![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvrnressn | Structured version Visualization version GIF version |
Description: If the value of a function is in the range of the function restricted to the singleton containing the argument, then the value of the function is in the range of the function. (Contributed by Alexander van der Vekens, 22-Jul-2018.) |
Ref | Expression |
---|---|
fvrnressn | ⊢ (𝑋 ∈ 𝑉 → ((𝐹‘𝑋) ∈ ran (𝐹 ↾ {𝑋}) → (𝐹‘𝑋) ∈ ran 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ima 5702 | . . 3 ⊢ (𝐹 “ {𝑋}) = ran (𝐹 ↾ {𝑋}) | |
2 | 1 | eleq2i 2831 | . 2 ⊢ ((𝐹‘𝑋) ∈ (𝐹 “ {𝑋}) ↔ (𝐹‘𝑋) ∈ ran (𝐹 ↾ {𝑋})) |
3 | opeq1 4878 | . . . . 5 ⊢ (𝑥 = 𝑋 → 〈𝑥, (𝐹‘𝑋)〉 = 〈𝑋, (𝐹‘𝑋)〉) | |
4 | 3 | eleq1d 2824 | . . . 4 ⊢ (𝑥 = 𝑋 → (〈𝑥, (𝐹‘𝑋)〉 ∈ 𝐹 ↔ 〈𝑋, (𝐹‘𝑋)〉 ∈ 𝐹)) |
5 | 4 | spcegv 3597 | . . 3 ⊢ (𝑋 ∈ 𝑉 → (〈𝑋, (𝐹‘𝑋)〉 ∈ 𝐹 → ∃𝑥〈𝑥, (𝐹‘𝑋)〉 ∈ 𝐹)) |
6 | fvex 6920 | . . . 4 ⊢ (𝐹‘𝑋) ∈ V | |
7 | elimasng 6109 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ (𝐹‘𝑋) ∈ V) → ((𝐹‘𝑋) ∈ (𝐹 “ {𝑋}) ↔ 〈𝑋, (𝐹‘𝑋)〉 ∈ 𝐹)) | |
8 | 6, 7 | mpan2 691 | . . 3 ⊢ (𝑋 ∈ 𝑉 → ((𝐹‘𝑋) ∈ (𝐹 “ {𝑋}) ↔ 〈𝑋, (𝐹‘𝑋)〉 ∈ 𝐹)) |
9 | elrn2g 5904 | . . . 4 ⊢ ((𝐹‘𝑋) ∈ V → ((𝐹‘𝑋) ∈ ran 𝐹 ↔ ∃𝑥〈𝑥, (𝐹‘𝑋)〉 ∈ 𝐹)) | |
10 | 6, 9 | mp1i 13 | . . 3 ⊢ (𝑋 ∈ 𝑉 → ((𝐹‘𝑋) ∈ ran 𝐹 ↔ ∃𝑥〈𝑥, (𝐹‘𝑋)〉 ∈ 𝐹)) |
11 | 5, 8, 10 | 3imtr4d 294 | . 2 ⊢ (𝑋 ∈ 𝑉 → ((𝐹‘𝑋) ∈ (𝐹 “ {𝑋}) → (𝐹‘𝑋) ∈ ran 𝐹)) |
12 | 2, 11 | biimtrrid 243 | 1 ⊢ (𝑋 ∈ 𝑉 → ((𝐹‘𝑋) ∈ ran (𝐹 ↾ {𝑋}) → (𝐹‘𝑋) ∈ ran 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∃wex 1776 ∈ wcel 2106 Vcvv 3478 {csn 4631 〈cop 4637 ran crn 5690 ↾ cres 5691 “ cima 5692 ‘cfv 6563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-xp 5695 df-cnv 5697 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fv 6571 |
This theorem is referenced by: fvn0fvelrnOLD 7183 funressndmfvrn 46994 |
Copyright terms: Public domain | W3C validator |