MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elrn2 Structured version   Visualization version   GIF version

Theorem elrn2 5917
Description: Membership in a range. (Contributed by NM, 10-Jul-1994.)
Hypothesis
Ref Expression
elrn.1 𝐴 ∈ V
Assertion
Ref Expression
elrn2 (𝐴 ∈ ran 𝐵 ↔ ∃𝑥𝑥, 𝐴⟩ ∈ 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem elrn2
StepHypRef Expression
1 elrn.1 . 2 𝐴 ∈ V
2 elrn2g 5915 . 2 (𝐴 ∈ V → (𝐴 ∈ ran 𝐵 ↔ ∃𝑥𝑥, 𝐴⟩ ∈ 𝐵))
31, 2ax-mp 5 1 (𝐴 ∈ ran 𝐵 ↔ ∃𝑥𝑥, 𝐴⟩ ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wex 1777  wcel 2108  Vcvv 3488  cop 4654  ran crn 5701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-cnv 5708  df-dm 5710  df-rn 5711
This theorem is referenced by:  dmrnssfld  5996  rniun  6179  ssrnres  6209  relssdmrnOLD  6300  fvelrn  7110  tz7.48-1  8499  prsrn  33861  dfrn5  35737  funressndmafv2rn  47138
  Copyright terms: Public domain W3C validator