![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvrnressn | Structured version Visualization version GIF version |
Description: If the value of a function is in the range of the function restricted to the singleton containing the argument, then the value of the function is in the range of the function. (Contributed by Alexander van der Vekens, 22-Jul-2018.) |
Ref | Expression |
---|---|
fvrnressn | ⊢ (𝑋 ∈ 𝑉 → ((𝐹‘𝑋) ∈ ran (𝐹 ↾ {𝑋}) → (𝐹‘𝑋) ∈ ran 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ima 5685 | . . 3 ⊢ (𝐹 “ {𝑋}) = ran (𝐹 ↾ {𝑋}) | |
2 | 1 | eleq2i 2817 | . 2 ⊢ ((𝐹‘𝑋) ∈ (𝐹 “ {𝑋}) ↔ (𝐹‘𝑋) ∈ ran (𝐹 ↾ {𝑋})) |
3 | opeq1 4869 | . . . . 5 ⊢ (𝑥 = 𝑋 → ⟨𝑥, (𝐹‘𝑋)⟩ = ⟨𝑋, (𝐹‘𝑋)⟩) | |
4 | 3 | eleq1d 2810 | . . . 4 ⊢ (𝑥 = 𝑋 → (⟨𝑥, (𝐹‘𝑋)⟩ ∈ 𝐹 ↔ ⟨𝑋, (𝐹‘𝑋)⟩ ∈ 𝐹)) |
5 | 4 | spcegv 3576 | . . 3 ⊢ (𝑋 ∈ 𝑉 → (⟨𝑋, (𝐹‘𝑋)⟩ ∈ 𝐹 → ∃𝑥⟨𝑥, (𝐹‘𝑋)⟩ ∈ 𝐹)) |
6 | fvex 6905 | . . . 4 ⊢ (𝐹‘𝑋) ∈ V | |
7 | elimasng 6087 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ (𝐹‘𝑋) ∈ V) → ((𝐹‘𝑋) ∈ (𝐹 “ {𝑋}) ↔ ⟨𝑋, (𝐹‘𝑋)⟩ ∈ 𝐹)) | |
8 | 6, 7 | mpan2 689 | . . 3 ⊢ (𝑋 ∈ 𝑉 → ((𝐹‘𝑋) ∈ (𝐹 “ {𝑋}) ↔ ⟨𝑋, (𝐹‘𝑋)⟩ ∈ 𝐹)) |
9 | elrn2g 5887 | . . . 4 ⊢ ((𝐹‘𝑋) ∈ V → ((𝐹‘𝑋) ∈ ran 𝐹 ↔ ∃𝑥⟨𝑥, (𝐹‘𝑋)⟩ ∈ 𝐹)) | |
10 | 6, 9 | mp1i 13 | . . 3 ⊢ (𝑋 ∈ 𝑉 → ((𝐹‘𝑋) ∈ ran 𝐹 ↔ ∃𝑥⟨𝑥, (𝐹‘𝑋)⟩ ∈ 𝐹)) |
11 | 5, 8, 10 | 3imtr4d 293 | . 2 ⊢ (𝑋 ∈ 𝑉 → ((𝐹‘𝑋) ∈ (𝐹 “ {𝑋}) → (𝐹‘𝑋) ∈ ran 𝐹)) |
12 | 2, 11 | biimtrrid 242 | 1 ⊢ (𝑋 ∈ 𝑉 → ((𝐹‘𝑋) ∈ ran (𝐹 ↾ {𝑋}) → (𝐹‘𝑋) ∈ ran 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1533 ∃wex 1773 ∈ wcel 2098 Vcvv 3463 {csn 4624 ⟨cop 4630 ran crn 5673 ↾ cres 5674 “ cima 5675 ‘cfv 6543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5144 df-opab 5206 df-xp 5678 df-cnv 5680 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6495 df-fv 6551 |
This theorem is referenced by: fvn0fvelrnOLD 7168 funressndmfvrn 46489 |
Copyright terms: Public domain | W3C validator |