Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elrng | Structured version Visualization version GIF version |
Description: Membership in a range. (Contributed by Scott Fenton, 2-Feb-2011.) |
Ref | Expression |
---|---|
elrng | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ran 𝐵 ↔ ∃𝑥 𝑥𝐵𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrn2g 5797 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ran 𝐵 ↔ ∃𝑥〈𝑥, 𝐴〉 ∈ 𝐵)) | |
2 | df-br 5080 | . . 3 ⊢ (𝑥𝐵𝐴 ↔ 〈𝑥, 𝐴〉 ∈ 𝐵) | |
3 | 2 | exbii 1854 | . 2 ⊢ (∃𝑥 𝑥𝐵𝐴 ↔ ∃𝑥〈𝑥, 𝐴〉 ∈ 𝐵) |
4 | 1, 3 | bitr4di 289 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ran 𝐵 ↔ ∃𝑥 𝑥𝐵𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∃wex 1786 ∈ wcel 2110 〈cop 4573 class class class wbr 5079 ran crn 5590 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-br 5080 df-opab 5142 df-cnv 5597 df-dm 5599 df-rn 5600 |
This theorem is referenced by: elrn 5800 ssrelrn 5801 relelrnb 5854 trpredpred 9473 cicsym 17512 |
Copyright terms: Public domain | W3C validator |