Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  perfectALTVlem2 Structured version   Visualization version   GIF version

Theorem perfectALTVlem2 46985
Description: Lemma for perfectALTV 46986. (Contributed by Mario Carneiro, 17-May-2016.) (Revised by AV, 1-Jul-2020.)
Hypotheses
Ref Expression
perfectALTVlem.1 (๐œ‘ โ†’ ๐ด โˆˆ โ„•)
perfectALTVlem.2 (๐œ‘ โ†’ ๐ต โˆˆ โ„•)
perfectALTVlem.3 (๐œ‘ โ†’ ๐ต โˆˆ Odd )
perfectALTVlem.4 (๐œ‘ โ†’ (1 ฯƒ ((2โ†‘๐ด) ยท ๐ต)) = (2 ยท ((2โ†‘๐ด) ยท ๐ต)))
Assertion
Ref Expression
perfectALTVlem2 (๐œ‘ โ†’ (๐ต โˆˆ โ„™ โˆง ๐ต = ((2โ†‘(๐ด + 1)) โˆ’ 1)))

Proof of Theorem perfectALTVlem2
Dummy variables ๐‘˜ ๐‘› ๐‘ฅ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 perfectALTVlem.2 . . . 4 (๐œ‘ โ†’ ๐ต โˆˆ โ„•)
2 1re 11236 . . . . . 6 1 โˆˆ โ„
32a1i 11 . . . . 5 (๐œ‘ โ†’ 1 โˆˆ โ„)
4 perfectALTVlem.1 . . . . . . . 8 (๐œ‘ โ†’ ๐ด โˆˆ โ„•)
5 perfectALTVlem.3 . . . . . . . 8 (๐œ‘ โ†’ ๐ต โˆˆ Odd )
6 perfectALTVlem.4 . . . . . . . 8 (๐œ‘ โ†’ (1 ฯƒ ((2โ†‘๐ด) ยท ๐ต)) = (2 ยท ((2โ†‘๐ด) ยท ๐ต)))
74, 1, 5, 6perfectALTVlem1 46984 . . . . . . 7 (๐œ‘ โ†’ ((2โ†‘(๐ด + 1)) โˆˆ โ„• โˆง ((2โ†‘(๐ด + 1)) โˆ’ 1) โˆˆ โ„• โˆง (๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)) โˆˆ โ„•))
87simp3d 1142 . . . . . 6 (๐œ‘ โ†’ (๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)) โˆˆ โ„•)
98nnred 12249 . . . . 5 (๐œ‘ โ†’ (๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)) โˆˆ โ„)
101nnred 12249 . . . . 5 (๐œ‘ โ†’ ๐ต โˆˆ โ„)
118nnge1d 12282 . . . . 5 (๐œ‘ โ†’ 1 โ‰ค (๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)))
12 2cn 12309 . . . . . . . . . . 11 2 โˆˆ โ„‚
13 exp1 14056 . . . . . . . . . . 11 (2 โˆˆ โ„‚ โ†’ (2โ†‘1) = 2)
1412, 13ax-mp 5 . . . . . . . . . 10 (2โ†‘1) = 2
15 df-2 12297 . . . . . . . . . 10 2 = (1 + 1)
1614, 15eqtri 2755 . . . . . . . . 9 (2โ†‘1) = (1 + 1)
17 2re 12308 . . . . . . . . . . 11 2 โˆˆ โ„
1817a1i 11 . . . . . . . . . 10 (๐œ‘ โ†’ 2 โˆˆ โ„)
19 1zzd 12615 . . . . . . . . . 10 (๐œ‘ โ†’ 1 โˆˆ โ„ค)
204peano2nnd 12251 . . . . . . . . . . 11 (๐œ‘ โ†’ (๐ด + 1) โˆˆ โ„•)
2120nnzd 12607 . . . . . . . . . 10 (๐œ‘ โ†’ (๐ด + 1) โˆˆ โ„ค)
22 1lt2 12405 . . . . . . . . . . 11 1 < 2
2322a1i 11 . . . . . . . . . 10 (๐œ‘ โ†’ 1 < 2)
244nnrpd 13038 . . . . . . . . . . . 12 (๐œ‘ โ†’ ๐ด โˆˆ โ„+)
25 ltaddrp 13035 . . . . . . . . . . . 12 ((1 โˆˆ โ„ โˆง ๐ด โˆˆ โ„+) โ†’ 1 < (1 + ๐ด))
262, 24, 25sylancr 586 . . . . . . . . . . 11 (๐œ‘ โ†’ 1 < (1 + ๐ด))
27 ax-1cn 11188 . . . . . . . . . . . 12 1 โˆˆ โ„‚
284nncnd 12250 . . . . . . . . . . . 12 (๐œ‘ โ†’ ๐ด โˆˆ โ„‚)
29 addcom 11422 . . . . . . . . . . . 12 ((1 โˆˆ โ„‚ โˆง ๐ด โˆˆ โ„‚) โ†’ (1 + ๐ด) = (๐ด + 1))
3027, 28, 29sylancr 586 . . . . . . . . . . 11 (๐œ‘ โ†’ (1 + ๐ด) = (๐ด + 1))
3126, 30breqtrd 5168 . . . . . . . . . 10 (๐œ‘ โ†’ 1 < (๐ด + 1))
32 ltexp2a 14154 . . . . . . . . . 10 (((2 โˆˆ โ„ โˆง 1 โˆˆ โ„ค โˆง (๐ด + 1) โˆˆ โ„ค) โˆง (1 < 2 โˆง 1 < (๐ด + 1))) โ†’ (2โ†‘1) < (2โ†‘(๐ด + 1)))
3318, 19, 21, 23, 31, 32syl32anc 1376 . . . . . . . . 9 (๐œ‘ โ†’ (2โ†‘1) < (2โ†‘(๐ด + 1)))
3416, 33eqbrtrrid 5178 . . . . . . . 8 (๐œ‘ โ†’ (1 + 1) < (2โ†‘(๐ด + 1)))
357simp1d 1140 . . . . . . . . . 10 (๐œ‘ โ†’ (2โ†‘(๐ด + 1)) โˆˆ โ„•)
3635nnred 12249 . . . . . . . . 9 (๐œ‘ โ†’ (2โ†‘(๐ด + 1)) โˆˆ โ„)
373, 3, 36ltaddsubd 11836 . . . . . . . 8 (๐œ‘ โ†’ ((1 + 1) < (2โ†‘(๐ด + 1)) โ†” 1 < ((2โ†‘(๐ด + 1)) โˆ’ 1)))
3834, 37mpbid 231 . . . . . . 7 (๐œ‘ โ†’ 1 < ((2โ†‘(๐ด + 1)) โˆ’ 1))
39 1rp 13002 . . . . . . . . 9 1 โˆˆ โ„+
4039a1i 11 . . . . . . . 8 (๐œ‘ โ†’ 1 โˆˆ โ„+)
41 peano2rem 11549 . . . . . . . . . . 11 ((2โ†‘(๐ด + 1)) โˆˆ โ„ โ†’ ((2โ†‘(๐ด + 1)) โˆ’ 1) โˆˆ โ„)
4236, 41syl 17 . . . . . . . . . 10 (๐œ‘ โ†’ ((2โ†‘(๐ด + 1)) โˆ’ 1) โˆˆ โ„)
43 expgt1 14089 . . . . . . . . . . . 12 ((2 โˆˆ โ„ โˆง (๐ด + 1) โˆˆ โ„• โˆง 1 < 2) โ†’ 1 < (2โ†‘(๐ด + 1)))
4418, 20, 23, 43syl3anc 1369 . . . . . . . . . . 11 (๐œ‘ โ†’ 1 < (2โ†‘(๐ด + 1)))
45 posdif 11729 . . . . . . . . . . . 12 ((1 โˆˆ โ„ โˆง (2โ†‘(๐ด + 1)) โˆˆ โ„) โ†’ (1 < (2โ†‘(๐ด + 1)) โ†” 0 < ((2โ†‘(๐ด + 1)) โˆ’ 1)))
462, 36, 45sylancr 586 . . . . . . . . . . 11 (๐œ‘ โ†’ (1 < (2โ†‘(๐ด + 1)) โ†” 0 < ((2โ†‘(๐ด + 1)) โˆ’ 1)))
4744, 46mpbid 231 . . . . . . . . . 10 (๐œ‘ โ†’ 0 < ((2โ†‘(๐ด + 1)) โˆ’ 1))
4842, 47jca 511 . . . . . . . . 9 (๐œ‘ โ†’ (((2โ†‘(๐ด + 1)) โˆ’ 1) โˆˆ โ„ โˆง 0 < ((2โ†‘(๐ด + 1)) โˆ’ 1)))
49 elrp 13000 . . . . . . . . 9 (((2โ†‘(๐ด + 1)) โˆ’ 1) โˆˆ โ„+ โ†” (((2โ†‘(๐ด + 1)) โˆ’ 1) โˆˆ โ„ โˆง 0 < ((2โ†‘(๐ด + 1)) โˆ’ 1)))
5048, 49sylibr 233 . . . . . . . 8 (๐œ‘ โ†’ ((2โ†‘(๐ด + 1)) โˆ’ 1) โˆˆ โ„+)
51 nnrp 13009 . . . . . . . . 9 (๐ต โˆˆ โ„• โ†’ ๐ต โˆˆ โ„+)
521, 51syl 17 . . . . . . . 8 (๐œ‘ โ†’ ๐ต โˆˆ โ„+)
5340, 50, 52ltdiv2d 13063 . . . . . . 7 (๐œ‘ โ†’ (1 < ((2โ†‘(๐ด + 1)) โˆ’ 1) โ†” (๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)) < (๐ต / 1)))
5438, 53mpbid 231 . . . . . 6 (๐œ‘ โ†’ (๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)) < (๐ต / 1))
551nncnd 12250 . . . . . . 7 (๐œ‘ โ†’ ๐ต โˆˆ โ„‚)
5655div1d 12004 . . . . . 6 (๐œ‘ โ†’ (๐ต / 1) = ๐ต)
5754, 56breqtrd 5168 . . . . 5 (๐œ‘ โ†’ (๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)) < ๐ต)
583, 9, 10, 11, 57lelttrd 11394 . . . 4 (๐œ‘ โ†’ 1 < ๐ต)
59 eluz2b2 12927 . . . 4 (๐ต โˆˆ (โ„คโ‰ฅโ€˜2) โ†” (๐ต โˆˆ โ„• โˆง 1 < ๐ต))
601, 58, 59sylanbrc 582 . . 3 (๐œ‘ โ†’ ๐ต โˆˆ (โ„คโ‰ฅโ€˜2))
61 fzfid 13962 . . . . . . . . . . . 12 (๐œ‘ โ†’ (1...๐ต) โˆˆ Fin)
62 dvdsssfz1 16286 . . . . . . . . . . . . 13 (๐ต โˆˆ โ„• โ†’ {๐‘ฅ โˆˆ โ„• โˆฃ ๐‘ฅ โˆฅ ๐ต} โІ (1...๐ต))
631, 62syl 17 . . . . . . . . . . . 12 (๐œ‘ โ†’ {๐‘ฅ โˆˆ โ„• โˆฃ ๐‘ฅ โˆฅ ๐ต} โІ (1...๐ต))
64 ssfi 9189 . . . . . . . . . . . 12 (((1...๐ต) โˆˆ Fin โˆง {๐‘ฅ โˆˆ โ„• โˆฃ ๐‘ฅ โˆฅ ๐ต} โІ (1...๐ต)) โ†’ {๐‘ฅ โˆˆ โ„• โˆฃ ๐‘ฅ โˆฅ ๐ต} โˆˆ Fin)
6561, 63, 64syl2anc 583 . . . . . . . . . . 11 (๐œ‘ โ†’ {๐‘ฅ โˆˆ โ„• โˆฃ ๐‘ฅ โˆฅ ๐ต} โˆˆ Fin)
6665ad2antrr 725 . . . . . . . . . 10 (((๐œ‘ โˆง (๐‘› โˆˆ โ„• โˆง ๐‘› โˆฅ ๐ต)) โˆง ยฌ ๐‘› โˆˆ {(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)), ๐ต}) โ†’ {๐‘ฅ โˆˆ โ„• โˆฃ ๐‘ฅ โˆฅ ๐ต} โˆˆ Fin)
67 ssrab2 4073 . . . . . . . . . . . . 13 {๐‘ฅ โˆˆ โ„• โˆฃ ๐‘ฅ โˆฅ ๐ต} โІ โ„•
6867a1i 11 . . . . . . . . . . . 12 (((๐œ‘ โˆง (๐‘› โˆˆ โ„• โˆง ๐‘› โˆฅ ๐ต)) โˆง ยฌ ๐‘› โˆˆ {(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)), ๐ต}) โ†’ {๐‘ฅ โˆˆ โ„• โˆฃ ๐‘ฅ โˆฅ ๐ต} โІ โ„•)
6968sselda 3978 . . . . . . . . . . 11 ((((๐œ‘ โˆง (๐‘› โˆˆ โ„• โˆง ๐‘› โˆฅ ๐ต)) โˆง ยฌ ๐‘› โˆˆ {(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)), ๐ต}) โˆง ๐‘˜ โˆˆ {๐‘ฅ โˆˆ โ„• โˆฃ ๐‘ฅ โˆฅ ๐ต}) โ†’ ๐‘˜ โˆˆ โ„•)
7069nnred 12249 . . . . . . . . . 10 ((((๐œ‘ โˆง (๐‘› โˆˆ โ„• โˆง ๐‘› โˆฅ ๐ต)) โˆง ยฌ ๐‘› โˆˆ {(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)), ๐ต}) โˆง ๐‘˜ โˆˆ {๐‘ฅ โˆˆ โ„• โˆฃ ๐‘ฅ โˆฅ ๐ต}) โ†’ ๐‘˜ โˆˆ โ„)
7169nnnn0d 12554 . . . . . . . . . . 11 ((((๐œ‘ โˆง (๐‘› โˆˆ โ„• โˆง ๐‘› โˆฅ ๐ต)) โˆง ยฌ ๐‘› โˆˆ {(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)), ๐ต}) โˆง ๐‘˜ โˆˆ {๐‘ฅ โˆˆ โ„• โˆฃ ๐‘ฅ โˆฅ ๐ต}) โ†’ ๐‘˜ โˆˆ โ„•0)
7271nn0ge0d 12557 . . . . . . . . . 10 ((((๐œ‘ โˆง (๐‘› โˆˆ โ„• โˆง ๐‘› โˆฅ ๐ต)) โˆง ยฌ ๐‘› โˆˆ {(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)), ๐ต}) โˆง ๐‘˜ โˆˆ {๐‘ฅ โˆˆ โ„• โˆฃ ๐‘ฅ โˆฅ ๐ต}) โ†’ 0 โ‰ค ๐‘˜)
73 df-tp 4629 . . . . . . . . . . . 12 {(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)), ๐ต, ๐‘›} = ({(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)), ๐ต} โˆช {๐‘›})
74 prssi 4820 . . . . . . . . . . . . . . 15 (((๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)) โˆˆ โ„• โˆง ๐ต โˆˆ โ„•) โ†’ {(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)), ๐ต} โІ โ„•)
758, 1, 74syl2anc 583 . . . . . . . . . . . . . 14 (๐œ‘ โ†’ {(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)), ๐ต} โІ โ„•)
7675ad2antrr 725 . . . . . . . . . . . . 13 (((๐œ‘ โˆง (๐‘› โˆˆ โ„• โˆง ๐‘› โˆฅ ๐ต)) โˆง ยฌ ๐‘› โˆˆ {(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)), ๐ต}) โ†’ {(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)), ๐ต} โІ โ„•)
77 simplrl 776 . . . . . . . . . . . . . 14 (((๐œ‘ โˆง (๐‘› โˆˆ โ„• โˆง ๐‘› โˆฅ ๐ต)) โˆง ยฌ ๐‘› โˆˆ {(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)), ๐ต}) โ†’ ๐‘› โˆˆ โ„•)
7877snssd 4808 . . . . . . . . . . . . 13 (((๐œ‘ โˆง (๐‘› โˆˆ โ„• โˆง ๐‘› โˆฅ ๐ต)) โˆง ยฌ ๐‘› โˆˆ {(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)), ๐ต}) โ†’ {๐‘›} โІ โ„•)
7976, 78unssd 4182 . . . . . . . . . . . 12 (((๐œ‘ โˆง (๐‘› โˆˆ โ„• โˆง ๐‘› โˆฅ ๐ต)) โˆง ยฌ ๐‘› โˆˆ {(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)), ๐ต}) โ†’ ({(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)), ๐ต} โˆช {๐‘›}) โІ โ„•)
8073, 79eqsstrid 4026 . . . . . . . . . . 11 (((๐œ‘ โˆง (๐‘› โˆˆ โ„• โˆง ๐‘› โˆฅ ๐ต)) โˆง ยฌ ๐‘› โˆˆ {(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)), ๐ต}) โ†’ {(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)), ๐ต, ๐‘›} โІ โ„•)
81 eltpi 4687 . . . . . . . . . . . . 13 (๐‘ฅ โˆˆ {(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)), ๐ต, ๐‘›} โ†’ (๐‘ฅ = (๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)) โˆจ ๐‘ฅ = ๐ต โˆจ ๐‘ฅ = ๐‘›))
827simp2d 1141 . . . . . . . . . . . . . . . . . . 19 (๐œ‘ โ†’ ((2โ†‘(๐ด + 1)) โˆ’ 1) โˆˆ โ„•)
8382nnzd 12607 . . . . . . . . . . . . . . . . . 18 (๐œ‘ โ†’ ((2โ†‘(๐ด + 1)) โˆ’ 1) โˆˆ โ„ค)
848nnzd 12607 . . . . . . . . . . . . . . . . . 18 (๐œ‘ โ†’ (๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)) โˆˆ โ„ค)
85 dvdsmul2 16247 . . . . . . . . . . . . . . . . . 18 ((((2โ†‘(๐ด + 1)) โˆ’ 1) โˆˆ โ„ค โˆง (๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)) โˆˆ โ„ค) โ†’ (๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)) โˆฅ (((2โ†‘(๐ด + 1)) โˆ’ 1) ยท (๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1))))
8683, 84, 85syl2anc 583 . . . . . . . . . . . . . . . . 17 (๐œ‘ โ†’ (๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)) โˆฅ (((2โ†‘(๐ด + 1)) โˆ’ 1) ยท (๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1))))
8782nncnd 12250 . . . . . . . . . . . . . . . . . 18 (๐œ‘ โ†’ ((2โ†‘(๐ด + 1)) โˆ’ 1) โˆˆ โ„‚)
8882nnne0d 12284 . . . . . . . . . . . . . . . . . 18 (๐œ‘ โ†’ ((2โ†‘(๐ด + 1)) โˆ’ 1) โ‰  0)
8955, 87, 88divcan2d 12014 . . . . . . . . . . . . . . . . 17 (๐œ‘ โ†’ (((2โ†‘(๐ด + 1)) โˆ’ 1) ยท (๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1))) = ๐ต)
9086, 89breqtrd 5168 . . . . . . . . . . . . . . . 16 (๐œ‘ โ†’ (๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)) โˆฅ ๐ต)
91 breq1 5145 . . . . . . . . . . . . . . . 16 (๐‘ฅ = (๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)) โ†’ (๐‘ฅ โˆฅ ๐ต โ†” (๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)) โˆฅ ๐ต))
9290, 91syl5ibrcom 246 . . . . . . . . . . . . . . 15 (๐œ‘ โ†’ (๐‘ฅ = (๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)) โ†’ ๐‘ฅ โˆฅ ๐ต))
9392ad2antrr 725 . . . . . . . . . . . . . 14 (((๐œ‘ โˆง (๐‘› โˆˆ โ„• โˆง ๐‘› โˆฅ ๐ต)) โˆง ยฌ ๐‘› โˆˆ {(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)), ๐ต}) โ†’ (๐‘ฅ = (๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)) โ†’ ๐‘ฅ โˆฅ ๐ต))
941nnzd 12607 . . . . . . . . . . . . . . . . 17 (๐œ‘ โ†’ ๐ต โˆˆ โ„ค)
95 iddvds 16238 . . . . . . . . . . . . . . . . 17 (๐ต โˆˆ โ„ค โ†’ ๐ต โˆฅ ๐ต)
9694, 95syl 17 . . . . . . . . . . . . . . . 16 (๐œ‘ โ†’ ๐ต โˆฅ ๐ต)
97 breq1 5145 . . . . . . . . . . . . . . . 16 (๐‘ฅ = ๐ต โ†’ (๐‘ฅ โˆฅ ๐ต โ†” ๐ต โˆฅ ๐ต))
9896, 97syl5ibrcom 246 . . . . . . . . . . . . . . 15 (๐œ‘ โ†’ (๐‘ฅ = ๐ต โ†’ ๐‘ฅ โˆฅ ๐ต))
9998ad2antrr 725 . . . . . . . . . . . . . 14 (((๐œ‘ โˆง (๐‘› โˆˆ โ„• โˆง ๐‘› โˆฅ ๐ต)) โˆง ยฌ ๐‘› โˆˆ {(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)), ๐ต}) โ†’ (๐‘ฅ = ๐ต โ†’ ๐‘ฅ โˆฅ ๐ต))
100 simplrr 777 . . . . . . . . . . . . . . 15 (((๐œ‘ โˆง (๐‘› โˆˆ โ„• โˆง ๐‘› โˆฅ ๐ต)) โˆง ยฌ ๐‘› โˆˆ {(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)), ๐ต}) โ†’ ๐‘› โˆฅ ๐ต)
101 breq1 5145 . . . . . . . . . . . . . . 15 (๐‘ฅ = ๐‘› โ†’ (๐‘ฅ โˆฅ ๐ต โ†” ๐‘› โˆฅ ๐ต))
102100, 101syl5ibrcom 246 . . . . . . . . . . . . . 14 (((๐œ‘ โˆง (๐‘› โˆˆ โ„• โˆง ๐‘› โˆฅ ๐ต)) โˆง ยฌ ๐‘› โˆˆ {(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)), ๐ต}) โ†’ (๐‘ฅ = ๐‘› โ†’ ๐‘ฅ โˆฅ ๐ต))
10393, 99, 1023jaod 1426 . . . . . . . . . . . . 13 (((๐œ‘ โˆง (๐‘› โˆˆ โ„• โˆง ๐‘› โˆฅ ๐ต)) โˆง ยฌ ๐‘› โˆˆ {(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)), ๐ต}) โ†’ ((๐‘ฅ = (๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)) โˆจ ๐‘ฅ = ๐ต โˆจ ๐‘ฅ = ๐‘›) โ†’ ๐‘ฅ โˆฅ ๐ต))
10481, 103syl5 34 . . . . . . . . . . . 12 (((๐œ‘ โˆง (๐‘› โˆˆ โ„• โˆง ๐‘› โˆฅ ๐ต)) โˆง ยฌ ๐‘› โˆˆ {(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)), ๐ต}) โ†’ (๐‘ฅ โˆˆ {(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)), ๐ต, ๐‘›} โ†’ ๐‘ฅ โˆฅ ๐ต))
105104imp 406 . . . . . . . . . . 11 ((((๐œ‘ โˆง (๐‘› โˆˆ โ„• โˆง ๐‘› โˆฅ ๐ต)) โˆง ยฌ ๐‘› โˆˆ {(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)), ๐ต}) โˆง ๐‘ฅ โˆˆ {(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)), ๐ต, ๐‘›}) โ†’ ๐‘ฅ โˆฅ ๐ต)
10680, 105ssrabdv 4067 . . . . . . . . . 10 (((๐œ‘ โˆง (๐‘› โˆˆ โ„• โˆง ๐‘› โˆฅ ๐ต)) โˆง ยฌ ๐‘› โˆˆ {(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)), ๐ต}) โ†’ {(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)), ๐ต, ๐‘›} โІ {๐‘ฅ โˆˆ โ„• โˆฃ ๐‘ฅ โˆฅ ๐ต})
10766, 70, 72, 106fsumless 15766 . . . . . . . . 9 (((๐œ‘ โˆง (๐‘› โˆˆ โ„• โˆง ๐‘› โˆฅ ๐ต)) โˆง ยฌ ๐‘› โˆˆ {(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)), ๐ต}) โ†’ ฮฃ๐‘˜ โˆˆ {(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)), ๐ต, ๐‘›}๐‘˜ โ‰ค ฮฃ๐‘˜ โˆˆ {๐‘ฅ โˆˆ โ„• โˆฃ ๐‘ฅ โˆฅ ๐ต}๐‘˜)
108 simpr 484 . . . . . . . . . . . 12 (((๐œ‘ โˆง (๐‘› โˆˆ โ„• โˆง ๐‘› โˆฅ ๐ต)) โˆง ยฌ ๐‘› โˆˆ {(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)), ๐ต}) โ†’ ยฌ ๐‘› โˆˆ {(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)), ๐ต})
109 disjsn 4711 . . . . . . . . . . . 12 (({(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)), ๐ต} โˆฉ {๐‘›}) = โˆ… โ†” ยฌ ๐‘› โˆˆ {(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)), ๐ต})
110108, 109sylibr 233 . . . . . . . . . . 11 (((๐œ‘ โˆง (๐‘› โˆˆ โ„• โˆง ๐‘› โˆฅ ๐ต)) โˆง ยฌ ๐‘› โˆˆ {(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)), ๐ต}) โ†’ ({(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)), ๐ต} โˆฉ {๐‘›}) = โˆ…)
11173a1i 11 . . . . . . . . . . 11 (((๐œ‘ โˆง (๐‘› โˆˆ โ„• โˆง ๐‘› โˆฅ ๐ต)) โˆง ยฌ ๐‘› โˆˆ {(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)), ๐ต}) โ†’ {(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)), ๐ต, ๐‘›} = ({(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)), ๐ต} โˆช {๐‘›}))
112 tpfi 9339 . . . . . . . . . . . 12 {(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)), ๐ต, ๐‘›} โˆˆ Fin
113112a1i 11 . . . . . . . . . . 11 (((๐œ‘ โˆง (๐‘› โˆˆ โ„• โˆง ๐‘› โˆฅ ๐ต)) โˆง ยฌ ๐‘› โˆˆ {(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)), ๐ต}) โ†’ {(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)), ๐ต, ๐‘›} โˆˆ Fin)
11480sselda 3978 . . . . . . . . . . . 12 ((((๐œ‘ โˆง (๐‘› โˆˆ โ„• โˆง ๐‘› โˆฅ ๐ต)) โˆง ยฌ ๐‘› โˆˆ {(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)), ๐ต}) โˆง ๐‘˜ โˆˆ {(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)), ๐ต, ๐‘›}) โ†’ ๐‘˜ โˆˆ โ„•)
115114nncnd 12250 . . . . . . . . . . 11 ((((๐œ‘ โˆง (๐‘› โˆˆ โ„• โˆง ๐‘› โˆฅ ๐ต)) โˆง ยฌ ๐‘› โˆˆ {(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)), ๐ต}) โˆง ๐‘˜ โˆˆ {(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)), ๐ต, ๐‘›}) โ†’ ๐‘˜ โˆˆ โ„‚)
116110, 111, 113, 115fsumsplit 15711 . . . . . . . . . 10 (((๐œ‘ โˆง (๐‘› โˆˆ โ„• โˆง ๐‘› โˆฅ ๐ต)) โˆง ยฌ ๐‘› โˆˆ {(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)), ๐ต}) โ†’ ฮฃ๐‘˜ โˆˆ {(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)), ๐ต, ๐‘›}๐‘˜ = (ฮฃ๐‘˜ โˆˆ {(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)), ๐ต}๐‘˜ + ฮฃ๐‘˜ โˆˆ {๐‘›}๐‘˜))
1178nncnd 12250 . . . . . . . . . . . . . . 15 (๐œ‘ โ†’ (๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)) โˆˆ โ„‚)
118 id 22 . . . . . . . . . . . . . . . 16 (๐‘˜ = (๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)) โ†’ ๐‘˜ = (๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)))
119118sumsn 15716 . . . . . . . . . . . . . . 15 (((๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)) โˆˆ โ„• โˆง (๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)) โˆˆ โ„‚) โ†’ ฮฃ๐‘˜ โˆˆ {(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1))}๐‘˜ = (๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)))
1208, 117, 119syl2anc 583 . . . . . . . . . . . . . 14 (๐œ‘ โ†’ ฮฃ๐‘˜ โˆˆ {(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1))}๐‘˜ = (๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)))
121 id 22 . . . . . . . . . . . . . . . 16 (๐‘˜ = ๐ต โ†’ ๐‘˜ = ๐ต)
122121sumsn 15716 . . . . . . . . . . . . . . 15 ((๐ต โˆˆ โ„• โˆง ๐ต โˆˆ โ„‚) โ†’ ฮฃ๐‘˜ โˆˆ {๐ต}๐‘˜ = ๐ต)
1231, 55, 122syl2anc 583 . . . . . . . . . . . . . 14 (๐œ‘ โ†’ ฮฃ๐‘˜ โˆˆ {๐ต}๐‘˜ = ๐ต)
124120, 123oveq12d 7432 . . . . . . . . . . . . 13 (๐œ‘ โ†’ (ฮฃ๐‘˜ โˆˆ {(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1))}๐‘˜ + ฮฃ๐‘˜ โˆˆ {๐ต}๐‘˜) = ((๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)) + ๐ต))
125 incom 4197 . . . . . . . . . . . . . . 15 ({๐ต} โˆฉ {(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1))}) = ({(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1))} โˆฉ {๐ต})
1269, 57gtned 11371 . . . . . . . . . . . . . . . 16 (๐œ‘ โ†’ ๐ต โ‰  (๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)))
127 disjsn2 4712 . . . . . . . . . . . . . . . 16 (๐ต โ‰  (๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)) โ†’ ({๐ต} โˆฉ {(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1))}) = โˆ…)
128126, 127syl 17 . . . . . . . . . . . . . . 15 (๐œ‘ โ†’ ({๐ต} โˆฉ {(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1))}) = โˆ…)
129125, 128eqtr3id 2781 . . . . . . . . . . . . . 14 (๐œ‘ โ†’ ({(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1))} โˆฉ {๐ต}) = โˆ…)
130 df-pr 4627 . . . . . . . . . . . . . . 15 {(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)), ๐ต} = ({(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1))} โˆช {๐ต})
131130a1i 11 . . . . . . . . . . . . . 14 (๐œ‘ โ†’ {(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)), ๐ต} = ({(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1))} โˆช {๐ต}))
132 prfi 9338 . . . . . . . . . . . . . . 15 {(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)), ๐ต} โˆˆ Fin
133132a1i 11 . . . . . . . . . . . . . 14 (๐œ‘ โ†’ {(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)), ๐ต} โˆˆ Fin)
13475sselda 3978 . . . . . . . . . . . . . . 15 ((๐œ‘ โˆง ๐‘˜ โˆˆ {(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)), ๐ต}) โ†’ ๐‘˜ โˆˆ โ„•)
135134nncnd 12250 . . . . . . . . . . . . . 14 ((๐œ‘ โˆง ๐‘˜ โˆˆ {(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)), ๐ต}) โ†’ ๐‘˜ โˆˆ โ„‚)
136129, 131, 133, 135fsumsplit 15711 . . . . . . . . . . . . 13 (๐œ‘ โ†’ ฮฃ๐‘˜ โˆˆ {(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)), ๐ต}๐‘˜ = (ฮฃ๐‘˜ โˆˆ {(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1))}๐‘˜ + ฮฃ๐‘˜ โˆˆ {๐ต}๐‘˜))
13787, 55mulcld 11256 . . . . . . . . . . . . . . 15 (๐œ‘ โ†’ (((2โ†‘(๐ด + 1)) โˆ’ 1) ยท ๐ต) โˆˆ โ„‚)
13855, 137, 87, 88divdird 12050 . . . . . . . . . . . . . 14 (๐œ‘ โ†’ ((๐ต + (((2โ†‘(๐ด + 1)) โˆ’ 1) ยท ๐ต)) / ((2โ†‘(๐ด + 1)) โˆ’ 1)) = ((๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)) + ((((2โ†‘(๐ด + 1)) โˆ’ 1) ยท ๐ต) / ((2โ†‘(๐ด + 1)) โˆ’ 1))))
13935nncnd 12250 . . . . . . . . . . . . . . . . . . . 20 (๐œ‘ โ†’ (2โ†‘(๐ด + 1)) โˆˆ โ„‚)
14027a1i 11 . . . . . . . . . . . . . . . . . . . 20 (๐œ‘ โ†’ 1 โˆˆ โ„‚)
141139, 140, 55subdird 11693 . . . . . . . . . . . . . . . . . . 19 (๐œ‘ โ†’ (((2โ†‘(๐ด + 1)) โˆ’ 1) ยท ๐ต) = (((2โ†‘(๐ด + 1)) ยท ๐ต) โˆ’ (1 ยท ๐ต)))
14255mullidd 11254 . . . . . . . . . . . . . . . . . . . 20 (๐œ‘ โ†’ (1 ยท ๐ต) = ๐ต)
143142oveq2d 7430 . . . . . . . . . . . . . . . . . . 19 (๐œ‘ โ†’ (((2โ†‘(๐ด + 1)) ยท ๐ต) โˆ’ (1 ยท ๐ต)) = (((2โ†‘(๐ด + 1)) ยท ๐ต) โˆ’ ๐ต))
144141, 143eqtrd 2767 . . . . . . . . . . . . . . . . . 18 (๐œ‘ โ†’ (((2โ†‘(๐ด + 1)) โˆ’ 1) ยท ๐ต) = (((2โ†‘(๐ด + 1)) ยท ๐ต) โˆ’ ๐ต))
145144oveq2d 7430 . . . . . . . . . . . . . . . . 17 (๐œ‘ โ†’ (๐ต + (((2โ†‘(๐ด + 1)) โˆ’ 1) ยท ๐ต)) = (๐ต + (((2โ†‘(๐ด + 1)) ยท ๐ต) โˆ’ ๐ต)))
146139, 55mulcld 11256 . . . . . . . . . . . . . . . . . 18 (๐œ‘ โ†’ ((2โ†‘(๐ด + 1)) ยท ๐ต) โˆˆ โ„‚)
14755, 146pncan3d 11596 . . . . . . . . . . . . . . . . 17 (๐œ‘ โ†’ (๐ต + (((2โ†‘(๐ด + 1)) ยท ๐ต) โˆ’ ๐ต)) = ((2โ†‘(๐ด + 1)) ยท ๐ต))
148145, 147eqtrd 2767 . . . . . . . . . . . . . . . 16 (๐œ‘ โ†’ (๐ต + (((2โ†‘(๐ด + 1)) โˆ’ 1) ยท ๐ต)) = ((2โ†‘(๐ด + 1)) ยท ๐ต))
149148oveq1d 7429 . . . . . . . . . . . . . . 15 (๐œ‘ โ†’ ((๐ต + (((2โ†‘(๐ด + 1)) โˆ’ 1) ยท ๐ต)) / ((2โ†‘(๐ด + 1)) โˆ’ 1)) = (((2โ†‘(๐ด + 1)) ยท ๐ต) / ((2โ†‘(๐ด + 1)) โˆ’ 1)))
150139, 55, 87, 88divassd 12047 . . . . . . . . . . . . . . 15 (๐œ‘ โ†’ (((2โ†‘(๐ด + 1)) ยท ๐ต) / ((2โ†‘(๐ด + 1)) โˆ’ 1)) = ((2โ†‘(๐ด + 1)) ยท (๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1))))
151149, 150eqtrd 2767 . . . . . . . . . . . . . 14 (๐œ‘ โ†’ ((๐ต + (((2โ†‘(๐ด + 1)) โˆ’ 1) ยท ๐ต)) / ((2โ†‘(๐ด + 1)) โˆ’ 1)) = ((2โ†‘(๐ด + 1)) ยท (๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1))))
15255, 87, 88divcan3d 12017 . . . . . . . . . . . . . . 15 (๐œ‘ โ†’ ((((2โ†‘(๐ด + 1)) โˆ’ 1) ยท ๐ต) / ((2โ†‘(๐ด + 1)) โˆ’ 1)) = ๐ต)
153152oveq2d 7430 . . . . . . . . . . . . . 14 (๐œ‘ โ†’ ((๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)) + ((((2โ†‘(๐ด + 1)) โˆ’ 1) ยท ๐ต) / ((2โ†‘(๐ด + 1)) โˆ’ 1))) = ((๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)) + ๐ต))
154138, 151, 1533eqtr3d 2775 . . . . . . . . . . . . 13 (๐œ‘ โ†’ ((2โ†‘(๐ด + 1)) ยท (๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1))) = ((๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)) + ๐ต))
155124, 136, 1543eqtr4d 2777 . . . . . . . . . . . 12 (๐œ‘ โ†’ ฮฃ๐‘˜ โˆˆ {(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)), ๐ต}๐‘˜ = ((2โ†‘(๐ด + 1)) ยท (๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1))))
156155ad2antrr 725 . . . . . . . . . . 11 (((๐œ‘ โˆง (๐‘› โˆˆ โ„• โˆง ๐‘› โˆฅ ๐ต)) โˆง ยฌ ๐‘› โˆˆ {(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)), ๐ต}) โ†’ ฮฃ๐‘˜ โˆˆ {(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)), ๐ต}๐‘˜ = ((2โ†‘(๐ด + 1)) ยท (๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1))))
15777nncnd 12250 . . . . . . . . . . . 12 (((๐œ‘ โˆง (๐‘› โˆˆ โ„• โˆง ๐‘› โˆฅ ๐ต)) โˆง ยฌ ๐‘› โˆˆ {(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)), ๐ต}) โ†’ ๐‘› โˆˆ โ„‚)
158 id 22 . . . . . . . . . . . . 13 (๐‘˜ = ๐‘› โ†’ ๐‘˜ = ๐‘›)
159158sumsn 15716 . . . . . . . . . . . 12 ((๐‘› โˆˆ โ„‚ โˆง ๐‘› โˆˆ โ„‚) โ†’ ฮฃ๐‘˜ โˆˆ {๐‘›}๐‘˜ = ๐‘›)
160157, 157, 159syl2anc 583 . . . . . . . . . . 11 (((๐œ‘ โˆง (๐‘› โˆˆ โ„• โˆง ๐‘› โˆฅ ๐ต)) โˆง ยฌ ๐‘› โˆˆ {(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)), ๐ต}) โ†’ ฮฃ๐‘˜ โˆˆ {๐‘›}๐‘˜ = ๐‘›)
161156, 160oveq12d 7432 . . . . . . . . . 10 (((๐œ‘ โˆง (๐‘› โˆˆ โ„• โˆง ๐‘› โˆฅ ๐ต)) โˆง ยฌ ๐‘› โˆˆ {(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)), ๐ต}) โ†’ (ฮฃ๐‘˜ โˆˆ {(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)), ๐ต}๐‘˜ + ฮฃ๐‘˜ โˆˆ {๐‘›}๐‘˜) = (((2โ†‘(๐ด + 1)) ยท (๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1))) + ๐‘›))
162116, 161eqtrd 2767 . . . . . . . . 9 (((๐œ‘ โˆง (๐‘› โˆˆ โ„• โˆง ๐‘› โˆฅ ๐ต)) โˆง ยฌ ๐‘› โˆˆ {(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)), ๐ต}) โ†’ ฮฃ๐‘˜ โˆˆ {(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)), ๐ต, ๐‘›}๐‘˜ = (((2โ†‘(๐ด + 1)) ยท (๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1))) + ๐‘›))
1634nnnn0d 12554 . . . . . . . . . . . . . . . . 17 (๐œ‘ โ†’ ๐ด โˆˆ โ„•0)
164 expp1 14057 . . . . . . . . . . . . . . . . 17 ((2 โˆˆ โ„‚ โˆง ๐ด โˆˆ โ„•0) โ†’ (2โ†‘(๐ด + 1)) = ((2โ†‘๐ด) ยท 2))
16512, 163, 164sylancr 586 . . . . . . . . . . . . . . . 16 (๐œ‘ โ†’ (2โ†‘(๐ด + 1)) = ((2โ†‘๐ด) ยท 2))
166 2nn 12307 . . . . . . . . . . . . . . . . . . 19 2 โˆˆ โ„•
167 nnexpcl 14063 . . . . . . . . . . . . . . . . . . 19 ((2 โˆˆ โ„• โˆง ๐ด โˆˆ โ„•0) โ†’ (2โ†‘๐ด) โˆˆ โ„•)
168166, 163, 167sylancr 586 . . . . . . . . . . . . . . . . . 18 (๐œ‘ โ†’ (2โ†‘๐ด) โˆˆ โ„•)
169168nncnd 12250 . . . . . . . . . . . . . . . . 17 (๐œ‘ โ†’ (2โ†‘๐ด) โˆˆ โ„‚)
170 mulcom 11216 . . . . . . . . . . . . . . . . 17 (((2โ†‘๐ด) โˆˆ โ„‚ โˆง 2 โˆˆ โ„‚) โ†’ ((2โ†‘๐ด) ยท 2) = (2 ยท (2โ†‘๐ด)))
171169, 12, 170sylancl 585 . . . . . . . . . . . . . . . 16 (๐œ‘ โ†’ ((2โ†‘๐ด) ยท 2) = (2 ยท (2โ†‘๐ด)))
172165, 171eqtrd 2767 . . . . . . . . . . . . . . 15 (๐œ‘ โ†’ (2โ†‘(๐ด + 1)) = (2 ยท (2โ†‘๐ด)))
173172oveq1d 7429 . . . . . . . . . . . . . 14 (๐œ‘ โ†’ ((2โ†‘(๐ด + 1)) ยท ๐ต) = ((2 ยท (2โ†‘๐ด)) ยท ๐ต))
17412a1i 11 . . . . . . . . . . . . . . 15 (๐œ‘ โ†’ 2 โˆˆ โ„‚)
175174, 169, 55mulassd 11259 . . . . . . . . . . . . . 14 (๐œ‘ โ†’ ((2 ยท (2โ†‘๐ด)) ยท ๐ต) = (2 ยท ((2โ†‘๐ด) ยท ๐ต)))
176 isodd7 46928 . . . . . . . . . . . . . . . . . . 19 (๐ต โˆˆ Odd โ†” (๐ต โˆˆ โ„ค โˆง (2 gcd ๐ต) = 1))
177 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((๐ต โˆˆ โ„ค โˆง (2 gcd ๐ต) = 1) โ†’ (2 gcd ๐ต) = 1)
178176, 177sylbi 216 . . . . . . . . . . . . . . . . . 18 (๐ต โˆˆ Odd โ†’ (2 gcd ๐ต) = 1)
1795, 178syl 17 . . . . . . . . . . . . . . . . 17 (๐œ‘ โ†’ (2 gcd ๐ต) = 1)
180 2z 12616 . . . . . . . . . . . . . . . . . . 19 2 โˆˆ โ„ค
181180a1i 11 . . . . . . . . . . . . . . . . . 18 (๐œ‘ โ†’ 2 โˆˆ โ„ค)
182 rpexp1i 16686 . . . . . . . . . . . . . . . . . 18 ((2 โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค โˆง ๐ด โˆˆ โ„•0) โ†’ ((2 gcd ๐ต) = 1 โ†’ ((2โ†‘๐ด) gcd ๐ต) = 1))
183181, 94, 163, 182syl3anc 1369 . . . . . . . . . . . . . . . . 17 (๐œ‘ โ†’ ((2 gcd ๐ต) = 1 โ†’ ((2โ†‘๐ด) gcd ๐ต) = 1))
184179, 183mpd 15 . . . . . . . . . . . . . . . 16 (๐œ‘ โ†’ ((2โ†‘๐ด) gcd ๐ต) = 1)
185 sgmmul 27121 . . . . . . . . . . . . . . . 16 ((1 โˆˆ โ„‚ โˆง ((2โ†‘๐ด) โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ((2โ†‘๐ด) gcd ๐ต) = 1)) โ†’ (1 ฯƒ ((2โ†‘๐ด) ยท ๐ต)) = ((1 ฯƒ (2โ†‘๐ด)) ยท (1 ฯƒ ๐ต)))
186140, 168, 1, 184, 185syl13anc 1370 . . . . . . . . . . . . . . 15 (๐œ‘ โ†’ (1 ฯƒ ((2โ†‘๐ด) ยท ๐ต)) = ((1 ฯƒ (2โ†‘๐ด)) ยท (1 ฯƒ ๐ต)))
187 pncan 11488 . . . . . . . . . . . . . . . . . . . 20 ((๐ด โˆˆ โ„‚ โˆง 1 โˆˆ โ„‚) โ†’ ((๐ด + 1) โˆ’ 1) = ๐ด)
18828, 27, 187sylancl 585 . . . . . . . . . . . . . . . . . . 19 (๐œ‘ โ†’ ((๐ด + 1) โˆ’ 1) = ๐ด)
189188oveq2d 7430 . . . . . . . . . . . . . . . . . 18 (๐œ‘ โ†’ (2โ†‘((๐ด + 1) โˆ’ 1)) = (2โ†‘๐ด))
190189oveq2d 7430 . . . . . . . . . . . . . . . . 17 (๐œ‘ โ†’ (1 ฯƒ (2โ†‘((๐ด + 1) โˆ’ 1))) = (1 ฯƒ (2โ†‘๐ด)))
191 1sgm2ppw 27120 . . . . . . . . . . . . . . . . . 18 ((๐ด + 1) โˆˆ โ„• โ†’ (1 ฯƒ (2โ†‘((๐ด + 1) โˆ’ 1))) = ((2โ†‘(๐ด + 1)) โˆ’ 1))
19220, 191syl 17 . . . . . . . . . . . . . . . . 17 (๐œ‘ โ†’ (1 ฯƒ (2โ†‘((๐ด + 1) โˆ’ 1))) = ((2โ†‘(๐ด + 1)) โˆ’ 1))
193190, 192eqtr3d 2769 . . . . . . . . . . . . . . . 16 (๐œ‘ โ†’ (1 ฯƒ (2โ†‘๐ด)) = ((2โ†‘(๐ด + 1)) โˆ’ 1))
194193oveq1d 7429 . . . . . . . . . . . . . . 15 (๐œ‘ โ†’ ((1 ฯƒ (2โ†‘๐ด)) ยท (1 ฯƒ ๐ต)) = (((2โ†‘(๐ด + 1)) โˆ’ 1) ยท (1 ฯƒ ๐ต)))
195186, 6, 1943eqtr3d 2775 . . . . . . . . . . . . . 14 (๐œ‘ โ†’ (2 ยท ((2โ†‘๐ด) ยท ๐ต)) = (((2โ†‘(๐ด + 1)) โˆ’ 1) ยท (1 ฯƒ ๐ต)))
196173, 175, 1953eqtrd 2771 . . . . . . . . . . . . 13 (๐œ‘ โ†’ ((2โ†‘(๐ด + 1)) ยท ๐ต) = (((2โ†‘(๐ด + 1)) โˆ’ 1) ยท (1 ฯƒ ๐ต)))
197196oveq1d 7429 . . . . . . . . . . . 12 (๐œ‘ โ†’ (((2โ†‘(๐ด + 1)) ยท ๐ต) / ((2โ†‘(๐ด + 1)) โˆ’ 1)) = ((((2โ†‘(๐ด + 1)) โˆ’ 1) ยท (1 ฯƒ ๐ต)) / ((2โ†‘(๐ด + 1)) โˆ’ 1)))
198 1nn0 12510 . . . . . . . . . . . . . . 15 1 โˆˆ โ„•0
199 sgmnncl 27066 . . . . . . . . . . . . . . 15 ((1 โˆˆ โ„•0 โˆง ๐ต โˆˆ โ„•) โ†’ (1 ฯƒ ๐ต) โˆˆ โ„•)
200198, 1, 199sylancr 586 . . . . . . . . . . . . . 14 (๐œ‘ โ†’ (1 ฯƒ ๐ต) โˆˆ โ„•)
201200nncnd 12250 . . . . . . . . . . . . 13 (๐œ‘ โ†’ (1 ฯƒ ๐ต) โˆˆ โ„‚)
202201, 87, 88divcan3d 12017 . . . . . . . . . . . 12 (๐œ‘ โ†’ ((((2โ†‘(๐ด + 1)) โˆ’ 1) ยท (1 ฯƒ ๐ต)) / ((2โ†‘(๐ด + 1)) โˆ’ 1)) = (1 ฯƒ ๐ต))
203197, 150, 2023eqtr3d 2775 . . . . . . . . . . 11 (๐œ‘ โ†’ ((2โ†‘(๐ด + 1)) ยท (๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1))) = (1 ฯƒ ๐ต))
204 sgmval 27061 . . . . . . . . . . . 12 ((1 โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„•) โ†’ (1 ฯƒ ๐ต) = ฮฃ๐‘˜ โˆˆ {๐‘ฅ โˆˆ โ„• โˆฃ ๐‘ฅ โˆฅ ๐ต} (๐‘˜โ†‘๐‘1))
20527, 1, 204sylancr 586 . . . . . . . . . . 11 (๐œ‘ โ†’ (1 ฯƒ ๐ต) = ฮฃ๐‘˜ โˆˆ {๐‘ฅ โˆˆ โ„• โˆฃ ๐‘ฅ โˆฅ ๐ต} (๐‘˜โ†‘๐‘1))
206 simpr 484 . . . . . . . . . . . . . . 15 ((๐œ‘ โˆง ๐‘˜ โˆˆ {๐‘ฅ โˆˆ โ„• โˆฃ ๐‘ฅ โˆฅ ๐ต}) โ†’ ๐‘˜ โˆˆ {๐‘ฅ โˆˆ โ„• โˆฃ ๐‘ฅ โˆฅ ๐ต})
20767, 206sselid 3976 . . . . . . . . . . . . . 14 ((๐œ‘ โˆง ๐‘˜ โˆˆ {๐‘ฅ โˆˆ โ„• โˆฃ ๐‘ฅ โˆฅ ๐ต}) โ†’ ๐‘˜ โˆˆ โ„•)
208207nncnd 12250 . . . . . . . . . . . . 13 ((๐œ‘ โˆง ๐‘˜ โˆˆ {๐‘ฅ โˆˆ โ„• โˆฃ ๐‘ฅ โˆฅ ๐ต}) โ†’ ๐‘˜ โˆˆ โ„‚)
209208cxp1d 26627 . . . . . . . . . . . 12 ((๐œ‘ โˆง ๐‘˜ โˆˆ {๐‘ฅ โˆˆ โ„• โˆฃ ๐‘ฅ โˆฅ ๐ต}) โ†’ (๐‘˜โ†‘๐‘1) = ๐‘˜)
210209sumeq2dv 15673 . . . . . . . . . . 11 (๐œ‘ โ†’ ฮฃ๐‘˜ โˆˆ {๐‘ฅ โˆˆ โ„• โˆฃ ๐‘ฅ โˆฅ ๐ต} (๐‘˜โ†‘๐‘1) = ฮฃ๐‘˜ โˆˆ {๐‘ฅ โˆˆ โ„• โˆฃ ๐‘ฅ โˆฅ ๐ต}๐‘˜)
211203, 205, 2103eqtrrd 2772 . . . . . . . . . 10 (๐œ‘ โ†’ ฮฃ๐‘˜ โˆˆ {๐‘ฅ โˆˆ โ„• โˆฃ ๐‘ฅ โˆฅ ๐ต}๐‘˜ = ((2โ†‘(๐ด + 1)) ยท (๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1))))
212211ad2antrr 725 . . . . . . . . 9 (((๐œ‘ โˆง (๐‘› โˆˆ โ„• โˆง ๐‘› โˆฅ ๐ต)) โˆง ยฌ ๐‘› โˆˆ {(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)), ๐ต}) โ†’ ฮฃ๐‘˜ โˆˆ {๐‘ฅ โˆˆ โ„• โˆฃ ๐‘ฅ โˆฅ ๐ต}๐‘˜ = ((2โ†‘(๐ด + 1)) ยท (๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1))))
213107, 162, 2123brtr3d 5173 . . . . . . . 8 (((๐œ‘ โˆง (๐‘› โˆˆ โ„• โˆง ๐‘› โˆฅ ๐ต)) โˆง ยฌ ๐‘› โˆˆ {(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)), ๐ต}) โ†’ (((2โ†‘(๐ด + 1)) ยท (๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1))) + ๐‘›) โ‰ค ((2โ†‘(๐ด + 1)) ยท (๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1))))
21436, 9remulcld 11266 . . . . . . . . . . 11 (๐œ‘ โ†’ ((2โ†‘(๐ด + 1)) ยท (๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1))) โˆˆ โ„)
215214ad2antrr 725 . . . . . . . . . 10 (((๐œ‘ โˆง (๐‘› โˆˆ โ„• โˆง ๐‘› โˆฅ ๐ต)) โˆง ยฌ ๐‘› โˆˆ {(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)), ๐ต}) โ†’ ((2โ†‘(๐ด + 1)) ยท (๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1))) โˆˆ โ„)
21677nnrpd 13038 . . . . . . . . . 10 (((๐œ‘ โˆง (๐‘› โˆˆ โ„• โˆง ๐‘› โˆฅ ๐ต)) โˆง ยฌ ๐‘› โˆˆ {(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)), ๐ต}) โ†’ ๐‘› โˆˆ โ„+)
217215, 216ltaddrpd 13073 . . . . . . . . 9 (((๐œ‘ โˆง (๐‘› โˆˆ โ„• โˆง ๐‘› โˆฅ ๐ต)) โˆง ยฌ ๐‘› โˆˆ {(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)), ๐ต}) โ†’ ((2โ†‘(๐ด + 1)) ยท (๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1))) < (((2โ†‘(๐ด + 1)) ยท (๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1))) + ๐‘›))
21877nnred 12249 . . . . . . . . . . 11 (((๐œ‘ โˆง (๐‘› โˆˆ โ„• โˆง ๐‘› โˆฅ ๐ต)) โˆง ยฌ ๐‘› โˆˆ {(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)), ๐ต}) โ†’ ๐‘› โˆˆ โ„)
219215, 218readdcld 11265 . . . . . . . . . 10 (((๐œ‘ โˆง (๐‘› โˆˆ โ„• โˆง ๐‘› โˆฅ ๐ต)) โˆง ยฌ ๐‘› โˆˆ {(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)), ๐ต}) โ†’ (((2โ†‘(๐ด + 1)) ยท (๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1))) + ๐‘›) โˆˆ โ„)
220215, 219ltnled 11383 . . . . . . . . 9 (((๐œ‘ โˆง (๐‘› โˆˆ โ„• โˆง ๐‘› โˆฅ ๐ต)) โˆง ยฌ ๐‘› โˆˆ {(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)), ๐ต}) โ†’ (((2โ†‘(๐ด + 1)) ยท (๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1))) < (((2โ†‘(๐ด + 1)) ยท (๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1))) + ๐‘›) โ†” ยฌ (((2โ†‘(๐ด + 1)) ยท (๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1))) + ๐‘›) โ‰ค ((2โ†‘(๐ด + 1)) ยท (๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)))))
221217, 220mpbid 231 . . . . . . . 8 (((๐œ‘ โˆง (๐‘› โˆˆ โ„• โˆง ๐‘› โˆฅ ๐ต)) โˆง ยฌ ๐‘› โˆˆ {(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)), ๐ต}) โ†’ ยฌ (((2โ†‘(๐ด + 1)) ยท (๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1))) + ๐‘›) โ‰ค ((2โ†‘(๐ด + 1)) ยท (๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1))))
222213, 221condan 817 . . . . . . 7 ((๐œ‘ โˆง (๐‘› โˆˆ โ„• โˆง ๐‘› โˆฅ ๐ต)) โ†’ ๐‘› โˆˆ {(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)), ๐ต})
223 elpri 4646 . . . . . . 7 (๐‘› โˆˆ {(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)), ๐ต} โ†’ (๐‘› = (๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)) โˆจ ๐‘› = ๐ต))
224222, 223syl 17 . . . . . 6 ((๐œ‘ โˆง (๐‘› โˆˆ โ„• โˆง ๐‘› โˆฅ ๐ต)) โ†’ (๐‘› = (๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)) โˆจ ๐‘› = ๐ต))
225224expr 456 . . . . 5 ((๐œ‘ โˆง ๐‘› โˆˆ โ„•) โ†’ (๐‘› โˆฅ ๐ต โ†’ (๐‘› = (๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)) โˆจ ๐‘› = ๐ต)))
226225ralrimiva 3141 . . . 4 (๐œ‘ โ†’ โˆ€๐‘› โˆˆ โ„• (๐‘› โˆฅ ๐ต โ†’ (๐‘› = (๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)) โˆจ ๐‘› = ๐ต)))
2273, 58gtned 11371 . . . . . . . . . 10 (๐œ‘ โ†’ ๐ต โ‰  1)
228227necomd 2991 . . . . . . . . 9 (๐œ‘ โ†’ 1 โ‰  ๐ต)
229 1nn 12245 . . . . . . . . . . . . 13 1 โˆˆ โ„•
230229a1i 11 . . . . . . . . . . . 12 (๐œ‘ โ†’ 1 โˆˆ โ„•)
231 1dvds 16239 . . . . . . . . . . . . 13 (๐ต โˆˆ โ„ค โ†’ 1 โˆฅ ๐ต)
23294, 231syl 17 . . . . . . . . . . . 12 (๐œ‘ โ†’ 1 โˆฅ ๐ต)
233 breq1 5145 . . . . . . . . . . . . . 14 (๐‘› = 1 โ†’ (๐‘› โˆฅ ๐ต โ†” 1 โˆฅ ๐ต))
234 eqeq1 2731 . . . . . . . . . . . . . . 15 (๐‘› = 1 โ†’ (๐‘› = (๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)) โ†” 1 = (๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1))))
235 eqeq1 2731 . . . . . . . . . . . . . . 15 (๐‘› = 1 โ†’ (๐‘› = ๐ต โ†” 1 = ๐ต))
236234, 235orbi12d 917 . . . . . . . . . . . . . 14 (๐‘› = 1 โ†’ ((๐‘› = (๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)) โˆจ ๐‘› = ๐ต) โ†” (1 = (๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)) โˆจ 1 = ๐ต)))
237233, 236imbi12d 344 . . . . . . . . . . . . 13 (๐‘› = 1 โ†’ ((๐‘› โˆฅ ๐ต โ†’ (๐‘› = (๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)) โˆจ ๐‘› = ๐ต)) โ†” (1 โˆฅ ๐ต โ†’ (1 = (๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)) โˆจ 1 = ๐ต))))
238237rspcv 3603 . . . . . . . . . . . 12 (1 โˆˆ โ„• โ†’ (โˆ€๐‘› โˆˆ โ„• (๐‘› โˆฅ ๐ต โ†’ (๐‘› = (๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)) โˆจ ๐‘› = ๐ต)) โ†’ (1 โˆฅ ๐ต โ†’ (1 = (๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)) โˆจ 1 = ๐ต))))
239230, 226, 232, 238syl3c 66 . . . . . . . . . . 11 (๐œ‘ โ†’ (1 = (๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)) โˆจ 1 = ๐ต))
240239ord 863 . . . . . . . . . 10 (๐œ‘ โ†’ (ยฌ 1 = (๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)) โ†’ 1 = ๐ต))
241240necon1ad 2952 . . . . . . . . 9 (๐œ‘ โ†’ (1 โ‰  ๐ต โ†’ 1 = (๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1))))
242228, 241mpd 15 . . . . . . . 8 (๐œ‘ โ†’ 1 = (๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)))
243242eqeq2d 2738 . . . . . . 7 (๐œ‘ โ†’ (๐‘› = 1 โ†” ๐‘› = (๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1))))
244243orbi1d 915 . . . . . 6 (๐œ‘ โ†’ ((๐‘› = 1 โˆจ ๐‘› = ๐ต) โ†” (๐‘› = (๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)) โˆจ ๐‘› = ๐ต)))
245244imbi2d 340 . . . . 5 (๐œ‘ โ†’ ((๐‘› โˆฅ ๐ต โ†’ (๐‘› = 1 โˆจ ๐‘› = ๐ต)) โ†” (๐‘› โˆฅ ๐ต โ†’ (๐‘› = (๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)) โˆจ ๐‘› = ๐ต))))
246245ralbidv 3172 . . . 4 (๐œ‘ โ†’ (โˆ€๐‘› โˆˆ โ„• (๐‘› โˆฅ ๐ต โ†’ (๐‘› = 1 โˆจ ๐‘› = ๐ต)) โ†” โˆ€๐‘› โˆˆ โ„• (๐‘› โˆฅ ๐ต โ†’ (๐‘› = (๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)) โˆจ ๐‘› = ๐ต))))
247226, 246mpbird 257 . . 3 (๐œ‘ โ†’ โˆ€๐‘› โˆˆ โ„• (๐‘› โˆฅ ๐ต โ†’ (๐‘› = 1 โˆจ ๐‘› = ๐ต)))
248 isprm2 16644 . . 3 (๐ต โˆˆ โ„™ โ†” (๐ต โˆˆ (โ„คโ‰ฅโ€˜2) โˆง โˆ€๐‘› โˆˆ โ„• (๐‘› โˆฅ ๐ต โ†’ (๐‘› = 1 โˆจ ๐‘› = ๐ต))))
24960, 247, 248sylanbrc 582 . 2 (๐œ‘ โ†’ ๐ต โˆˆ โ„™)
250214ltp1d 12166 . . . 4 (๐œ‘ โ†’ ((2โ†‘(๐ด + 1)) ยท (๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1))) < (((2โ†‘(๐ด + 1)) ยท (๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1))) + 1))
251 peano2re 11409 . . . . . 6 (((2โ†‘(๐ด + 1)) ยท (๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1))) โˆˆ โ„ โ†’ (((2โ†‘(๐ด + 1)) ยท (๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1))) + 1) โˆˆ โ„)
252214, 251syl 17 . . . . 5 (๐œ‘ โ†’ (((2โ†‘(๐ด + 1)) ยท (๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1))) + 1) โˆˆ โ„)
253214, 252ltnled 11383 . . . 4 (๐œ‘ โ†’ (((2โ†‘(๐ด + 1)) ยท (๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1))) < (((2โ†‘(๐ด + 1)) ยท (๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1))) + 1) โ†” ยฌ (((2โ†‘(๐ด + 1)) ยท (๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1))) + 1) โ‰ค ((2โ†‘(๐ด + 1)) ยท (๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)))))
254250, 253mpbid 231 . . 3 (๐œ‘ โ†’ ยฌ (((2โ†‘(๐ด + 1)) ยท (๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1))) + 1) โ‰ค ((2โ†‘(๐ด + 1)) ยท (๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1))))
255207nnred 12249 . . . . . . . 8 ((๐œ‘ โˆง ๐‘˜ โˆˆ {๐‘ฅ โˆˆ โ„• โˆฃ ๐‘ฅ โˆฅ ๐ต}) โ†’ ๐‘˜ โˆˆ โ„)
256207nnnn0d 12554 . . . . . . . . 9 ((๐œ‘ โˆง ๐‘˜ โˆˆ {๐‘ฅ โˆˆ โ„• โˆฃ ๐‘ฅ โˆฅ ๐ต}) โ†’ ๐‘˜ โˆˆ โ„•0)
257256nn0ge0d 12557 . . . . . . . 8 ((๐œ‘ โˆง ๐‘˜ โˆˆ {๐‘ฅ โˆˆ โ„• โˆฃ ๐‘ฅ โˆฅ ๐ต}) โ†’ 0 โ‰ค ๐‘˜)
258 df-tp 4629 . . . . . . . . . 10 {(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)), ๐ต, 1} = ({(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)), ๐ต} โˆช {1})
259 snssi 4807 . . . . . . . . . . . 12 (1 โˆˆ โ„• โ†’ {1} โІ โ„•)
260229, 259mp1i 13 . . . . . . . . . . 11 (๐œ‘ โ†’ {1} โІ โ„•)
26175, 260unssd 4182 . . . . . . . . . 10 (๐œ‘ โ†’ ({(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)), ๐ต} โˆช {1}) โІ โ„•)
262258, 261eqsstrid 4026 . . . . . . . . 9 (๐œ‘ โ†’ {(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)), ๐ต, 1} โІ โ„•)
263 eltpi 4687 . . . . . . . . . . 11 (๐‘ฅ โˆˆ {(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)), ๐ต, 1} โ†’ (๐‘ฅ = (๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)) โˆจ ๐‘ฅ = ๐ต โˆจ ๐‘ฅ = 1))
264 breq1 5145 . . . . . . . . . . . . 13 (๐‘ฅ = 1 โ†’ (๐‘ฅ โˆฅ ๐ต โ†” 1 โˆฅ ๐ต))
265232, 264syl5ibrcom 246 . . . . . . . . . . . 12 (๐œ‘ โ†’ (๐‘ฅ = 1 โ†’ ๐‘ฅ โˆฅ ๐ต))
26692, 98, 2653jaod 1426 . . . . . . . . . . 11 (๐œ‘ โ†’ ((๐‘ฅ = (๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)) โˆจ ๐‘ฅ = ๐ต โˆจ ๐‘ฅ = 1) โ†’ ๐‘ฅ โˆฅ ๐ต))
267263, 266syl5 34 . . . . . . . . . 10 (๐œ‘ โ†’ (๐‘ฅ โˆˆ {(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)), ๐ต, 1} โ†’ ๐‘ฅ โˆฅ ๐ต))
268267imp 406 . . . . . . . . 9 ((๐œ‘ โˆง ๐‘ฅ โˆˆ {(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)), ๐ต, 1}) โ†’ ๐‘ฅ โˆฅ ๐ต)
269262, 268ssrabdv 4067 . . . . . . . 8 (๐œ‘ โ†’ {(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)), ๐ต, 1} โІ {๐‘ฅ โˆˆ โ„• โˆฃ ๐‘ฅ โˆฅ ๐ต})
27065, 255, 257, 269fsumless 15766 . . . . . . 7 (๐œ‘ โ†’ ฮฃ๐‘˜ โˆˆ {(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)), ๐ต, 1}๐‘˜ โ‰ค ฮฃ๐‘˜ โˆˆ {๐‘ฅ โˆˆ โ„• โˆฃ ๐‘ฅ โˆฅ ๐ต}๐‘˜)
271270adantr 480 . . . . . 6 ((๐œ‘ โˆง ๐ต โ‰  ((2โ†‘(๐ด + 1)) โˆ’ 1)) โ†’ ฮฃ๐‘˜ โˆˆ {(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)), ๐ต, 1}๐‘˜ โ‰ค ฮฃ๐‘˜ โˆˆ {๐‘ฅ โˆˆ โ„• โˆฃ ๐‘ฅ โˆฅ ๐ต}๐‘˜)
27255, 87, 88diveq1ad 12021 . . . . . . . . . . . . 13 (๐œ‘ โ†’ ((๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)) = 1 โ†” ๐ต = ((2โ†‘(๐ด + 1)) โˆ’ 1)))
273272necon3bid 2980 . . . . . . . . . . . 12 (๐œ‘ โ†’ ((๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)) โ‰  1 โ†” ๐ต โ‰  ((2โ†‘(๐ด + 1)) โˆ’ 1)))
274273biimpar 477 . . . . . . . . . . 11 ((๐œ‘ โˆง ๐ต โ‰  ((2โ†‘(๐ด + 1)) โˆ’ 1)) โ†’ (๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)) โ‰  1)
275274necomd 2991 . . . . . . . . . 10 ((๐œ‘ โˆง ๐ต โ‰  ((2โ†‘(๐ด + 1)) โˆ’ 1)) โ†’ 1 โ‰  (๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)))
276228adantr 480 . . . . . . . . . 10 ((๐œ‘ โˆง ๐ต โ‰  ((2โ†‘(๐ด + 1)) โˆ’ 1)) โ†’ 1 โ‰  ๐ต)
277275, 276nelprd 4655 . . . . . . . . 9 ((๐œ‘ โˆง ๐ต โ‰  ((2โ†‘(๐ด + 1)) โˆ’ 1)) โ†’ ยฌ 1 โˆˆ {(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)), ๐ต})
278 disjsn 4711 . . . . . . . . 9 (({(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)), ๐ต} โˆฉ {1}) = โˆ… โ†” ยฌ 1 โˆˆ {(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)), ๐ต})
279277, 278sylibr 233 . . . . . . . 8 ((๐œ‘ โˆง ๐ต โ‰  ((2โ†‘(๐ด + 1)) โˆ’ 1)) โ†’ ({(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)), ๐ต} โˆฉ {1}) = โˆ…)
280258a1i 11 . . . . . . . 8 ((๐œ‘ โˆง ๐ต โ‰  ((2โ†‘(๐ด + 1)) โˆ’ 1)) โ†’ {(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)), ๐ต, 1} = ({(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)), ๐ต} โˆช {1}))
281 tpfi 9339 . . . . . . . . 9 {(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)), ๐ต, 1} โˆˆ Fin
282281a1i 11 . . . . . . . 8 ((๐œ‘ โˆง ๐ต โ‰  ((2โ†‘(๐ด + 1)) โˆ’ 1)) โ†’ {(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)), ๐ต, 1} โˆˆ Fin)
283262adantr 480 . . . . . . . . . 10 ((๐œ‘ โˆง ๐ต โ‰  ((2โ†‘(๐ด + 1)) โˆ’ 1)) โ†’ {(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)), ๐ต, 1} โІ โ„•)
284283sselda 3978 . . . . . . . . 9 (((๐œ‘ โˆง ๐ต โ‰  ((2โ†‘(๐ด + 1)) โˆ’ 1)) โˆง ๐‘˜ โˆˆ {(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)), ๐ต, 1}) โ†’ ๐‘˜ โˆˆ โ„•)
285284nncnd 12250 . . . . . . . 8 (((๐œ‘ โˆง ๐ต โ‰  ((2โ†‘(๐ด + 1)) โˆ’ 1)) โˆง ๐‘˜ โˆˆ {(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)), ๐ต, 1}) โ†’ ๐‘˜ โˆˆ โ„‚)
286279, 280, 282, 285fsumsplit 15711 . . . . . . 7 ((๐œ‘ โˆง ๐ต โ‰  ((2โ†‘(๐ด + 1)) โˆ’ 1)) โ†’ ฮฃ๐‘˜ โˆˆ {(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)), ๐ต, 1}๐‘˜ = (ฮฃ๐‘˜ โˆˆ {(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)), ๐ต}๐‘˜ + ฮฃ๐‘˜ โˆˆ {1}๐‘˜))
287 id 22 . . . . . . . . . . 11 (๐‘˜ = 1 โ†’ ๐‘˜ = 1)
288287sumsn 15716 . . . . . . . . . 10 ((1 โˆˆ โ„‚ โˆง 1 โˆˆ โ„‚) โ†’ ฮฃ๐‘˜ โˆˆ {1}๐‘˜ = 1)
289140, 27, 288sylancl 585 . . . . . . . . 9 (๐œ‘ โ†’ ฮฃ๐‘˜ โˆˆ {1}๐‘˜ = 1)
290155, 289oveq12d 7432 . . . . . . . 8 (๐œ‘ โ†’ (ฮฃ๐‘˜ โˆˆ {(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)), ๐ต}๐‘˜ + ฮฃ๐‘˜ โˆˆ {1}๐‘˜) = (((2โ†‘(๐ด + 1)) ยท (๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1))) + 1))
291290adantr 480 . . . . . . 7 ((๐œ‘ โˆง ๐ต โ‰  ((2โ†‘(๐ด + 1)) โˆ’ 1)) โ†’ (ฮฃ๐‘˜ โˆˆ {(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)), ๐ต}๐‘˜ + ฮฃ๐‘˜ โˆˆ {1}๐‘˜) = (((2โ†‘(๐ด + 1)) ยท (๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1))) + 1))
292286, 291eqtrd 2767 . . . . . 6 ((๐œ‘ โˆง ๐ต โ‰  ((2โ†‘(๐ด + 1)) โˆ’ 1)) โ†’ ฮฃ๐‘˜ โˆˆ {(๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)), ๐ต, 1}๐‘˜ = (((2โ†‘(๐ด + 1)) ยท (๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1))) + 1))
293211adantr 480 . . . . . 6 ((๐œ‘ โˆง ๐ต โ‰  ((2โ†‘(๐ด + 1)) โˆ’ 1)) โ†’ ฮฃ๐‘˜ โˆˆ {๐‘ฅ โˆˆ โ„• โˆฃ ๐‘ฅ โˆฅ ๐ต}๐‘˜ = ((2โ†‘(๐ด + 1)) ยท (๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1))))
294271, 292, 2933brtr3d 5173 . . . . 5 ((๐œ‘ โˆง ๐ต โ‰  ((2โ†‘(๐ด + 1)) โˆ’ 1)) โ†’ (((2โ†‘(๐ด + 1)) ยท (๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1))) + 1) โ‰ค ((2โ†‘(๐ด + 1)) ยท (๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1))))
295294ex 412 . . . 4 (๐œ‘ โ†’ (๐ต โ‰  ((2โ†‘(๐ด + 1)) โˆ’ 1) โ†’ (((2โ†‘(๐ด + 1)) ยท (๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1))) + 1) โ‰ค ((2โ†‘(๐ด + 1)) ยท (๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)))))
296295necon1bd 2953 . . 3 (๐œ‘ โ†’ (ยฌ (((2โ†‘(๐ด + 1)) ยท (๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1))) + 1) โ‰ค ((2โ†‘(๐ด + 1)) ยท (๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1))) โ†’ ๐ต = ((2โ†‘(๐ด + 1)) โˆ’ 1)))
297254, 296mpd 15 . 2 (๐œ‘ โ†’ ๐ต = ((2โ†‘(๐ด + 1)) โˆ’ 1))
298249, 297jca 511 1 (๐œ‘ โ†’ (๐ต โˆˆ โ„™ โˆง ๐ต = ((2โ†‘(๐ด + 1)) โˆ’ 1)))
Colors of variables: wff setvar class
Syntax hints:  ยฌ wn 3   โ†’ wi 4   โ†” wb 205   โˆง wa 395   โˆจ wo 846   โˆจ w3o 1084   = wceq 1534   โˆˆ wcel 2099   โ‰  wne 2935  โˆ€wral 3056  {crab 3427   โˆช cun 3942   โˆฉ cin 3943   โІ wss 3944  โˆ…c0 4318  {csn 4624  {cpr 4626  {ctp 4628   class class class wbr 5142  โ€˜cfv 6542  (class class class)co 7414  Fincfn 8955  โ„‚cc 11128  โ„cr 11129  0cc0 11130  1c1 11131   + caddc 11133   ยท cmul 11135   < clt 11270   โ‰ค cle 11271   โˆ’ cmin 11466   / cdiv 11893  โ„•cn 12234  2c2 12289  โ„•0cn0 12494  โ„คcz 12580  โ„คโ‰ฅcuz 12844  โ„+crp 12998  ...cfz 13508  โ†‘cexp 14050  ฮฃcsu 15656   โˆฅ cdvds 16222   gcd cgcd 16460  โ„™cprime 16633  โ†‘๐‘ccxp 26476   ฯƒ csgm 27015   Odd codd 46888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-inf2 9656  ax-cnex 11186  ax-resscn 11187  ax-1cn 11188  ax-icn 11189  ax-addcl 11190  ax-addrcl 11191  ax-mulcl 11192  ax-mulrcl 11193  ax-mulcom 11194  ax-addass 11195  ax-mulass 11196  ax-distr 11197  ax-i2m1 11198  ax-1ne0 11199  ax-1rid 11200  ax-rnegex 11201  ax-rrecex 11202  ax-cnre 11203  ax-pre-lttri 11204  ax-pre-lttrn 11205  ax-pre-ltadd 11206  ax-pre-mulgt0 11207  ax-pre-sup 11208  ax-addf 11209
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-iin 4994  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-of 7679  df-om 7865  df-1st 7987  df-2nd 7988  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8718  df-map 8838  df-pm 8839  df-ixp 8908  df-en 8956  df-dom 8957  df-sdom 8958  df-fin 8959  df-fsupp 9378  df-fi 9426  df-sup 9457  df-inf 9458  df-oi 9525  df-card 9954  df-pnf 11272  df-mnf 11273  df-xr 11274  df-ltxr 11275  df-le 11276  df-sub 11468  df-neg 11469  df-div 11894  df-nn 12235  df-2 12297  df-3 12298  df-4 12299  df-5 12300  df-6 12301  df-7 12302  df-8 12303  df-9 12304  df-n0 12495  df-z 12581  df-dec 12700  df-uz 12845  df-q 12955  df-rp 12999  df-xneg 13116  df-xadd 13117  df-xmul 13118  df-ioo 13352  df-ioc 13353  df-ico 13354  df-icc 13355  df-fz 13509  df-fzo 13652  df-fl 13781  df-mod 13859  df-seq 13991  df-exp 14051  df-fac 14257  df-bc 14286  df-hash 14314  df-shft 15038  df-cj 15070  df-re 15071  df-im 15072  df-sqrt 15206  df-abs 15207  df-limsup 15439  df-clim 15456  df-rlim 15457  df-sum 15657  df-ef 16035  df-sin 16037  df-cos 16038  df-pi 16040  df-dvds 16223  df-gcd 16461  df-prm 16634  df-pc 16797  df-struct 17107  df-sets 17124  df-slot 17142  df-ndx 17154  df-base 17172  df-ress 17201  df-plusg 17237  df-mulr 17238  df-starv 17239  df-sca 17240  df-vsca 17241  df-ip 17242  df-tset 17243  df-ple 17244  df-ds 17246  df-unif 17247  df-hom 17248  df-cco 17249  df-rest 17395  df-topn 17396  df-0g 17414  df-gsum 17415  df-topgen 17416  df-pt 17417  df-prds 17420  df-xrs 17475  df-qtop 17480  df-imas 17481  df-xps 17483  df-mre 17557  df-mrc 17558  df-acs 17560  df-mgm 18591  df-sgrp 18670  df-mnd 18686  df-submnd 18732  df-mulg 19015  df-cntz 19259  df-cmn 19728  df-psmet 21258  df-xmet 21259  df-met 21260  df-bl 21261  df-mopn 21262  df-fbas 21263  df-fg 21264  df-cnfld 21267  df-top 22783  df-topon 22800  df-topsp 22822  df-bases 22836  df-cld 22910  df-ntr 22911  df-cls 22912  df-nei 22989  df-lp 23027  df-perf 23028  df-cn 23118  df-cnp 23119  df-haus 23206  df-tx 23453  df-hmeo 23646  df-fil 23737  df-fm 23829  df-flim 23830  df-flf 23831  df-xms 24213  df-ms 24214  df-tms 24215  df-cncf 24785  df-limc 25782  df-dv 25783  df-log 26477  df-cxp 26478  df-sgm 27021  df-even 46889  df-odd 46890
This theorem is referenced by:  perfectALTV  46986
  Copyright terms: Public domain W3C validator