| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elrng | Structured version Visualization version GIF version | ||
| Description: Membership in a range. (Contributed by Scott Fenton, 2-Feb-2011.) |
| Ref | Expression |
|---|---|
| elrng | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ran 𝐵 ↔ ∃𝑥 𝑥𝐵𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrn2g 5854 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ran 𝐵 ↔ ∃𝑥〈𝑥, 𝐴〉 ∈ 𝐵)) | |
| 2 | df-br 5108 | . . 3 ⊢ (𝑥𝐵𝐴 ↔ 〈𝑥, 𝐴〉 ∈ 𝐵) | |
| 3 | 2 | exbii 1848 | . 2 ⊢ (∃𝑥 𝑥𝐵𝐴 ↔ ∃𝑥〈𝑥, 𝐴〉 ∈ 𝐵) |
| 4 | 1, 3 | bitr4di 289 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ran 𝐵 ↔ ∃𝑥 𝑥𝐵𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∃wex 1779 ∈ wcel 2109 〈cop 4595 class class class wbr 5107 ran crn 5639 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-cnv 5646 df-dm 5648 df-rn 5649 |
| This theorem is referenced by: elrn 5857 ssrelrn 5858 relelrnb 5911 cicsym 17766 elrnres 38260 |
| Copyright terms: Public domain | W3C validator |