Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sgnmulsgp Structured version   Visualization version   GIF version

Theorem sgnmulsgp 34531
Description: If two real numbers are of different signs, so are their signs. (Contributed by Thierry Arnoux, 12-Oct-2018.)
Assertion
Ref Expression
sgnmulsgp ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < (𝐴 · 𝐵) ↔ 0 < ((sgn‘𝐴) · (sgn‘𝐵))))

Proof of Theorem sgnmulsgp
StepHypRef Expression
1 0lt1 11782 . . . . 5 0 < 1
2 breq2 5151 . . . . 5 ((sgn‘(𝐴 · 𝐵)) = 1 → (0 < (sgn‘(𝐴 · 𝐵)) ↔ 0 < 1))
31, 2mpbiri 258 . . . 4 ((sgn‘(𝐴 · 𝐵)) = 1 → 0 < (sgn‘(𝐴 · 𝐵)))
43adantl 481 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (sgn‘(𝐴 · 𝐵)) = 1) → 0 < (sgn‘(𝐴 · 𝐵)))
5 simplr 769 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (sgn‘(𝐴 · 𝐵))) ∧ (sgn‘(𝐴 · 𝐵)) = -1) → 0 < (sgn‘(𝐴 · 𝐵)))
6 simpr 484 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (sgn‘(𝐴 · 𝐵))) ∧ (sgn‘(𝐴 · 𝐵)) = -1) → (sgn‘(𝐴 · 𝐵)) = -1)
75, 6breqtrd 5173 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (sgn‘(𝐴 · 𝐵))) ∧ (sgn‘(𝐴 · 𝐵)) = -1) → 0 < -1)
8 1nn0 12539 . . . . . . . 8 1 ∈ ℕ0
9 nn0nlt0 12549 . . . . . . . 8 (1 ∈ ℕ0 → ¬ 1 < 0)
108, 9ax-mp 5 . . . . . . 7 ¬ 1 < 0
11 1re 11258 . . . . . . . 8 1 ∈ ℝ
12 lt0neg1 11766 . . . . . . . 8 (1 ∈ ℝ → (1 < 0 ↔ 0 < -1))
1311, 12ax-mp 5 . . . . . . 7 (1 < 0 ↔ 0 < -1)
1410, 13mtbi 322 . . . . . 6 ¬ 0 < -1
1514a1i 11 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (sgn‘(𝐴 · 𝐵))) ∧ (sgn‘(𝐴 · 𝐵)) = -1) → ¬ 0 < -1)
167, 15pm2.21dd 195 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (sgn‘(𝐴 · 𝐵))) ∧ (sgn‘(𝐴 · 𝐵)) = -1) → (sgn‘(𝐴 · 𝐵)) = 1)
17 simpr 484 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (sgn‘(𝐴 · 𝐵))) ∧ (sgn‘(𝐴 · 𝐵)) = 0) → (sgn‘(𝐴 · 𝐵)) = 0)
18 simplr 769 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (sgn‘(𝐴 · 𝐵))) ∧ (sgn‘(𝐴 · 𝐵)) = 0) → 0 < (sgn‘(𝐴 · 𝐵)))
1918gt0ne0d 11824 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (sgn‘(𝐴 · 𝐵))) ∧ (sgn‘(𝐴 · 𝐵)) = 0) → (sgn‘(𝐴 · 𝐵)) ≠ 0)
2017, 19pm2.21ddne 3023 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (sgn‘(𝐴 · 𝐵))) ∧ (sgn‘(𝐴 · 𝐵)) = 0) → (sgn‘(𝐴 · 𝐵)) = 1)
21 simpr 484 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (sgn‘(𝐴 · 𝐵))) ∧ (sgn‘(𝐴 · 𝐵)) = 1) → (sgn‘(𝐴 · 𝐵)) = 1)
22 remulcl 11237 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ)
2322rexrd 11308 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ*)
2423adantr 480 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (sgn‘(𝐴 · 𝐵))) → (𝐴 · 𝐵) ∈ ℝ*)
25 sgncl 34519 . . . . 5 ((𝐴 · 𝐵) ∈ ℝ* → (sgn‘(𝐴 · 𝐵)) ∈ {-1, 0, 1})
26 eltpi 4692 . . . . 5 ((sgn‘(𝐴 · 𝐵)) ∈ {-1, 0, 1} → ((sgn‘(𝐴 · 𝐵)) = -1 ∨ (sgn‘(𝐴 · 𝐵)) = 0 ∨ (sgn‘(𝐴 · 𝐵)) = 1))
2724, 25, 263syl 18 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (sgn‘(𝐴 · 𝐵))) → ((sgn‘(𝐴 · 𝐵)) = -1 ∨ (sgn‘(𝐴 · 𝐵)) = 0 ∨ (sgn‘(𝐴 · 𝐵)) = 1))
2816, 20, 21, 27mpjao3dan 1431 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (sgn‘(𝐴 · 𝐵))) → (sgn‘(𝐴 · 𝐵)) = 1)
294, 28impbida 801 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((sgn‘(𝐴 · 𝐵)) = 1 ↔ 0 < (sgn‘(𝐴 · 𝐵))))
30 sgnpbi 34527 . . 3 ((𝐴 · 𝐵) ∈ ℝ* → ((sgn‘(𝐴 · 𝐵)) = 1 ↔ 0 < (𝐴 · 𝐵)))
3123, 30syl 17 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((sgn‘(𝐴 · 𝐵)) = 1 ↔ 0 < (𝐴 · 𝐵)))
32 sgnmul 34523 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (sgn‘(𝐴 · 𝐵)) = ((sgn‘𝐴) · (sgn‘𝐵)))
3332breq2d 5159 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < (sgn‘(𝐴 · 𝐵)) ↔ 0 < ((sgn‘𝐴) · (sgn‘𝐵))))
3429, 31, 333bitr3d 309 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < (𝐴 · 𝐵) ↔ 0 < ((sgn‘𝐴) · (sgn‘𝐵))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3o 1085   = wceq 1536  wcel 2105  {ctp 4634   class class class wbr 5147  cfv 6562  (class class class)co 7430  cr 11151  0cc0 11152  1c1 11153   · cmul 11157  *cxr 11291   < clt 11292  -cneg 11490  0cn0 12523  sgncsgn 15121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-n0 12524  df-rp 13032  df-sgn 15122
This theorem is referenced by:  signsvfpn  34578
  Copyright terms: Public domain W3C validator