the function restricted to the singleton containing the argument, then the value of the function is in the range of the function. (Contributed by Alexander van der Vekens, 22-Jul-2018.) |
Ref | Expression |
---|---|
fvrnressn | ⊢ (𝑋 ∈ 𝑉 → ((𝐹‘𝑋) ∈ ran (𝐹 ↾ {𝑋}) → (𝐹‘𝑋) ∈ ran 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ima 5325 | . . 3 ⊢ (𝐹 “ {𝑋}) = ran (𝐹 ↾ {𝑋}) | |
2 | 1 | eleq2i 2870 | . 2 ⊢ ((𝐹‘𝑋) ∈ (𝐹 “ {𝑋}) ↔ (𝐹‘𝑋) ∈ ran (𝐹 ↾ {𝑋})) |
3 | opeq1 4593 | . . . . 5 ⊢ (𝑥 = 𝑋 → 〈𝑥, (𝐹‘𝑋)〉 = 〈𝑋, (𝐹‘𝑋)〉) | |
4 | 3 | eleq1d 2863 | . . . 4 ⊢ (𝑥 = 𝑋 → (〈𝑥, (𝐹‘𝑋)〉 ∈ 𝐹 ↔ 〈𝑋, (𝐹‘𝑋)〉 ∈ 𝐹)) |
5 | 4 | spcegv 3482 | . . 3 ⊢ (𝑋 ∈ 𝑉 → (〈𝑋, (𝐹‘𝑋)〉 ∈ 𝐹 → ∃𝑥〈𝑥, (𝐹‘𝑋)〉 ∈ 𝐹)) |
6 | fvex 6424 | . . . 4 ⊢ (𝐹‘𝑋) ∈ V | |
7 | elimasng 5708 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ (𝐹‘𝑋) ∈ V) → ((𝐹‘𝑋) ∈ (𝐹 “ {𝑋}) ↔ 〈𝑋, (𝐹‘𝑋)〉 ∈ 𝐹)) | |
8 | 6, 7 | mpan2 683 | . . 3 ⊢ (𝑋 ∈ 𝑉 → ((𝐹‘𝑋) ∈ (𝐹 “ {𝑋}) ↔ 〈𝑋, (𝐹‘𝑋)〉 ∈ 𝐹)) |
9 | elrn2g 5516 | . . . 4 ⊢ ((𝐹‘𝑋) ∈ V → ((𝐹‘𝑋) ∈ ran 𝐹 ↔ ∃𝑥〈𝑥, (𝐹‘𝑋)〉 ∈ 𝐹)) | |
10 | 6, 9 | mp1i 13 | . . 3 ⊢ (𝑋 ∈ 𝑉 → ((𝐹‘𝑋) ∈ ran 𝐹 ↔ ∃𝑥〈𝑥, (𝐹‘𝑋)〉 ∈ 𝐹)) |
11 | 5, 8, 10 | 3imtr4d 286 | . 2 ⊢ (𝑋 ∈ 𝑉 → ((𝐹‘𝑋) ∈ (𝐹 “ {𝑋}) → (𝐹‘𝑋) ∈ ran 𝐹)) |
12 | 2, 11 | syl5bir 235 | 1 ⊢ (𝑋 ∈ 𝑉 → ((𝐹‘𝑋) ∈ ran (𝐹 ↾ {𝑋}) → (𝐹‘𝑋) ∈ ran 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 = wceq 1653 ∃wex 1875 ∈ wcel 2157 Vcvv 3385 {csn 4368 〈cop 4374 ran crn 5313 ↾ cres 5314 “ cima 5315 ‘cfv 6101 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pr 5097 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-sbc 3634 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-br 4844 df-opab 4906 df-xp 5318 df-cnv 5320 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-iota 6064 df-fv 6109 |
This theorem is referenced by: fvn0fvelrn 6658 funressndmfvrn 41927 |
Copyright terms: Public domain | W3C validator |