Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sgnmulsgp Structured version   Visualization version   GIF version

Theorem sgnmulsgp 32826
Description: If two real numbers are of same signs, so are their signs. (Contributed by Thierry Arnoux, 12-Oct-2018.)
Assertion
Ref Expression
sgnmulsgp ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < (𝐴 · 𝐵) ↔ 0 < ((sgn‘𝐴) · (sgn‘𝐵))))

Proof of Theorem sgnmulsgp
StepHypRef Expression
1 0lt1 11639 . . . . 5 0 < 1
2 breq2 5093 . . . . 5 ((sgn‘(𝐴 · 𝐵)) = 1 → (0 < (sgn‘(𝐴 · 𝐵)) ↔ 0 < 1))
31, 2mpbiri 258 . . . 4 ((sgn‘(𝐴 · 𝐵)) = 1 → 0 < (sgn‘(𝐴 · 𝐵)))
43adantl 481 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (sgn‘(𝐴 · 𝐵)) = 1) → 0 < (sgn‘(𝐴 · 𝐵)))
5 simplr 768 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (sgn‘(𝐴 · 𝐵))) ∧ (sgn‘(𝐴 · 𝐵)) = -1) → 0 < (sgn‘(𝐴 · 𝐵)))
6 simpr 484 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (sgn‘(𝐴 · 𝐵))) ∧ (sgn‘(𝐴 · 𝐵)) = -1) → (sgn‘(𝐴 · 𝐵)) = -1)
75, 6breqtrd 5115 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (sgn‘(𝐴 · 𝐵))) ∧ (sgn‘(𝐴 · 𝐵)) = -1) → 0 < -1)
8 1nn0 12397 . . . . . . . 8 1 ∈ ℕ0
9 nn0nlt0 12407 . . . . . . . 8 (1 ∈ ℕ0 → ¬ 1 < 0)
108, 9ax-mp 5 . . . . . . 7 ¬ 1 < 0
11 1re 11112 . . . . . . . 8 1 ∈ ℝ
12 lt0neg1 11623 . . . . . . . 8 (1 ∈ ℝ → (1 < 0 ↔ 0 < -1))
1311, 12ax-mp 5 . . . . . . 7 (1 < 0 ↔ 0 < -1)
1410, 13mtbi 322 . . . . . 6 ¬ 0 < -1
1514a1i 11 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (sgn‘(𝐴 · 𝐵))) ∧ (sgn‘(𝐴 · 𝐵)) = -1) → ¬ 0 < -1)
167, 15pm2.21dd 195 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (sgn‘(𝐴 · 𝐵))) ∧ (sgn‘(𝐴 · 𝐵)) = -1) → (sgn‘(𝐴 · 𝐵)) = 1)
17 simpr 484 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (sgn‘(𝐴 · 𝐵))) ∧ (sgn‘(𝐴 · 𝐵)) = 0) → (sgn‘(𝐴 · 𝐵)) = 0)
18 simplr 768 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (sgn‘(𝐴 · 𝐵))) ∧ (sgn‘(𝐴 · 𝐵)) = 0) → 0 < (sgn‘(𝐴 · 𝐵)))
1918gt0ne0d 11681 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (sgn‘(𝐴 · 𝐵))) ∧ (sgn‘(𝐴 · 𝐵)) = 0) → (sgn‘(𝐴 · 𝐵)) ≠ 0)
2017, 19pm2.21ddne 3012 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (sgn‘(𝐴 · 𝐵))) ∧ (sgn‘(𝐴 · 𝐵)) = 0) → (sgn‘(𝐴 · 𝐵)) = 1)
21 simpr 484 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (sgn‘(𝐴 · 𝐵))) ∧ (sgn‘(𝐴 · 𝐵)) = 1) → (sgn‘(𝐴 · 𝐵)) = 1)
22 remulcl 11091 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ)
2322rexrd 11162 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ*)
2423adantr 480 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (sgn‘(𝐴 · 𝐵))) → (𝐴 · 𝐵) ∈ ℝ*)
25 sgncl 32814 . . . . 5 ((𝐴 · 𝐵) ∈ ℝ* → (sgn‘(𝐴 · 𝐵)) ∈ {-1, 0, 1})
26 eltpi 4638 . . . . 5 ((sgn‘(𝐴 · 𝐵)) ∈ {-1, 0, 1} → ((sgn‘(𝐴 · 𝐵)) = -1 ∨ (sgn‘(𝐴 · 𝐵)) = 0 ∨ (sgn‘(𝐴 · 𝐵)) = 1))
2724, 25, 263syl 18 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (sgn‘(𝐴 · 𝐵))) → ((sgn‘(𝐴 · 𝐵)) = -1 ∨ (sgn‘(𝐴 · 𝐵)) = 0 ∨ (sgn‘(𝐴 · 𝐵)) = 1))
2816, 20, 21, 27mpjao3dan 1434 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (sgn‘(𝐴 · 𝐵))) → (sgn‘(𝐴 · 𝐵)) = 1)
294, 28impbida 800 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((sgn‘(𝐴 · 𝐵)) = 1 ↔ 0 < (sgn‘(𝐴 · 𝐵))))
30 sgnpbi 32822 . . 3 ((𝐴 · 𝐵) ∈ ℝ* → ((sgn‘(𝐴 · 𝐵)) = 1 ↔ 0 < (𝐴 · 𝐵)))
3123, 30syl 17 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((sgn‘(𝐴 · 𝐵)) = 1 ↔ 0 < (𝐴 · 𝐵)))
32 sgnmul 32818 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (sgn‘(𝐴 · 𝐵)) = ((sgn‘𝐴) · (sgn‘𝐵)))
3332breq2d 5101 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < (sgn‘(𝐴 · 𝐵)) ↔ 0 < ((sgn‘𝐴) · (sgn‘𝐵))))
3429, 31, 333bitr3d 309 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < (𝐴 · 𝐵) ↔ 0 < ((sgn‘𝐴) · (sgn‘𝐵))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3o 1085   = wceq 1541  wcel 2111  {ctp 4577   class class class wbr 5089  cfv 6481  (class class class)co 7346  cr 11005  0cc0 11006  1c1 11007   · cmul 11011  *cxr 11145   < clt 11146  -cneg 11345  0cn0 12381  sgncsgn 14993
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-n0 12382  df-rp 12891  df-sgn 14994
This theorem is referenced by:  signsvfpn  34598
  Copyright terms: Public domain W3C validator