MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elrng Structured version   Visualization version   GIF version

Theorem elrng 5868
Description: Membership in a range. (Contributed by Scott Fenton, 2-Feb-2011.)
Assertion
Ref Expression
elrng (𝐴𝑉 → (𝐴 ∈ ran 𝐵 ↔ ∃𝑥 𝑥𝐵𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem elrng
StepHypRef Expression
1 elrn2g 5867 . 2 (𝐴𝑉 → (𝐴 ∈ ran 𝐵 ↔ ∃𝑥𝑥, 𝐴⟩ ∈ 𝐵))
2 df-br 5117 . . 3 (𝑥𝐵𝐴 ↔ ⟨𝑥, 𝐴⟩ ∈ 𝐵)
32exbii 1847 . 2 (∃𝑥 𝑥𝐵𝐴 ↔ ∃𝑥𝑥, 𝐴⟩ ∈ 𝐵)
41, 3bitr4di 289 1 (𝐴𝑉 → (𝐴 ∈ ran 𝐵 ↔ ∃𝑥 𝑥𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wex 1778  wcel 2107  cop 4605   class class class wbr 5116  ran crn 5652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-sep 5263  ax-nul 5273  ax-pr 5399
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-rab 3414  df-v 3459  df-dif 3927  df-un 3929  df-ss 3941  df-nul 4307  df-if 4499  df-sn 4600  df-pr 4602  df-op 4606  df-br 5117  df-opab 5179  df-cnv 5659  df-dm 5661  df-rn 5662
This theorem is referenced by:  elrn  5870  ssrelrn  5871  relelrnb  5924  cicsym  17802  elrnres  38210
  Copyright terms: Public domain W3C validator