MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elrng Structured version   Visualization version   GIF version

Theorem elrng 5735
Description: Membership in a range. (Contributed by Scott Fenton, 2-Feb-2011.)
Assertion
Ref Expression
elrng (𝐴𝑉 → (𝐴 ∈ ran 𝐵 ↔ ∃𝑥 𝑥𝐵𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem elrng
StepHypRef Expression
1 elrn2g 5734 . 2 (𝐴𝑉 → (𝐴 ∈ ran 𝐵 ↔ ∃𝑥𝑥, 𝐴⟩ ∈ 𝐵))
2 df-br 5040 . . 3 (𝑥𝐵𝐴 ↔ ⟨𝑥, 𝐴⟩ ∈ 𝐵)
32exbii 1849 . 2 (∃𝑥 𝑥𝐵𝐴 ↔ ∃𝑥𝑥, 𝐴⟩ ∈ 𝐵)
41, 3syl6bbr 292 1 (𝐴𝑉 → (𝐴 ∈ ran 𝐵 ↔ ∃𝑥 𝑥𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wex 1781  wcel 2115  cop 4546   class class class wbr 5039  ran crn 5529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-sep 5176  ax-nul 5183  ax-pr 5303
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-rab 3135  df-v 3473  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4267  df-if 4441  df-sn 4541  df-pr 4543  df-op 4547  df-br 5040  df-opab 5102  df-cnv 5536  df-dm 5538  df-rn 5539
This theorem is referenced by:  ssrelrn  5736  relelrnb  5790  cicsym  17052  trpredpred  33074
  Copyright terms: Public domain W3C validator