![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elrn2 | Structured version Visualization version GIF version |
Description: Membership in a range. (Contributed by NM, 10-Jul-1994.) |
Ref | Expression |
---|---|
elrn.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
elrn2 | ⊢ (𝐴 ∈ ran 𝐵 ↔ ∃𝑥〈𝑥, 𝐴〉 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrn.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | elrn2g 5915 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ ran 𝐵 ↔ ∃𝑥〈𝑥, 𝐴〉 ∈ 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ ran 𝐵 ↔ ∃𝑥〈𝑥, 𝐴〉 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∃wex 1777 ∈ wcel 2108 Vcvv 3488 〈cop 4654 ran crn 5701 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-cnv 5708 df-dm 5710 df-rn 5711 |
This theorem is referenced by: dmrnssfld 5996 rniun 6179 ssrnres 6209 relssdmrnOLD 6300 fvelrn 7110 tz7.48-1 8499 prsrn 33861 dfrn5 35737 funressndmafv2rn 47138 |
Copyright terms: Public domain | W3C validator |