Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  perfectALTVlem2 Structured version   Visualization version   GIF version

Theorem perfectALTVlem2 47709
Description: Lemma for perfectALTV 47710. (Contributed by Mario Carneiro, 17-May-2016.) (Revised by AV, 1-Jul-2020.)
Hypotheses
Ref Expression
perfectALTVlem.1 (𝜑𝐴 ∈ ℕ)
perfectALTVlem.2 (𝜑𝐵 ∈ ℕ)
perfectALTVlem.3 (𝜑𝐵 ∈ Odd )
perfectALTVlem.4 (𝜑 → (1 σ ((2↑𝐴) · 𝐵)) = (2 · ((2↑𝐴) · 𝐵)))
Assertion
Ref Expression
perfectALTVlem2 (𝜑 → (𝐵 ∈ ℙ ∧ 𝐵 = ((2↑(𝐴 + 1)) − 1)))

Proof of Theorem perfectALTVlem2
Dummy variables 𝑘 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 perfectALTVlem.2 . . . 4 (𝜑𝐵 ∈ ℕ)
2 1re 11261 . . . . . 6 1 ∈ ℝ
32a1i 11 . . . . 5 (𝜑 → 1 ∈ ℝ)
4 perfectALTVlem.1 . . . . . . . 8 (𝜑𝐴 ∈ ℕ)
5 perfectALTVlem.3 . . . . . . . 8 (𝜑𝐵 ∈ Odd )
6 perfectALTVlem.4 . . . . . . . 8 (𝜑 → (1 σ ((2↑𝐴) · 𝐵)) = (2 · ((2↑𝐴) · 𝐵)))
74, 1, 5, 6perfectALTVlem1 47708 . . . . . . 7 (𝜑 → ((2↑(𝐴 + 1)) ∈ ℕ ∧ ((2↑(𝐴 + 1)) − 1) ∈ ℕ ∧ (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∈ ℕ))
87simp3d 1145 . . . . . 6 (𝜑 → (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∈ ℕ)
98nnred 12281 . . . . 5 (𝜑 → (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∈ ℝ)
101nnred 12281 . . . . 5 (𝜑𝐵 ∈ ℝ)
118nnge1d 12314 . . . . 5 (𝜑 → 1 ≤ (𝐵 / ((2↑(𝐴 + 1)) − 1)))
12 2cn 12341 . . . . . . . . . . 11 2 ∈ ℂ
13 exp1 14108 . . . . . . . . . . 11 (2 ∈ ℂ → (2↑1) = 2)
1412, 13ax-mp 5 . . . . . . . . . 10 (2↑1) = 2
15 df-2 12329 . . . . . . . . . 10 2 = (1 + 1)
1614, 15eqtri 2765 . . . . . . . . 9 (2↑1) = (1 + 1)
17 2re 12340 . . . . . . . . . . 11 2 ∈ ℝ
1817a1i 11 . . . . . . . . . 10 (𝜑 → 2 ∈ ℝ)
19 1zzd 12648 . . . . . . . . . 10 (𝜑 → 1 ∈ ℤ)
204peano2nnd 12283 . . . . . . . . . . 11 (𝜑 → (𝐴 + 1) ∈ ℕ)
2120nnzd 12640 . . . . . . . . . 10 (𝜑 → (𝐴 + 1) ∈ ℤ)
22 1lt2 12437 . . . . . . . . . . 11 1 < 2
2322a1i 11 . . . . . . . . . 10 (𝜑 → 1 < 2)
244nnrpd 13075 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℝ+)
25 ltaddrp 13072 . . . . . . . . . . . 12 ((1 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → 1 < (1 + 𝐴))
262, 24, 25sylancr 587 . . . . . . . . . . 11 (𝜑 → 1 < (1 + 𝐴))
27 ax-1cn 11213 . . . . . . . . . . . 12 1 ∈ ℂ
284nncnd 12282 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℂ)
29 addcom 11447 . . . . . . . . . . . 12 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 + 𝐴) = (𝐴 + 1))
3027, 28, 29sylancr 587 . . . . . . . . . . 11 (𝜑 → (1 + 𝐴) = (𝐴 + 1))
3126, 30breqtrd 5169 . . . . . . . . . 10 (𝜑 → 1 < (𝐴 + 1))
32 ltexp2a 14206 . . . . . . . . . 10 (((2 ∈ ℝ ∧ 1 ∈ ℤ ∧ (𝐴 + 1) ∈ ℤ) ∧ (1 < 2 ∧ 1 < (𝐴 + 1))) → (2↑1) < (2↑(𝐴 + 1)))
3318, 19, 21, 23, 31, 32syl32anc 1380 . . . . . . . . 9 (𝜑 → (2↑1) < (2↑(𝐴 + 1)))
3416, 33eqbrtrrid 5179 . . . . . . . 8 (𝜑 → (1 + 1) < (2↑(𝐴 + 1)))
357simp1d 1143 . . . . . . . . . 10 (𝜑 → (2↑(𝐴 + 1)) ∈ ℕ)
3635nnred 12281 . . . . . . . . 9 (𝜑 → (2↑(𝐴 + 1)) ∈ ℝ)
373, 3, 36ltaddsubd 11863 . . . . . . . 8 (𝜑 → ((1 + 1) < (2↑(𝐴 + 1)) ↔ 1 < ((2↑(𝐴 + 1)) − 1)))
3834, 37mpbid 232 . . . . . . 7 (𝜑 → 1 < ((2↑(𝐴 + 1)) − 1))
39 1rp 13038 . . . . . . . . 9 1 ∈ ℝ+
4039a1i 11 . . . . . . . 8 (𝜑 → 1 ∈ ℝ+)
41 peano2rem 11576 . . . . . . . . . . 11 ((2↑(𝐴 + 1)) ∈ ℝ → ((2↑(𝐴 + 1)) − 1) ∈ ℝ)
4236, 41syl 17 . . . . . . . . . 10 (𝜑 → ((2↑(𝐴 + 1)) − 1) ∈ ℝ)
43 expgt1 14141 . . . . . . . . . . . 12 ((2 ∈ ℝ ∧ (𝐴 + 1) ∈ ℕ ∧ 1 < 2) → 1 < (2↑(𝐴 + 1)))
4418, 20, 23, 43syl3anc 1373 . . . . . . . . . . 11 (𝜑 → 1 < (2↑(𝐴 + 1)))
45 posdif 11756 . . . . . . . . . . . 12 ((1 ∈ ℝ ∧ (2↑(𝐴 + 1)) ∈ ℝ) → (1 < (2↑(𝐴 + 1)) ↔ 0 < ((2↑(𝐴 + 1)) − 1)))
462, 36, 45sylancr 587 . . . . . . . . . . 11 (𝜑 → (1 < (2↑(𝐴 + 1)) ↔ 0 < ((2↑(𝐴 + 1)) − 1)))
4744, 46mpbid 232 . . . . . . . . . 10 (𝜑 → 0 < ((2↑(𝐴 + 1)) − 1))
4842, 47jca 511 . . . . . . . . 9 (𝜑 → (((2↑(𝐴 + 1)) − 1) ∈ ℝ ∧ 0 < ((2↑(𝐴 + 1)) − 1)))
49 elrp 13036 . . . . . . . . 9 (((2↑(𝐴 + 1)) − 1) ∈ ℝ+ ↔ (((2↑(𝐴 + 1)) − 1) ∈ ℝ ∧ 0 < ((2↑(𝐴 + 1)) − 1)))
5048, 49sylibr 234 . . . . . . . 8 (𝜑 → ((2↑(𝐴 + 1)) − 1) ∈ ℝ+)
51 nnrp 13046 . . . . . . . . 9 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ+)
521, 51syl 17 . . . . . . . 8 (𝜑𝐵 ∈ ℝ+)
5340, 50, 52ltdiv2d 13100 . . . . . . 7 (𝜑 → (1 < ((2↑(𝐴 + 1)) − 1) ↔ (𝐵 / ((2↑(𝐴 + 1)) − 1)) < (𝐵 / 1)))
5438, 53mpbid 232 . . . . . 6 (𝜑 → (𝐵 / ((2↑(𝐴 + 1)) − 1)) < (𝐵 / 1))
551nncnd 12282 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
5655div1d 12035 . . . . . 6 (𝜑 → (𝐵 / 1) = 𝐵)
5754, 56breqtrd 5169 . . . . 5 (𝜑 → (𝐵 / ((2↑(𝐴 + 1)) − 1)) < 𝐵)
583, 9, 10, 11, 57lelttrd 11419 . . . 4 (𝜑 → 1 < 𝐵)
59 eluz2b2 12963 . . . 4 (𝐵 ∈ (ℤ‘2) ↔ (𝐵 ∈ ℕ ∧ 1 < 𝐵))
601, 58, 59sylanbrc 583 . . 3 (𝜑𝐵 ∈ (ℤ‘2))
61 fzfid 14014 . . . . . . . . . . . 12 (𝜑 → (1...𝐵) ∈ Fin)
62 dvdsssfz1 16355 . . . . . . . . . . . . 13 (𝐵 ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥𝐵} ⊆ (1...𝐵))
631, 62syl 17 . . . . . . . . . . . 12 (𝜑 → {𝑥 ∈ ℕ ∣ 𝑥𝐵} ⊆ (1...𝐵))
64 ssfi 9213 . . . . . . . . . . . 12 (((1...𝐵) ∈ Fin ∧ {𝑥 ∈ ℕ ∣ 𝑥𝐵} ⊆ (1...𝐵)) → {𝑥 ∈ ℕ ∣ 𝑥𝐵} ∈ Fin)
6561, 63, 64syl2anc 584 . . . . . . . . . . 11 (𝜑 → {𝑥 ∈ ℕ ∣ 𝑥𝐵} ∈ Fin)
6665ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → {𝑥 ∈ ℕ ∣ 𝑥𝐵} ∈ Fin)
67 ssrab2 4080 . . . . . . . . . . . . 13 {𝑥 ∈ ℕ ∣ 𝑥𝐵} ⊆ ℕ
6867a1i 11 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → {𝑥 ∈ ℕ ∣ 𝑥𝐵} ⊆ ℕ)
6968sselda 3983 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐵}) → 𝑘 ∈ ℕ)
7069nnred 12281 . . . . . . . . . 10 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐵}) → 𝑘 ∈ ℝ)
7169nnnn0d 12587 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐵}) → 𝑘 ∈ ℕ0)
7271nn0ge0d 12590 . . . . . . . . . 10 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐵}) → 0 ≤ 𝑘)
73 df-tp 4631 . . . . . . . . . . . 12 {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 𝑛} = ({(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵} ∪ {𝑛})
74 prssi 4821 . . . . . . . . . . . . . . 15 (((𝐵 / ((2↑(𝐴 + 1)) − 1)) ∈ ℕ ∧ 𝐵 ∈ ℕ) → {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵} ⊆ ℕ)
758, 1, 74syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵} ⊆ ℕ)
7675ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵} ⊆ ℕ)
77 simplrl 777 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → 𝑛 ∈ ℕ)
7877snssd 4809 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → {𝑛} ⊆ ℕ)
7976, 78unssd 4192 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → ({(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵} ∪ {𝑛}) ⊆ ℕ)
8073, 79eqsstrid 4022 . . . . . . . . . . 11 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 𝑛} ⊆ ℕ)
81 eltpi 4688 . . . . . . . . . . . . 13 (𝑥 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 𝑛} → (𝑥 = (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∨ 𝑥 = 𝐵𝑥 = 𝑛))
827simp2d 1144 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((2↑(𝐴 + 1)) − 1) ∈ ℕ)
8382nnzd 12640 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((2↑(𝐴 + 1)) − 1) ∈ ℤ)
848nnzd 12640 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∈ ℤ)
85 dvdsmul2 16316 . . . . . . . . . . . . . . . . . 18 ((((2↑(𝐴 + 1)) − 1) ∈ ℤ ∧ (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∈ ℤ) → (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∥ (((2↑(𝐴 + 1)) − 1) · (𝐵 / ((2↑(𝐴 + 1)) − 1))))
8683, 84, 85syl2anc 584 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∥ (((2↑(𝐴 + 1)) − 1) · (𝐵 / ((2↑(𝐴 + 1)) − 1))))
8782nncnd 12282 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((2↑(𝐴 + 1)) − 1) ∈ ℂ)
8882nnne0d 12316 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((2↑(𝐴 + 1)) − 1) ≠ 0)
8955, 87, 88divcan2d 12045 . . . . . . . . . . . . . . . . 17 (𝜑 → (((2↑(𝐴 + 1)) − 1) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) = 𝐵)
9086, 89breqtrd 5169 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∥ 𝐵)
91 breq1 5146 . . . . . . . . . . . . . . . 16 (𝑥 = (𝐵 / ((2↑(𝐴 + 1)) − 1)) → (𝑥𝐵 ↔ (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∥ 𝐵))
9290, 91syl5ibrcom 247 . . . . . . . . . . . . . . 15 (𝜑 → (𝑥 = (𝐵 / ((2↑(𝐴 + 1)) − 1)) → 𝑥𝐵))
9392ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → (𝑥 = (𝐵 / ((2↑(𝐴 + 1)) − 1)) → 𝑥𝐵))
941nnzd 12640 . . . . . . . . . . . . . . . . 17 (𝜑𝐵 ∈ ℤ)
95 iddvds 16307 . . . . . . . . . . . . . . . . 17 (𝐵 ∈ ℤ → 𝐵𝐵)
9694, 95syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝐵𝐵)
97 breq1 5146 . . . . . . . . . . . . . . . 16 (𝑥 = 𝐵 → (𝑥𝐵𝐵𝐵))
9896, 97syl5ibrcom 247 . . . . . . . . . . . . . . 15 (𝜑 → (𝑥 = 𝐵𝑥𝐵))
9998ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → (𝑥 = 𝐵𝑥𝐵))
100 simplrr 778 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → 𝑛𝐵)
101 breq1 5146 . . . . . . . . . . . . . . 15 (𝑥 = 𝑛 → (𝑥𝐵𝑛𝐵))
102100, 101syl5ibrcom 247 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → (𝑥 = 𝑛𝑥𝐵))
10393, 99, 1023jaod 1431 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → ((𝑥 = (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∨ 𝑥 = 𝐵𝑥 = 𝑛) → 𝑥𝐵))
10481, 103syl5 34 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → (𝑥 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 𝑛} → 𝑥𝐵))
105104imp 406 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) ∧ 𝑥 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 𝑛}) → 𝑥𝐵)
10680, 105ssrabdv 4074 . . . . . . . . . 10 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 𝑛} ⊆ {𝑥 ∈ ℕ ∣ 𝑥𝐵})
10766, 70, 72, 106fsumless 15832 . . . . . . . . 9 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → Σ𝑘 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 𝑛}𝑘 ≤ Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐵}𝑘)
108 simpr 484 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵})
109 disjsn 4711 . . . . . . . . . . . 12 (({(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵} ∩ {𝑛}) = ∅ ↔ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵})
110108, 109sylibr 234 . . . . . . . . . . 11 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → ({(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵} ∩ {𝑛}) = ∅)
11173a1i 11 . . . . . . . . . . 11 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 𝑛} = ({(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵} ∪ {𝑛}))
112 tpfi 9365 . . . . . . . . . . . 12 {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 𝑛} ∈ Fin
113112a1i 11 . . . . . . . . . . 11 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 𝑛} ∈ Fin)
11480sselda 3983 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) ∧ 𝑘 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 𝑛}) → 𝑘 ∈ ℕ)
115114nncnd 12282 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) ∧ 𝑘 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 𝑛}) → 𝑘 ∈ ℂ)
116110, 111, 113, 115fsumsplit 15777 . . . . . . . . . 10 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → Σ𝑘 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 𝑛}𝑘 = (Σ𝑘 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}𝑘 + Σ𝑘 ∈ {𝑛}𝑘))
1178nncnd 12282 . . . . . . . . . . . . . . 15 (𝜑 → (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∈ ℂ)
118 id 22 . . . . . . . . . . . . . . . 16 (𝑘 = (𝐵 / ((2↑(𝐴 + 1)) − 1)) → 𝑘 = (𝐵 / ((2↑(𝐴 + 1)) − 1)))
119118sumsn 15782 . . . . . . . . . . . . . . 15 (((𝐵 / ((2↑(𝐴 + 1)) − 1)) ∈ ℕ ∧ (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∈ ℂ) → Σ𝑘 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1))}𝑘 = (𝐵 / ((2↑(𝐴 + 1)) − 1)))
1208, 117, 119syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → Σ𝑘 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1))}𝑘 = (𝐵 / ((2↑(𝐴 + 1)) − 1)))
121 id 22 . . . . . . . . . . . . . . . 16 (𝑘 = 𝐵𝑘 = 𝐵)
122121sumsn 15782 . . . . . . . . . . . . . . 15 ((𝐵 ∈ ℕ ∧ 𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝐵}𝑘 = 𝐵)
1231, 55, 122syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → Σ𝑘 ∈ {𝐵}𝑘 = 𝐵)
124120, 123oveq12d 7449 . . . . . . . . . . . . 13 (𝜑 → (Σ𝑘 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1))}𝑘 + Σ𝑘 ∈ {𝐵}𝑘) = ((𝐵 / ((2↑(𝐴 + 1)) − 1)) + 𝐵))
125 incom 4209 . . . . . . . . . . . . . . 15 ({𝐵} ∩ {(𝐵 / ((2↑(𝐴 + 1)) − 1))}) = ({(𝐵 / ((2↑(𝐴 + 1)) − 1))} ∩ {𝐵})
1269, 57gtned 11396 . . . . . . . . . . . . . . . 16 (𝜑𝐵 ≠ (𝐵 / ((2↑(𝐴 + 1)) − 1)))
127 disjsn2 4712 . . . . . . . . . . . . . . . 16 (𝐵 ≠ (𝐵 / ((2↑(𝐴 + 1)) − 1)) → ({𝐵} ∩ {(𝐵 / ((2↑(𝐴 + 1)) − 1))}) = ∅)
128126, 127syl 17 . . . . . . . . . . . . . . 15 (𝜑 → ({𝐵} ∩ {(𝐵 / ((2↑(𝐴 + 1)) − 1))}) = ∅)
129125, 128eqtr3id 2791 . . . . . . . . . . . . . 14 (𝜑 → ({(𝐵 / ((2↑(𝐴 + 1)) − 1))} ∩ {𝐵}) = ∅)
130 df-pr 4629 . . . . . . . . . . . . . . 15 {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵} = ({(𝐵 / ((2↑(𝐴 + 1)) − 1))} ∪ {𝐵})
131130a1i 11 . . . . . . . . . . . . . 14 (𝜑 → {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵} = ({(𝐵 / ((2↑(𝐴 + 1)) − 1))} ∪ {𝐵}))
132 prfi 9363 . . . . . . . . . . . . . . 15 {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵} ∈ Fin
133132a1i 11 . . . . . . . . . . . . . 14 (𝜑 → {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵} ∈ Fin)
13475sselda 3983 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → 𝑘 ∈ ℕ)
135134nncnd 12282 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → 𝑘 ∈ ℂ)
136129, 131, 133, 135fsumsplit 15777 . . . . . . . . . . . . 13 (𝜑 → Σ𝑘 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}𝑘 = (Σ𝑘 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1))}𝑘 + Σ𝑘 ∈ {𝐵}𝑘))
13787, 55mulcld 11281 . . . . . . . . . . . . . . 15 (𝜑 → (((2↑(𝐴 + 1)) − 1) · 𝐵) ∈ ℂ)
13855, 137, 87, 88divdird 12081 . . . . . . . . . . . . . 14 (𝜑 → ((𝐵 + (((2↑(𝐴 + 1)) − 1) · 𝐵)) / ((2↑(𝐴 + 1)) − 1)) = ((𝐵 / ((2↑(𝐴 + 1)) − 1)) + ((((2↑(𝐴 + 1)) − 1) · 𝐵) / ((2↑(𝐴 + 1)) − 1))))
13935nncnd 12282 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (2↑(𝐴 + 1)) ∈ ℂ)
14027a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → 1 ∈ ℂ)
141139, 140, 55subdird 11720 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (((2↑(𝐴 + 1)) − 1) · 𝐵) = (((2↑(𝐴 + 1)) · 𝐵) − (1 · 𝐵)))
14255mullidd 11279 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (1 · 𝐵) = 𝐵)
143142oveq2d 7447 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (((2↑(𝐴 + 1)) · 𝐵) − (1 · 𝐵)) = (((2↑(𝐴 + 1)) · 𝐵) − 𝐵))
144141, 143eqtrd 2777 . . . . . . . . . . . . . . . . . 18 (𝜑 → (((2↑(𝐴 + 1)) − 1) · 𝐵) = (((2↑(𝐴 + 1)) · 𝐵) − 𝐵))
145144oveq2d 7447 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐵 + (((2↑(𝐴 + 1)) − 1) · 𝐵)) = (𝐵 + (((2↑(𝐴 + 1)) · 𝐵) − 𝐵)))
146139, 55mulcld 11281 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((2↑(𝐴 + 1)) · 𝐵) ∈ ℂ)
14755, 146pncan3d 11623 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐵 + (((2↑(𝐴 + 1)) · 𝐵) − 𝐵)) = ((2↑(𝐴 + 1)) · 𝐵))
148145, 147eqtrd 2777 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐵 + (((2↑(𝐴 + 1)) − 1) · 𝐵)) = ((2↑(𝐴 + 1)) · 𝐵))
149148oveq1d 7446 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐵 + (((2↑(𝐴 + 1)) − 1) · 𝐵)) / ((2↑(𝐴 + 1)) − 1)) = (((2↑(𝐴 + 1)) · 𝐵) / ((2↑(𝐴 + 1)) − 1)))
150139, 55, 87, 88divassd 12078 . . . . . . . . . . . . . . 15 (𝜑 → (((2↑(𝐴 + 1)) · 𝐵) / ((2↑(𝐴 + 1)) − 1)) = ((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))))
151149, 150eqtrd 2777 . . . . . . . . . . . . . 14 (𝜑 → ((𝐵 + (((2↑(𝐴 + 1)) − 1) · 𝐵)) / ((2↑(𝐴 + 1)) − 1)) = ((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))))
15255, 87, 88divcan3d 12048 . . . . . . . . . . . . . . 15 (𝜑 → ((((2↑(𝐴 + 1)) − 1) · 𝐵) / ((2↑(𝐴 + 1)) − 1)) = 𝐵)
153152oveq2d 7447 . . . . . . . . . . . . . 14 (𝜑 → ((𝐵 / ((2↑(𝐴 + 1)) − 1)) + ((((2↑(𝐴 + 1)) − 1) · 𝐵) / ((2↑(𝐴 + 1)) − 1))) = ((𝐵 / ((2↑(𝐴 + 1)) − 1)) + 𝐵))
154138, 151, 1533eqtr3d 2785 . . . . . . . . . . . . 13 (𝜑 → ((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) = ((𝐵 / ((2↑(𝐴 + 1)) − 1)) + 𝐵))
155124, 136, 1543eqtr4d 2787 . . . . . . . . . . . 12 (𝜑 → Σ𝑘 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}𝑘 = ((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))))
156155ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → Σ𝑘 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}𝑘 = ((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))))
15777nncnd 12282 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → 𝑛 ∈ ℂ)
158 id 22 . . . . . . . . . . . . 13 (𝑘 = 𝑛𝑘 = 𝑛)
159158sumsn 15782 . . . . . . . . . . . 12 ((𝑛 ∈ ℂ ∧ 𝑛 ∈ ℂ) → Σ𝑘 ∈ {𝑛}𝑘 = 𝑛)
160157, 157, 159syl2anc 584 . . . . . . . . . . 11 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → Σ𝑘 ∈ {𝑛}𝑘 = 𝑛)
161156, 160oveq12d 7449 . . . . . . . . . 10 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → (Σ𝑘 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}𝑘 + Σ𝑘 ∈ {𝑛}𝑘) = (((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) + 𝑛))
162116, 161eqtrd 2777 . . . . . . . . 9 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → Σ𝑘 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 𝑛}𝑘 = (((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) + 𝑛))
1634nnnn0d 12587 . . . . . . . . . . . . . . . . 17 (𝜑𝐴 ∈ ℕ0)
164 expp1 14109 . . . . . . . . . . . . . . . . 17 ((2 ∈ ℂ ∧ 𝐴 ∈ ℕ0) → (2↑(𝐴 + 1)) = ((2↑𝐴) · 2))
16512, 163, 164sylancr 587 . . . . . . . . . . . . . . . 16 (𝜑 → (2↑(𝐴 + 1)) = ((2↑𝐴) · 2))
166 2nn 12339 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℕ
167 nnexpcl 14115 . . . . . . . . . . . . . . . . . . 19 ((2 ∈ ℕ ∧ 𝐴 ∈ ℕ0) → (2↑𝐴) ∈ ℕ)
168166, 163, 167sylancr 587 . . . . . . . . . . . . . . . . . 18 (𝜑 → (2↑𝐴) ∈ ℕ)
169168nncnd 12282 . . . . . . . . . . . . . . . . 17 (𝜑 → (2↑𝐴) ∈ ℂ)
170 mulcom 11241 . . . . . . . . . . . . . . . . 17 (((2↑𝐴) ∈ ℂ ∧ 2 ∈ ℂ) → ((2↑𝐴) · 2) = (2 · (2↑𝐴)))
171169, 12, 170sylancl 586 . . . . . . . . . . . . . . . 16 (𝜑 → ((2↑𝐴) · 2) = (2 · (2↑𝐴)))
172165, 171eqtrd 2777 . . . . . . . . . . . . . . 15 (𝜑 → (2↑(𝐴 + 1)) = (2 · (2↑𝐴)))
173172oveq1d 7446 . . . . . . . . . . . . . 14 (𝜑 → ((2↑(𝐴 + 1)) · 𝐵) = ((2 · (2↑𝐴)) · 𝐵))
17412a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 2 ∈ ℂ)
175174, 169, 55mulassd 11284 . . . . . . . . . . . . . 14 (𝜑 → ((2 · (2↑𝐴)) · 𝐵) = (2 · ((2↑𝐴) · 𝐵)))
176 isodd7 47652 . . . . . . . . . . . . . . . . . . 19 (𝐵 ∈ Odd ↔ (𝐵 ∈ ℤ ∧ (2 gcd 𝐵) = 1))
177 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((𝐵 ∈ ℤ ∧ (2 gcd 𝐵) = 1) → (2 gcd 𝐵) = 1)
178176, 177sylbi 217 . . . . . . . . . . . . . . . . . 18 (𝐵 ∈ Odd → (2 gcd 𝐵) = 1)
1795, 178syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (2 gcd 𝐵) = 1)
180 2z 12649 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℤ
181180a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑 → 2 ∈ ℤ)
182 rpexp1i 16760 . . . . . . . . . . . . . . . . . 18 ((2 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∈ ℕ0) → ((2 gcd 𝐵) = 1 → ((2↑𝐴) gcd 𝐵) = 1))
183181, 94, 163, 182syl3anc 1373 . . . . . . . . . . . . . . . . 17 (𝜑 → ((2 gcd 𝐵) = 1 → ((2↑𝐴) gcd 𝐵) = 1))
184179, 183mpd 15 . . . . . . . . . . . . . . . 16 (𝜑 → ((2↑𝐴) gcd 𝐵) = 1)
185 sgmmul 27245 . . . . . . . . . . . . . . . 16 ((1 ∈ ℂ ∧ ((2↑𝐴) ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ((2↑𝐴) gcd 𝐵) = 1)) → (1 σ ((2↑𝐴) · 𝐵)) = ((1 σ (2↑𝐴)) · (1 σ 𝐵)))
186140, 168, 1, 184, 185syl13anc 1374 . . . . . . . . . . . . . . 15 (𝜑 → (1 σ ((2↑𝐴) · 𝐵)) = ((1 σ (2↑𝐴)) · (1 σ 𝐵)))
187 pncan 11514 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 + 1) − 1) = 𝐴)
18828, 27, 187sylancl 586 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝐴 + 1) − 1) = 𝐴)
189188oveq2d 7447 . . . . . . . . . . . . . . . . . 18 (𝜑 → (2↑((𝐴 + 1) − 1)) = (2↑𝐴))
190189oveq2d 7447 . . . . . . . . . . . . . . . . 17 (𝜑 → (1 σ (2↑((𝐴 + 1) − 1))) = (1 σ (2↑𝐴)))
191 1sgm2ppw 27244 . . . . . . . . . . . . . . . . . 18 ((𝐴 + 1) ∈ ℕ → (1 σ (2↑((𝐴 + 1) − 1))) = ((2↑(𝐴 + 1)) − 1))
19220, 191syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (1 σ (2↑((𝐴 + 1) − 1))) = ((2↑(𝐴 + 1)) − 1))
193190, 192eqtr3d 2779 . . . . . . . . . . . . . . . 16 (𝜑 → (1 σ (2↑𝐴)) = ((2↑(𝐴 + 1)) − 1))
194193oveq1d 7446 . . . . . . . . . . . . . . 15 (𝜑 → ((1 σ (2↑𝐴)) · (1 σ 𝐵)) = (((2↑(𝐴 + 1)) − 1) · (1 σ 𝐵)))
195186, 6, 1943eqtr3d 2785 . . . . . . . . . . . . . 14 (𝜑 → (2 · ((2↑𝐴) · 𝐵)) = (((2↑(𝐴 + 1)) − 1) · (1 σ 𝐵)))
196173, 175, 1953eqtrd 2781 . . . . . . . . . . . . 13 (𝜑 → ((2↑(𝐴 + 1)) · 𝐵) = (((2↑(𝐴 + 1)) − 1) · (1 σ 𝐵)))
197196oveq1d 7446 . . . . . . . . . . . 12 (𝜑 → (((2↑(𝐴 + 1)) · 𝐵) / ((2↑(𝐴 + 1)) − 1)) = ((((2↑(𝐴 + 1)) − 1) · (1 σ 𝐵)) / ((2↑(𝐴 + 1)) − 1)))
198 1nn0 12542 . . . . . . . . . . . . . . 15 1 ∈ ℕ0
199 sgmnncl 27190 . . . . . . . . . . . . . . 15 ((1 ∈ ℕ0𝐵 ∈ ℕ) → (1 σ 𝐵) ∈ ℕ)
200198, 1, 199sylancr 587 . . . . . . . . . . . . . 14 (𝜑 → (1 σ 𝐵) ∈ ℕ)
201200nncnd 12282 . . . . . . . . . . . . 13 (𝜑 → (1 σ 𝐵) ∈ ℂ)
202201, 87, 88divcan3d 12048 . . . . . . . . . . . 12 (𝜑 → ((((2↑(𝐴 + 1)) − 1) · (1 σ 𝐵)) / ((2↑(𝐴 + 1)) − 1)) = (1 σ 𝐵))
203197, 150, 2023eqtr3d 2785 . . . . . . . . . . 11 (𝜑 → ((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) = (1 σ 𝐵))
204 sgmval 27185 . . . . . . . . . . . 12 ((1 ∈ ℂ ∧ 𝐵 ∈ ℕ) → (1 σ 𝐵) = Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐵} (𝑘𝑐1))
20527, 1, 204sylancr 587 . . . . . . . . . . 11 (𝜑 → (1 σ 𝐵) = Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐵} (𝑘𝑐1))
206 simpr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐵}) → 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐵})
20767, 206sselid 3981 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐵}) → 𝑘 ∈ ℕ)
208207nncnd 12282 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐵}) → 𝑘 ∈ ℂ)
209208cxp1d 26748 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐵}) → (𝑘𝑐1) = 𝑘)
210209sumeq2dv 15738 . . . . . . . . . . 11 (𝜑 → Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐵} (𝑘𝑐1) = Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐵}𝑘)
211203, 205, 2103eqtrrd 2782 . . . . . . . . . 10 (𝜑 → Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐵}𝑘 = ((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))))
212211ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐵}𝑘 = ((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))))
213107, 162, 2123brtr3d 5174 . . . . . . . 8 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → (((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) + 𝑛) ≤ ((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))))
21436, 9remulcld 11291 . . . . . . . . . . 11 (𝜑 → ((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) ∈ ℝ)
215214ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → ((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) ∈ ℝ)
21677nnrpd 13075 . . . . . . . . . 10 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → 𝑛 ∈ ℝ+)
217215, 216ltaddrpd 13110 . . . . . . . . 9 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → ((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) < (((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) + 𝑛))
21877nnred 12281 . . . . . . . . . . 11 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → 𝑛 ∈ ℝ)
219215, 218readdcld 11290 . . . . . . . . . 10 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → (((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) + 𝑛) ∈ ℝ)
220215, 219ltnled 11408 . . . . . . . . 9 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → (((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) < (((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) + 𝑛) ↔ ¬ (((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) + 𝑛) ≤ ((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1)))))
221217, 220mpbid 232 . . . . . . . 8 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → ¬ (((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) + 𝑛) ≤ ((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))))
222213, 221condan 818 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) → 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵})
223 elpri 4649 . . . . . . 7 (𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵} → (𝑛 = (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∨ 𝑛 = 𝐵))
224222, 223syl 17 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) → (𝑛 = (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∨ 𝑛 = 𝐵))
225224expr 456 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝑛𝐵 → (𝑛 = (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∨ 𝑛 = 𝐵)))
226225ralrimiva 3146 . . . 4 (𝜑 → ∀𝑛 ∈ ℕ (𝑛𝐵 → (𝑛 = (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∨ 𝑛 = 𝐵)))
2273, 58gtned 11396 . . . . . . . . . 10 (𝜑𝐵 ≠ 1)
228227necomd 2996 . . . . . . . . 9 (𝜑 → 1 ≠ 𝐵)
229 1nn 12277 . . . . . . . . . . . . 13 1 ∈ ℕ
230229a1i 11 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℕ)
231 1dvds 16308 . . . . . . . . . . . . 13 (𝐵 ∈ ℤ → 1 ∥ 𝐵)
23294, 231syl 17 . . . . . . . . . . . 12 (𝜑 → 1 ∥ 𝐵)
233 breq1 5146 . . . . . . . . . . . . . 14 (𝑛 = 1 → (𝑛𝐵 ↔ 1 ∥ 𝐵))
234 eqeq1 2741 . . . . . . . . . . . . . . 15 (𝑛 = 1 → (𝑛 = (𝐵 / ((2↑(𝐴 + 1)) − 1)) ↔ 1 = (𝐵 / ((2↑(𝐴 + 1)) − 1))))
235 eqeq1 2741 . . . . . . . . . . . . . . 15 (𝑛 = 1 → (𝑛 = 𝐵 ↔ 1 = 𝐵))
236234, 235orbi12d 919 . . . . . . . . . . . . . 14 (𝑛 = 1 → ((𝑛 = (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∨ 𝑛 = 𝐵) ↔ (1 = (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∨ 1 = 𝐵)))
237233, 236imbi12d 344 . . . . . . . . . . . . 13 (𝑛 = 1 → ((𝑛𝐵 → (𝑛 = (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∨ 𝑛 = 𝐵)) ↔ (1 ∥ 𝐵 → (1 = (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∨ 1 = 𝐵))))
238237rspcv 3618 . . . . . . . . . . . 12 (1 ∈ ℕ → (∀𝑛 ∈ ℕ (𝑛𝐵 → (𝑛 = (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∨ 𝑛 = 𝐵)) → (1 ∥ 𝐵 → (1 = (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∨ 1 = 𝐵))))
239230, 226, 232, 238syl3c 66 . . . . . . . . . . 11 (𝜑 → (1 = (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∨ 1 = 𝐵))
240239ord 865 . . . . . . . . . 10 (𝜑 → (¬ 1 = (𝐵 / ((2↑(𝐴 + 1)) − 1)) → 1 = 𝐵))
241240necon1ad 2957 . . . . . . . . 9 (𝜑 → (1 ≠ 𝐵 → 1 = (𝐵 / ((2↑(𝐴 + 1)) − 1))))
242228, 241mpd 15 . . . . . . . 8 (𝜑 → 1 = (𝐵 / ((2↑(𝐴 + 1)) − 1)))
243242eqeq2d 2748 . . . . . . 7 (𝜑 → (𝑛 = 1 ↔ 𝑛 = (𝐵 / ((2↑(𝐴 + 1)) − 1))))
244243orbi1d 917 . . . . . 6 (𝜑 → ((𝑛 = 1 ∨ 𝑛 = 𝐵) ↔ (𝑛 = (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∨ 𝑛 = 𝐵)))
245244imbi2d 340 . . . . 5 (𝜑 → ((𝑛𝐵 → (𝑛 = 1 ∨ 𝑛 = 𝐵)) ↔ (𝑛𝐵 → (𝑛 = (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∨ 𝑛 = 𝐵))))
246245ralbidv 3178 . . . 4 (𝜑 → (∀𝑛 ∈ ℕ (𝑛𝐵 → (𝑛 = 1 ∨ 𝑛 = 𝐵)) ↔ ∀𝑛 ∈ ℕ (𝑛𝐵 → (𝑛 = (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∨ 𝑛 = 𝐵))))
247226, 246mpbird 257 . . 3 (𝜑 → ∀𝑛 ∈ ℕ (𝑛𝐵 → (𝑛 = 1 ∨ 𝑛 = 𝐵)))
248 isprm2 16719 . . 3 (𝐵 ∈ ℙ ↔ (𝐵 ∈ (ℤ‘2) ∧ ∀𝑛 ∈ ℕ (𝑛𝐵 → (𝑛 = 1 ∨ 𝑛 = 𝐵))))
24960, 247, 248sylanbrc 583 . 2 (𝜑𝐵 ∈ ℙ)
250214ltp1d 12198 . . . 4 (𝜑 → ((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) < (((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) + 1))
251 peano2re 11434 . . . . . 6 (((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) ∈ ℝ → (((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) + 1) ∈ ℝ)
252214, 251syl 17 . . . . 5 (𝜑 → (((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) + 1) ∈ ℝ)
253214, 252ltnled 11408 . . . 4 (𝜑 → (((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) < (((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) + 1) ↔ ¬ (((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) + 1) ≤ ((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1)))))
254250, 253mpbid 232 . . 3 (𝜑 → ¬ (((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) + 1) ≤ ((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))))
255207nnred 12281 . . . . . . . 8 ((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐵}) → 𝑘 ∈ ℝ)
256207nnnn0d 12587 . . . . . . . . 9 ((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐵}) → 𝑘 ∈ ℕ0)
257256nn0ge0d 12590 . . . . . . . 8 ((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐵}) → 0 ≤ 𝑘)
258 df-tp 4631 . . . . . . . . . 10 {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 1} = ({(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵} ∪ {1})
259 snssi 4808 . . . . . . . . . . . 12 (1 ∈ ℕ → {1} ⊆ ℕ)
260229, 259mp1i 13 . . . . . . . . . . 11 (𝜑 → {1} ⊆ ℕ)
26175, 260unssd 4192 . . . . . . . . . 10 (𝜑 → ({(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵} ∪ {1}) ⊆ ℕ)
262258, 261eqsstrid 4022 . . . . . . . . 9 (𝜑 → {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 1} ⊆ ℕ)
263 eltpi 4688 . . . . . . . . . . 11 (𝑥 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 1} → (𝑥 = (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∨ 𝑥 = 𝐵𝑥 = 1))
264 breq1 5146 . . . . . . . . . . . . 13 (𝑥 = 1 → (𝑥𝐵 ↔ 1 ∥ 𝐵))
265232, 264syl5ibrcom 247 . . . . . . . . . . . 12 (𝜑 → (𝑥 = 1 → 𝑥𝐵))
26692, 98, 2653jaod 1431 . . . . . . . . . . 11 (𝜑 → ((𝑥 = (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∨ 𝑥 = 𝐵𝑥 = 1) → 𝑥𝐵))
267263, 266syl5 34 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 1} → 𝑥𝐵))
268267imp 406 . . . . . . . . 9 ((𝜑𝑥 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 1}) → 𝑥𝐵)
269262, 268ssrabdv 4074 . . . . . . . 8 (𝜑 → {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 1} ⊆ {𝑥 ∈ ℕ ∣ 𝑥𝐵})
27065, 255, 257, 269fsumless 15832 . . . . . . 7 (𝜑 → Σ𝑘 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 1}𝑘 ≤ Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐵}𝑘)
271270adantr 480 . . . . . 6 ((𝜑𝐵 ≠ ((2↑(𝐴 + 1)) − 1)) → Σ𝑘 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 1}𝑘 ≤ Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐵}𝑘)
27255, 87, 88diveq1ad 12052 . . . . . . . . . . . . 13 (𝜑 → ((𝐵 / ((2↑(𝐴 + 1)) − 1)) = 1 ↔ 𝐵 = ((2↑(𝐴 + 1)) − 1)))
273272necon3bid 2985 . . . . . . . . . . . 12 (𝜑 → ((𝐵 / ((2↑(𝐴 + 1)) − 1)) ≠ 1 ↔ 𝐵 ≠ ((2↑(𝐴 + 1)) − 1)))
274273biimpar 477 . . . . . . . . . . 11 ((𝜑𝐵 ≠ ((2↑(𝐴 + 1)) − 1)) → (𝐵 / ((2↑(𝐴 + 1)) − 1)) ≠ 1)
275274necomd 2996 . . . . . . . . . 10 ((𝜑𝐵 ≠ ((2↑(𝐴 + 1)) − 1)) → 1 ≠ (𝐵 / ((2↑(𝐴 + 1)) − 1)))
276228adantr 480 . . . . . . . . . 10 ((𝜑𝐵 ≠ ((2↑(𝐴 + 1)) − 1)) → 1 ≠ 𝐵)
277275, 276nelprd 4657 . . . . . . . . 9 ((𝜑𝐵 ≠ ((2↑(𝐴 + 1)) − 1)) → ¬ 1 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵})
278 disjsn 4711 . . . . . . . . 9 (({(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵} ∩ {1}) = ∅ ↔ ¬ 1 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵})
279277, 278sylibr 234 . . . . . . . 8 ((𝜑𝐵 ≠ ((2↑(𝐴 + 1)) − 1)) → ({(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵} ∩ {1}) = ∅)
280258a1i 11 . . . . . . . 8 ((𝜑𝐵 ≠ ((2↑(𝐴 + 1)) − 1)) → {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 1} = ({(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵} ∪ {1}))
281 tpfi 9365 . . . . . . . . 9 {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 1} ∈ Fin
282281a1i 11 . . . . . . . 8 ((𝜑𝐵 ≠ ((2↑(𝐴 + 1)) − 1)) → {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 1} ∈ Fin)
283262adantr 480 . . . . . . . . . 10 ((𝜑𝐵 ≠ ((2↑(𝐴 + 1)) − 1)) → {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 1} ⊆ ℕ)
284283sselda 3983 . . . . . . . . 9 (((𝜑𝐵 ≠ ((2↑(𝐴 + 1)) − 1)) ∧ 𝑘 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 1}) → 𝑘 ∈ ℕ)
285284nncnd 12282 . . . . . . . 8 (((𝜑𝐵 ≠ ((2↑(𝐴 + 1)) − 1)) ∧ 𝑘 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 1}) → 𝑘 ∈ ℂ)
286279, 280, 282, 285fsumsplit 15777 . . . . . . 7 ((𝜑𝐵 ≠ ((2↑(𝐴 + 1)) − 1)) → Σ𝑘 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 1}𝑘 = (Σ𝑘 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}𝑘 + Σ𝑘 ∈ {1}𝑘))
287 id 22 . . . . . . . . . . 11 (𝑘 = 1 → 𝑘 = 1)
288287sumsn 15782 . . . . . . . . . 10 ((1 ∈ ℂ ∧ 1 ∈ ℂ) → Σ𝑘 ∈ {1}𝑘 = 1)
289140, 27, 288sylancl 586 . . . . . . . . 9 (𝜑 → Σ𝑘 ∈ {1}𝑘 = 1)
290155, 289oveq12d 7449 . . . . . . . 8 (𝜑 → (Σ𝑘 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}𝑘 + Σ𝑘 ∈ {1}𝑘) = (((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) + 1))
291290adantr 480 . . . . . . 7 ((𝜑𝐵 ≠ ((2↑(𝐴 + 1)) − 1)) → (Σ𝑘 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}𝑘 + Σ𝑘 ∈ {1}𝑘) = (((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) + 1))
292286, 291eqtrd 2777 . . . . . 6 ((𝜑𝐵 ≠ ((2↑(𝐴 + 1)) − 1)) → Σ𝑘 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 1}𝑘 = (((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) + 1))
293211adantr 480 . . . . . 6 ((𝜑𝐵 ≠ ((2↑(𝐴 + 1)) − 1)) → Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐵}𝑘 = ((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))))
294271, 292, 2933brtr3d 5174 . . . . 5 ((𝜑𝐵 ≠ ((2↑(𝐴 + 1)) − 1)) → (((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) + 1) ≤ ((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))))
295294ex 412 . . . 4 (𝜑 → (𝐵 ≠ ((2↑(𝐴 + 1)) − 1) → (((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) + 1) ≤ ((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1)))))
296295necon1bd 2958 . . 3 (𝜑 → (¬ (((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) + 1) ≤ ((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) → 𝐵 = ((2↑(𝐴 + 1)) − 1)))
297254, 296mpd 15 . 2 (𝜑𝐵 = ((2↑(𝐴 + 1)) − 1))
298249, 297jca 511 1 (𝜑 → (𝐵 ∈ ℙ ∧ 𝐵 = ((2↑(𝐴 + 1)) − 1)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 848  w3o 1086   = wceq 1540  wcel 2108  wne 2940  wral 3061  {crab 3436  cun 3949  cin 3950  wss 3951  c0 4333  {csn 4626  {cpr 4628  {ctp 4630   class class class wbr 5143  cfv 6561  (class class class)co 7431  Fincfn 8985  cc 11153  cr 11154  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160   < clt 11295  cle 11296  cmin 11492   / cdiv 11920  cn 12266  2c2 12321  0cn0 12526  cz 12613  cuz 12878  +crp 13034  ...cfz 13547  cexp 14102  Σcsu 15722  cdvds 16290   gcd cgcd 16531  cprime 16708  𝑐ccxp 26597   σ csgm 27139   Odd codd 47612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ioc 13392  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-fac 14313  df-bc 14342  df-hash 14370  df-shft 15106  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-limsup 15507  df-clim 15524  df-rlim 15525  df-sum 15723  df-ef 16103  df-sin 16105  df-cos 16106  df-pi 16108  df-dvds 16291  df-gcd 16532  df-prm 16709  df-pc 16875  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-fbas 21361  df-fg 21362  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-lp 23144  df-perf 23145  df-cn 23235  df-cnp 23236  df-haus 23323  df-tx 23570  df-hmeo 23763  df-fil 23854  df-fm 23946  df-flim 23947  df-flf 23948  df-xms 24330  df-ms 24331  df-tms 24332  df-cncf 24904  df-limc 25901  df-dv 25902  df-log 26598  df-cxp 26599  df-sgm 27145  df-even 47613  df-odd 47614
This theorem is referenced by:  perfectALTV  47710
  Copyright terms: Public domain W3C validator