MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elrn2 Structured version   Visualization version   GIF version

Theorem elrn2 5903
Description: Membership in a range. (Contributed by NM, 10-Jul-1994.)
Hypothesis
Ref Expression
elrn.1 𝐴 ∈ V
Assertion
Ref Expression
elrn2 (𝐴 ∈ ran 𝐵 ↔ ∃𝑥𝑥, 𝐴⟩ ∈ 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem elrn2
StepHypRef Expression
1 elrn.1 . 2 𝐴 ∈ V
2 elrn2g 5901 . 2 (𝐴 ∈ V → (𝐴 ∈ ran 𝐵 ↔ ∃𝑥𝑥, 𝐴⟩ ∈ 𝐵))
31, 2ax-mp 5 1 (𝐴 ∈ ran 𝐵 ↔ ∃𝑥𝑥, 𝐴⟩ ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wex 1779  wcel 2108  Vcvv 3480  cop 4632  ran crn 5686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-br 5144  df-opab 5206  df-cnv 5693  df-dm 5695  df-rn 5696
This theorem is referenced by:  dmrnssfld  5984  rniun  6167  ssrnres  6198  relssdmrnOLD  6289  fvelrn  7096  tz7.48-1  8483  prsrn  33914  dfrn5  35774  funressndmafv2rn  47235
  Copyright terms: Public domain W3C validator