Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sgnmulsgp Structured version   Visualization version   GIF version

Theorem sgnmulsgp 34553
Description: If two real numbers are of different signs, so are their signs. (Contributed by Thierry Arnoux, 12-Oct-2018.)
Assertion
Ref Expression
sgnmulsgp ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < (𝐴 · 𝐵) ↔ 0 < ((sgn‘𝐴) · (sgn‘𝐵))))

Proof of Theorem sgnmulsgp
StepHypRef Expression
1 0lt1 11785 . . . . 5 0 < 1
2 breq2 5147 . . . . 5 ((sgn‘(𝐴 · 𝐵)) = 1 → (0 < (sgn‘(𝐴 · 𝐵)) ↔ 0 < 1))
31, 2mpbiri 258 . . . 4 ((sgn‘(𝐴 · 𝐵)) = 1 → 0 < (sgn‘(𝐴 · 𝐵)))
43adantl 481 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (sgn‘(𝐴 · 𝐵)) = 1) → 0 < (sgn‘(𝐴 · 𝐵)))
5 simplr 769 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (sgn‘(𝐴 · 𝐵))) ∧ (sgn‘(𝐴 · 𝐵)) = -1) → 0 < (sgn‘(𝐴 · 𝐵)))
6 simpr 484 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (sgn‘(𝐴 · 𝐵))) ∧ (sgn‘(𝐴 · 𝐵)) = -1) → (sgn‘(𝐴 · 𝐵)) = -1)
75, 6breqtrd 5169 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (sgn‘(𝐴 · 𝐵))) ∧ (sgn‘(𝐴 · 𝐵)) = -1) → 0 < -1)
8 1nn0 12542 . . . . . . . 8 1 ∈ ℕ0
9 nn0nlt0 12552 . . . . . . . 8 (1 ∈ ℕ0 → ¬ 1 < 0)
108, 9ax-mp 5 . . . . . . 7 ¬ 1 < 0
11 1re 11261 . . . . . . . 8 1 ∈ ℝ
12 lt0neg1 11769 . . . . . . . 8 (1 ∈ ℝ → (1 < 0 ↔ 0 < -1))
1311, 12ax-mp 5 . . . . . . 7 (1 < 0 ↔ 0 < -1)
1410, 13mtbi 322 . . . . . 6 ¬ 0 < -1
1514a1i 11 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (sgn‘(𝐴 · 𝐵))) ∧ (sgn‘(𝐴 · 𝐵)) = -1) → ¬ 0 < -1)
167, 15pm2.21dd 195 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (sgn‘(𝐴 · 𝐵))) ∧ (sgn‘(𝐴 · 𝐵)) = -1) → (sgn‘(𝐴 · 𝐵)) = 1)
17 simpr 484 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (sgn‘(𝐴 · 𝐵))) ∧ (sgn‘(𝐴 · 𝐵)) = 0) → (sgn‘(𝐴 · 𝐵)) = 0)
18 simplr 769 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (sgn‘(𝐴 · 𝐵))) ∧ (sgn‘(𝐴 · 𝐵)) = 0) → 0 < (sgn‘(𝐴 · 𝐵)))
1918gt0ne0d 11827 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (sgn‘(𝐴 · 𝐵))) ∧ (sgn‘(𝐴 · 𝐵)) = 0) → (sgn‘(𝐴 · 𝐵)) ≠ 0)
2017, 19pm2.21ddne 3026 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (sgn‘(𝐴 · 𝐵))) ∧ (sgn‘(𝐴 · 𝐵)) = 0) → (sgn‘(𝐴 · 𝐵)) = 1)
21 simpr 484 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (sgn‘(𝐴 · 𝐵))) ∧ (sgn‘(𝐴 · 𝐵)) = 1) → (sgn‘(𝐴 · 𝐵)) = 1)
22 remulcl 11240 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ)
2322rexrd 11311 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ*)
2423adantr 480 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (sgn‘(𝐴 · 𝐵))) → (𝐴 · 𝐵) ∈ ℝ*)
25 sgncl 34541 . . . . 5 ((𝐴 · 𝐵) ∈ ℝ* → (sgn‘(𝐴 · 𝐵)) ∈ {-1, 0, 1})
26 eltpi 4688 . . . . 5 ((sgn‘(𝐴 · 𝐵)) ∈ {-1, 0, 1} → ((sgn‘(𝐴 · 𝐵)) = -1 ∨ (sgn‘(𝐴 · 𝐵)) = 0 ∨ (sgn‘(𝐴 · 𝐵)) = 1))
2724, 25, 263syl 18 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (sgn‘(𝐴 · 𝐵))) → ((sgn‘(𝐴 · 𝐵)) = -1 ∨ (sgn‘(𝐴 · 𝐵)) = 0 ∨ (sgn‘(𝐴 · 𝐵)) = 1))
2816, 20, 21, 27mpjao3dan 1434 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (sgn‘(𝐴 · 𝐵))) → (sgn‘(𝐴 · 𝐵)) = 1)
294, 28impbida 801 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((sgn‘(𝐴 · 𝐵)) = 1 ↔ 0 < (sgn‘(𝐴 · 𝐵))))
30 sgnpbi 34549 . . 3 ((𝐴 · 𝐵) ∈ ℝ* → ((sgn‘(𝐴 · 𝐵)) = 1 ↔ 0 < (𝐴 · 𝐵)))
3123, 30syl 17 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((sgn‘(𝐴 · 𝐵)) = 1 ↔ 0 < (𝐴 · 𝐵)))
32 sgnmul 34545 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (sgn‘(𝐴 · 𝐵)) = ((sgn‘𝐴) · (sgn‘𝐵)))
3332breq2d 5155 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < (sgn‘(𝐴 · 𝐵)) ↔ 0 < ((sgn‘𝐴) · (sgn‘𝐵))))
3429, 31, 333bitr3d 309 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < (𝐴 · 𝐵) ↔ 0 < ((sgn‘𝐴) · (sgn‘𝐵))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3o 1086   = wceq 1540  wcel 2108  {ctp 4630   class class class wbr 5143  cfv 6561  (class class class)co 7431  cr 11154  0cc0 11155  1c1 11156   · cmul 11160  *cxr 11294   < clt 11295  -cneg 11493  0cn0 12526  sgncsgn 15125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-n0 12527  df-rp 13035  df-sgn 15126
This theorem is referenced by:  signsvfpn  34600
  Copyright terms: Public domain W3C validator