![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvrnressn | Structured version Visualization version GIF version |
Description: If the value of a function is in the range of the function restricted to the singleton containing the argument, then the value of the function is in the range of the function. (Contributed by Alexander van der Vekens, 22-Jul-2018.) |
Ref | Expression |
---|---|
fvrnressn | ⊢ (𝑋 ∈ 𝑉 → ((𝐹‘𝑋) ∈ ran (𝐹 ↾ {𝑋}) → (𝐹‘𝑋) ∈ ran 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ima 5689 | . . 3 ⊢ (𝐹 “ {𝑋}) = ran (𝐹 ↾ {𝑋}) | |
2 | 1 | eleq2i 2825 | . 2 ⊢ ((𝐹‘𝑋) ∈ (𝐹 “ {𝑋}) ↔ (𝐹‘𝑋) ∈ ran (𝐹 ↾ {𝑋})) |
3 | opeq1 4873 | . . . . 5 ⊢ (𝑥 = 𝑋 → ⟨𝑥, (𝐹‘𝑋)⟩ = ⟨𝑋, (𝐹‘𝑋)⟩) | |
4 | 3 | eleq1d 2818 | . . . 4 ⊢ (𝑥 = 𝑋 → (⟨𝑥, (𝐹‘𝑋)⟩ ∈ 𝐹 ↔ ⟨𝑋, (𝐹‘𝑋)⟩ ∈ 𝐹)) |
5 | 4 | spcegv 3587 | . . 3 ⊢ (𝑋 ∈ 𝑉 → (⟨𝑋, (𝐹‘𝑋)⟩ ∈ 𝐹 → ∃𝑥⟨𝑥, (𝐹‘𝑋)⟩ ∈ 𝐹)) |
6 | fvex 6904 | . . . 4 ⊢ (𝐹‘𝑋) ∈ V | |
7 | elimasng 6087 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ (𝐹‘𝑋) ∈ V) → ((𝐹‘𝑋) ∈ (𝐹 “ {𝑋}) ↔ ⟨𝑋, (𝐹‘𝑋)⟩ ∈ 𝐹)) | |
8 | 6, 7 | mpan2 689 | . . 3 ⊢ (𝑋 ∈ 𝑉 → ((𝐹‘𝑋) ∈ (𝐹 “ {𝑋}) ↔ ⟨𝑋, (𝐹‘𝑋)⟩ ∈ 𝐹)) |
9 | elrn2g 5890 | . . . 4 ⊢ ((𝐹‘𝑋) ∈ V → ((𝐹‘𝑋) ∈ ran 𝐹 ↔ ∃𝑥⟨𝑥, (𝐹‘𝑋)⟩ ∈ 𝐹)) | |
10 | 6, 9 | mp1i 13 | . . 3 ⊢ (𝑋 ∈ 𝑉 → ((𝐹‘𝑋) ∈ ran 𝐹 ↔ ∃𝑥⟨𝑥, (𝐹‘𝑋)⟩ ∈ 𝐹)) |
11 | 5, 8, 10 | 3imtr4d 293 | . 2 ⊢ (𝑋 ∈ 𝑉 → ((𝐹‘𝑋) ∈ (𝐹 “ {𝑋}) → (𝐹‘𝑋) ∈ ran 𝐹)) |
12 | 2, 11 | biimtrrid 242 | 1 ⊢ (𝑋 ∈ 𝑉 → ((𝐹‘𝑋) ∈ ran (𝐹 ↾ {𝑋}) → (𝐹‘𝑋) ∈ ran 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1541 ∃wex 1781 ∈ wcel 2106 Vcvv 3474 {csn 4628 ⟨cop 4634 ran crn 5677 ↾ cres 5678 “ cima 5679 ‘cfv 6543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-xp 5682 df-cnv 5684 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fv 6551 |
This theorem is referenced by: fvn0fvelrnOLD 7160 funressndmfvrn 45744 |
Copyright terms: Public domain | W3C validator |