Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sgnmulsgp Structured version   Visualization version   GIF version

Theorem sgnmulsgp 32657
Description: If two real numbers are of different signs, so are their signs. (Contributed by Thierry Arnoux, 12-Oct-2018.)
Assertion
Ref Expression
sgnmulsgp ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < (𝐴 · 𝐵) ↔ 0 < ((sgn‘𝐴) · (sgn‘𝐵))))

Proof of Theorem sgnmulsgp
StepHypRef Expression
1 0lt1 11577 . . . . 5 0 < 1
2 breq2 5091 . . . . 5 ((sgn‘(𝐴 · 𝐵)) = 1 → (0 < (sgn‘(𝐴 · 𝐵)) ↔ 0 < 1))
31, 2mpbiri 257 . . . 4 ((sgn‘(𝐴 · 𝐵)) = 1 → 0 < (sgn‘(𝐴 · 𝐵)))
43adantl 482 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (sgn‘(𝐴 · 𝐵)) = 1) → 0 < (sgn‘(𝐴 · 𝐵)))
5 simplr 766 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (sgn‘(𝐴 · 𝐵))) ∧ (sgn‘(𝐴 · 𝐵)) = -1) → 0 < (sgn‘(𝐴 · 𝐵)))
6 simpr 485 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (sgn‘(𝐴 · 𝐵))) ∧ (sgn‘(𝐴 · 𝐵)) = -1) → (sgn‘(𝐴 · 𝐵)) = -1)
75, 6breqtrd 5113 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (sgn‘(𝐴 · 𝐵))) ∧ (sgn‘(𝐴 · 𝐵)) = -1) → 0 < -1)
8 1nn0 12329 . . . . . . . 8 1 ∈ ℕ0
9 nn0nlt0 12339 . . . . . . . 8 (1 ∈ ℕ0 → ¬ 1 < 0)
108, 9ax-mp 5 . . . . . . 7 ¬ 1 < 0
11 1re 11055 . . . . . . . 8 1 ∈ ℝ
12 lt0neg1 11561 . . . . . . . 8 (1 ∈ ℝ → (1 < 0 ↔ 0 < -1))
1311, 12ax-mp 5 . . . . . . 7 (1 < 0 ↔ 0 < -1)
1410, 13mtbi 321 . . . . . 6 ¬ 0 < -1
1514a1i 11 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (sgn‘(𝐴 · 𝐵))) ∧ (sgn‘(𝐴 · 𝐵)) = -1) → ¬ 0 < -1)
167, 15pm2.21dd 194 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (sgn‘(𝐴 · 𝐵))) ∧ (sgn‘(𝐴 · 𝐵)) = -1) → (sgn‘(𝐴 · 𝐵)) = 1)
17 simpr 485 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (sgn‘(𝐴 · 𝐵))) ∧ (sgn‘(𝐴 · 𝐵)) = 0) → (sgn‘(𝐴 · 𝐵)) = 0)
18 simplr 766 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (sgn‘(𝐴 · 𝐵))) ∧ (sgn‘(𝐴 · 𝐵)) = 0) → 0 < (sgn‘(𝐴 · 𝐵)))
1918gt0ne0d 11619 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (sgn‘(𝐴 · 𝐵))) ∧ (sgn‘(𝐴 · 𝐵)) = 0) → (sgn‘(𝐴 · 𝐵)) ≠ 0)
2017, 19pm2.21ddne 3027 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (sgn‘(𝐴 · 𝐵))) ∧ (sgn‘(𝐴 · 𝐵)) = 0) → (sgn‘(𝐴 · 𝐵)) = 1)
21 simpr 485 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (sgn‘(𝐴 · 𝐵))) ∧ (sgn‘(𝐴 · 𝐵)) = 1) → (sgn‘(𝐴 · 𝐵)) = 1)
22 remulcl 11036 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ)
2322rexrd 11105 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ*)
2423adantr 481 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (sgn‘(𝐴 · 𝐵))) → (𝐴 · 𝐵) ∈ ℝ*)
25 sgncl 32645 . . . . 5 ((𝐴 · 𝐵) ∈ ℝ* → (sgn‘(𝐴 · 𝐵)) ∈ {-1, 0, 1})
26 eltpi 4633 . . . . 5 ((sgn‘(𝐴 · 𝐵)) ∈ {-1, 0, 1} → ((sgn‘(𝐴 · 𝐵)) = -1 ∨ (sgn‘(𝐴 · 𝐵)) = 0 ∨ (sgn‘(𝐴 · 𝐵)) = 1))
2724, 25, 263syl 18 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (sgn‘(𝐴 · 𝐵))) → ((sgn‘(𝐴 · 𝐵)) = -1 ∨ (sgn‘(𝐴 · 𝐵)) = 0 ∨ (sgn‘(𝐴 · 𝐵)) = 1))
2816, 20, 21, 27mpjao3dan 1430 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (sgn‘(𝐴 · 𝐵))) → (sgn‘(𝐴 · 𝐵)) = 1)
294, 28impbida 798 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((sgn‘(𝐴 · 𝐵)) = 1 ↔ 0 < (sgn‘(𝐴 · 𝐵))))
30 sgnpbi 32653 . . 3 ((𝐴 · 𝐵) ∈ ℝ* → ((sgn‘(𝐴 · 𝐵)) = 1 ↔ 0 < (𝐴 · 𝐵)))
3123, 30syl 17 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((sgn‘(𝐴 · 𝐵)) = 1 ↔ 0 < (𝐴 · 𝐵)))
32 sgnmul 32649 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (sgn‘(𝐴 · 𝐵)) = ((sgn‘𝐴) · (sgn‘𝐵)))
3332breq2d 5099 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < (sgn‘(𝐴 · 𝐵)) ↔ 0 < ((sgn‘𝐴) · (sgn‘𝐵))))
3429, 31, 333bitr3d 308 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < (𝐴 · 𝐵) ↔ 0 < ((sgn‘𝐴) · (sgn‘𝐵))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3o 1085   = wceq 1540  wcel 2105  {ctp 4575   class class class wbr 5087  cfv 6466  (class class class)co 7317  cr 10950  0cc0 10951  1c1 10952   · cmul 10956  *cxr 11088   < clt 11089  -cneg 11286  0cn0 12313  sgncsgn 14876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-sep 5238  ax-nul 5245  ax-pow 5303  ax-pr 5367  ax-un 7630  ax-cnex 11007  ax-resscn 11008  ax-1cn 11009  ax-icn 11010  ax-addcl 11011  ax-addrcl 11012  ax-mulcl 11013  ax-mulrcl 11014  ax-mulcom 11015  ax-addass 11016  ax-mulass 11017  ax-distr 11018  ax-i2m1 11019  ax-1ne0 11020  ax-1rid 11021  ax-rnegex 11022  ax-rrecex 11023  ax-cnre 11024  ax-pre-lttri 11025  ax-pre-lttrn 11026  ax-pre-ltadd 11027  ax-pre-mulgt0 11028
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4268  df-if 4472  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4851  df-iun 4939  df-br 5088  df-opab 5150  df-mpt 5171  df-tr 5205  df-id 5507  df-eprel 5513  df-po 5521  df-so 5522  df-fr 5563  df-we 5565  df-xp 5614  df-rel 5615  df-cnv 5616  df-co 5617  df-dm 5618  df-rn 5619  df-res 5620  df-ima 5621  df-pred 6225  df-ord 6292  df-on 6293  df-lim 6294  df-suc 6295  df-iota 6418  df-fun 6468  df-fn 6469  df-f 6470  df-f1 6471  df-fo 6472  df-f1o 6473  df-fv 6474  df-riota 7274  df-ov 7320  df-oprab 7321  df-mpo 7322  df-om 7760  df-2nd 7879  df-frecs 8146  df-wrecs 8177  df-recs 8251  df-rdg 8290  df-er 8548  df-en 8784  df-dom 8785  df-sdom 8786  df-pnf 11091  df-mnf 11092  df-xr 11093  df-ltxr 11094  df-le 11095  df-sub 11287  df-neg 11288  df-div 11713  df-nn 12054  df-n0 12314  df-rp 12811  df-sgn 14877
This theorem is referenced by:  signsvfpn  32704
  Copyright terms: Public domain W3C validator