| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elrn2 | Structured version Visualization version GIF version | ||
| Description: Membership in a range. (Contributed by NM, 10-Jul-1994.) |
| Ref | Expression |
|---|---|
| elrn.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| elrn2 | ⊢ (𝐴 ∈ ran 𝐵 ↔ ∃𝑥〈𝑥, 𝐴〉 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrn.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | elrn2g 5857 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ ran 𝐵 ↔ ∃𝑥〈𝑥, 𝐴〉 ∈ 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ ran 𝐵 ↔ ∃𝑥〈𝑥, 𝐴〉 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∃wex 1779 ∈ wcel 2109 Vcvv 3450 〈cop 4598 ran crn 5642 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-cnv 5649 df-dm 5651 df-rn 5652 |
| This theorem is referenced by: dmrnssfld 5940 rniun 6123 ssrnres 6154 relssdmrnOLD 6245 fvelrn 7051 tz7.48-1 8414 prsrn 33912 dfrn5 35768 funressndmafv2rn 47228 |
| Copyright terms: Public domain | W3C validator |