| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elrng | Structured version Visualization version GIF version | ||
| Description: Membership in a range. (Contributed by Scott Fenton, 2-Feb-2011.) |
| Ref | Expression |
|---|---|
| elrng | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ran 𝐵 ↔ ∃𝑥 𝑥𝐵𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrn2g 5867 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ran 𝐵 ↔ ∃𝑥〈𝑥, 𝐴〉 ∈ 𝐵)) | |
| 2 | df-br 5117 | . . 3 ⊢ (𝑥𝐵𝐴 ↔ 〈𝑥, 𝐴〉 ∈ 𝐵) | |
| 3 | 2 | exbii 1847 | . 2 ⊢ (∃𝑥 𝑥𝐵𝐴 ↔ ∃𝑥〈𝑥, 𝐴〉 ∈ 𝐵) |
| 4 | 1, 3 | bitr4di 289 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ran 𝐵 ↔ ∃𝑥 𝑥𝐵𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∃wex 1778 ∈ wcel 2107 〈cop 4605 class class class wbr 5116 ran crn 5652 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5263 ax-nul 5273 ax-pr 5399 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3414 df-v 3459 df-dif 3927 df-un 3929 df-ss 3941 df-nul 4307 df-if 4499 df-sn 4600 df-pr 4602 df-op 4606 df-br 5117 df-opab 5179 df-cnv 5659 df-dm 5661 df-rn 5662 |
| This theorem is referenced by: elrn 5870 ssrelrn 5871 relelrnb 5924 cicsym 17802 elrnres 38210 |
| Copyright terms: Public domain | W3C validator |