MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvrnressn Structured version   Visualization version   GIF version

Theorem fvrnressn 7115
Description: If the value of a function is in the range of the function restricted to the singleton containing the argument, then the value of the function is in the range of the function. (Contributed by Alexander van der Vekens, 22-Jul-2018.)
Assertion
Ref Expression
fvrnressn (𝑋𝑉 → ((𝐹𝑋) ∈ ran (𝐹 ↾ {𝑋}) → (𝐹𝑋) ∈ ran 𝐹))

Proof of Theorem fvrnressn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-ima 5644 . . 3 (𝐹 “ {𝑋}) = ran (𝐹 ↾ {𝑋})
21eleq2i 2820 . 2 ((𝐹𝑋) ∈ (𝐹 “ {𝑋}) ↔ (𝐹𝑋) ∈ ran (𝐹 ↾ {𝑋}))
3 opeq1 4833 . . . . 5 (𝑥 = 𝑋 → ⟨𝑥, (𝐹𝑋)⟩ = ⟨𝑋, (𝐹𝑋)⟩)
43eleq1d 2813 . . . 4 (𝑥 = 𝑋 → (⟨𝑥, (𝐹𝑋)⟩ ∈ 𝐹 ↔ ⟨𝑋, (𝐹𝑋)⟩ ∈ 𝐹))
54spcegv 3560 . . 3 (𝑋𝑉 → (⟨𝑋, (𝐹𝑋)⟩ ∈ 𝐹 → ∃𝑥𝑥, (𝐹𝑋)⟩ ∈ 𝐹))
6 fvex 6853 . . . 4 (𝐹𝑋) ∈ V
7 elimasng 6049 . . . 4 ((𝑋𝑉 ∧ (𝐹𝑋) ∈ V) → ((𝐹𝑋) ∈ (𝐹 “ {𝑋}) ↔ ⟨𝑋, (𝐹𝑋)⟩ ∈ 𝐹))
86, 7mpan2 691 . . 3 (𝑋𝑉 → ((𝐹𝑋) ∈ (𝐹 “ {𝑋}) ↔ ⟨𝑋, (𝐹𝑋)⟩ ∈ 𝐹))
9 elrn2g 5844 . . . 4 ((𝐹𝑋) ∈ V → ((𝐹𝑋) ∈ ran 𝐹 ↔ ∃𝑥𝑥, (𝐹𝑋)⟩ ∈ 𝐹))
106, 9mp1i 13 . . 3 (𝑋𝑉 → ((𝐹𝑋) ∈ ran 𝐹 ↔ ∃𝑥𝑥, (𝐹𝑋)⟩ ∈ 𝐹))
115, 8, 103imtr4d 294 . 2 (𝑋𝑉 → ((𝐹𝑋) ∈ (𝐹 “ {𝑋}) → (𝐹𝑋) ∈ ran 𝐹))
122, 11biimtrrid 243 1 (𝑋𝑉 → ((𝐹𝑋) ∈ ran (𝐹 ↾ {𝑋}) → (𝐹𝑋) ∈ ran 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wex 1779  wcel 2109  Vcvv 3444  {csn 4585  cop 4591  ran crn 5632  cres 5633  cima 5634  cfv 6499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-xp 5637  df-cnv 5639  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fv 6507
This theorem is referenced by:  fvn0fvelrnOLD  7117  funressndmfvrn  47038
  Copyright terms: Public domain W3C validator