Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fvrnressn | Structured version Visualization version GIF version |
Description: If the value of a function is in the range of the function restricted to the singleton containing the argument, then the value of the function is in the range of the function. (Contributed by Alexander van der Vekens, 22-Jul-2018.) |
Ref | Expression |
---|---|
fvrnressn | ⊢ (𝑋 ∈ 𝑉 → ((𝐹‘𝑋) ∈ ran (𝐹 ↾ {𝑋}) → (𝐹‘𝑋) ∈ ran 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ima 5602 | . . 3 ⊢ (𝐹 “ {𝑋}) = ran (𝐹 ↾ {𝑋}) | |
2 | 1 | eleq2i 2830 | . 2 ⊢ ((𝐹‘𝑋) ∈ (𝐹 “ {𝑋}) ↔ (𝐹‘𝑋) ∈ ran (𝐹 ↾ {𝑋})) |
3 | opeq1 4804 | . . . . 5 ⊢ (𝑥 = 𝑋 → 〈𝑥, (𝐹‘𝑋)〉 = 〈𝑋, (𝐹‘𝑋)〉) | |
4 | 3 | eleq1d 2823 | . . . 4 ⊢ (𝑥 = 𝑋 → (〈𝑥, (𝐹‘𝑋)〉 ∈ 𝐹 ↔ 〈𝑋, (𝐹‘𝑋)〉 ∈ 𝐹)) |
5 | 4 | spcegv 3536 | . . 3 ⊢ (𝑋 ∈ 𝑉 → (〈𝑋, (𝐹‘𝑋)〉 ∈ 𝐹 → ∃𝑥〈𝑥, (𝐹‘𝑋)〉 ∈ 𝐹)) |
6 | fvex 6787 | . . . 4 ⊢ (𝐹‘𝑋) ∈ V | |
7 | elimasng 5996 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ (𝐹‘𝑋) ∈ V) → ((𝐹‘𝑋) ∈ (𝐹 “ {𝑋}) ↔ 〈𝑋, (𝐹‘𝑋)〉 ∈ 𝐹)) | |
8 | 6, 7 | mpan2 688 | . . 3 ⊢ (𝑋 ∈ 𝑉 → ((𝐹‘𝑋) ∈ (𝐹 “ {𝑋}) ↔ 〈𝑋, (𝐹‘𝑋)〉 ∈ 𝐹)) |
9 | elrn2g 5799 | . . . 4 ⊢ ((𝐹‘𝑋) ∈ V → ((𝐹‘𝑋) ∈ ran 𝐹 ↔ ∃𝑥〈𝑥, (𝐹‘𝑋)〉 ∈ 𝐹)) | |
10 | 6, 9 | mp1i 13 | . . 3 ⊢ (𝑋 ∈ 𝑉 → ((𝐹‘𝑋) ∈ ran 𝐹 ↔ ∃𝑥〈𝑥, (𝐹‘𝑋)〉 ∈ 𝐹)) |
11 | 5, 8, 10 | 3imtr4d 294 | . 2 ⊢ (𝑋 ∈ 𝑉 → ((𝐹‘𝑋) ∈ (𝐹 “ {𝑋}) → (𝐹‘𝑋) ∈ ran 𝐹)) |
12 | 2, 11 | syl5bir 242 | 1 ⊢ (𝑋 ∈ 𝑉 → ((𝐹‘𝑋) ∈ ran (𝐹 ↾ {𝑋}) → (𝐹‘𝑋) ∈ ran 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∃wex 1782 ∈ wcel 2106 Vcvv 3432 {csn 4561 〈cop 4567 ran crn 5590 ↾ cres 5591 “ cima 5592 ‘cfv 6433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-xp 5595 df-cnv 5597 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fv 6441 |
This theorem is referenced by: fvn0fvelrn 7035 funressndmfvrn 44538 |
Copyright terms: Public domain | W3C validator |