![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvrnressn | Structured version Visualization version GIF version |
Description: If the value of a function is in the range of the function restricted to the singleton containing the argument, then the value of the function is in the range of the function. (Contributed by Alexander van der Vekens, 22-Jul-2018.) |
Ref | Expression |
---|---|
fvrnressn | ⊢ (𝑋 ∈ 𝑉 → ((𝐹‘𝑋) ∈ ran (𝐹 ↾ {𝑋}) → (𝐹‘𝑋) ∈ ran 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ima 5682 | . . 3 ⊢ (𝐹 “ {𝑋}) = ran (𝐹 ↾ {𝑋}) | |
2 | 1 | eleq2i 2819 | . 2 ⊢ ((𝐹‘𝑋) ∈ (𝐹 “ {𝑋}) ↔ (𝐹‘𝑋) ∈ ran (𝐹 ↾ {𝑋})) |
3 | opeq1 4868 | . . . . 5 ⊢ (𝑥 = 𝑋 → ⟨𝑥, (𝐹‘𝑋)⟩ = ⟨𝑋, (𝐹‘𝑋)⟩) | |
4 | 3 | eleq1d 2812 | . . . 4 ⊢ (𝑥 = 𝑋 → (⟨𝑥, (𝐹‘𝑋)⟩ ∈ 𝐹 ↔ ⟨𝑋, (𝐹‘𝑋)⟩ ∈ 𝐹)) |
5 | 4 | spcegv 3581 | . . 3 ⊢ (𝑋 ∈ 𝑉 → (⟨𝑋, (𝐹‘𝑋)⟩ ∈ 𝐹 → ∃𝑥⟨𝑥, (𝐹‘𝑋)⟩ ∈ 𝐹)) |
6 | fvex 6898 | . . . 4 ⊢ (𝐹‘𝑋) ∈ V | |
7 | elimasng 6081 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ (𝐹‘𝑋) ∈ V) → ((𝐹‘𝑋) ∈ (𝐹 “ {𝑋}) ↔ ⟨𝑋, (𝐹‘𝑋)⟩ ∈ 𝐹)) | |
8 | 6, 7 | mpan2 688 | . . 3 ⊢ (𝑋 ∈ 𝑉 → ((𝐹‘𝑋) ∈ (𝐹 “ {𝑋}) ↔ ⟨𝑋, (𝐹‘𝑋)⟩ ∈ 𝐹)) |
9 | elrn2g 5884 | . . . 4 ⊢ ((𝐹‘𝑋) ∈ V → ((𝐹‘𝑋) ∈ ran 𝐹 ↔ ∃𝑥⟨𝑥, (𝐹‘𝑋)⟩ ∈ 𝐹)) | |
10 | 6, 9 | mp1i 13 | . . 3 ⊢ (𝑋 ∈ 𝑉 → ((𝐹‘𝑋) ∈ ran 𝐹 ↔ ∃𝑥⟨𝑥, (𝐹‘𝑋)⟩ ∈ 𝐹)) |
11 | 5, 8, 10 | 3imtr4d 294 | . 2 ⊢ (𝑋 ∈ 𝑉 → ((𝐹‘𝑋) ∈ (𝐹 “ {𝑋}) → (𝐹‘𝑋) ∈ ran 𝐹)) |
12 | 2, 11 | biimtrrid 242 | 1 ⊢ (𝑋 ∈ 𝑉 → ((𝐹‘𝑋) ∈ ran (𝐹 ↾ {𝑋}) → (𝐹‘𝑋) ∈ ran 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1533 ∃wex 1773 ∈ wcel 2098 Vcvv 3468 {csn 4623 ⟨cop 4629 ran crn 5670 ↾ cres 5671 “ cima 5672 ‘cfv 6537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-xp 5675 df-cnv 5677 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6489 df-fv 6545 |
This theorem is referenced by: fvn0fvelrnOLD 7157 funressndmfvrn 46326 |
Copyright terms: Public domain | W3C validator |