| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvrnressn | Structured version Visualization version GIF version | ||
| Description: If the value of a function is in the range of the function restricted to the singleton containing the argument, then the value of the function is in the range of the function. (Contributed by Alexander van der Vekens, 22-Jul-2018.) |
| Ref | Expression |
|---|---|
| fvrnressn | ⊢ (𝑋 ∈ 𝑉 → ((𝐹‘𝑋) ∈ ran (𝐹 ↾ {𝑋}) → (𝐹‘𝑋) ∈ ran 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ima 5632 | . . 3 ⊢ (𝐹 “ {𝑋}) = ran (𝐹 ↾ {𝑋}) | |
| 2 | 1 | eleq2i 2820 | . 2 ⊢ ((𝐹‘𝑋) ∈ (𝐹 “ {𝑋}) ↔ (𝐹‘𝑋) ∈ ran (𝐹 ↾ {𝑋})) |
| 3 | opeq1 4824 | . . . . 5 ⊢ (𝑥 = 𝑋 → 〈𝑥, (𝐹‘𝑋)〉 = 〈𝑋, (𝐹‘𝑋)〉) | |
| 4 | 3 | eleq1d 2813 | . . . 4 ⊢ (𝑥 = 𝑋 → (〈𝑥, (𝐹‘𝑋)〉 ∈ 𝐹 ↔ 〈𝑋, (𝐹‘𝑋)〉 ∈ 𝐹)) |
| 5 | 4 | spcegv 3552 | . . 3 ⊢ (𝑋 ∈ 𝑉 → (〈𝑋, (𝐹‘𝑋)〉 ∈ 𝐹 → ∃𝑥〈𝑥, (𝐹‘𝑋)〉 ∈ 𝐹)) |
| 6 | fvex 6835 | . . . 4 ⊢ (𝐹‘𝑋) ∈ V | |
| 7 | elimasng 6040 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ (𝐹‘𝑋) ∈ V) → ((𝐹‘𝑋) ∈ (𝐹 “ {𝑋}) ↔ 〈𝑋, (𝐹‘𝑋)〉 ∈ 𝐹)) | |
| 8 | 6, 7 | mpan2 691 | . . 3 ⊢ (𝑋 ∈ 𝑉 → ((𝐹‘𝑋) ∈ (𝐹 “ {𝑋}) ↔ 〈𝑋, (𝐹‘𝑋)〉 ∈ 𝐹)) |
| 9 | elrn2g 5833 | . . . 4 ⊢ ((𝐹‘𝑋) ∈ V → ((𝐹‘𝑋) ∈ ran 𝐹 ↔ ∃𝑥〈𝑥, (𝐹‘𝑋)〉 ∈ 𝐹)) | |
| 10 | 6, 9 | mp1i 13 | . . 3 ⊢ (𝑋 ∈ 𝑉 → ((𝐹‘𝑋) ∈ ran 𝐹 ↔ ∃𝑥〈𝑥, (𝐹‘𝑋)〉 ∈ 𝐹)) |
| 11 | 5, 8, 10 | 3imtr4d 294 | . 2 ⊢ (𝑋 ∈ 𝑉 → ((𝐹‘𝑋) ∈ (𝐹 “ {𝑋}) → (𝐹‘𝑋) ∈ ran 𝐹)) |
| 12 | 2, 11 | biimtrrid 243 | 1 ⊢ (𝑋 ∈ 𝑉 → ((𝐹‘𝑋) ∈ ran (𝐹 ↾ {𝑋}) → (𝐹‘𝑋) ∈ ran 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∃wex 1779 ∈ wcel 2109 Vcvv 3436 {csn 4577 〈cop 4583 ran crn 5620 ↾ cres 5621 “ cima 5622 ‘cfv 6482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-xp 5625 df-cnv 5627 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fv 6490 |
| This theorem is referenced by: fvn0fvelrnOLD 7097 funressndmfvrn 47038 |
| Copyright terms: Public domain | W3C validator |