Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sgnmulsgn Structured version   Visualization version   GIF version

Theorem sgnmulsgn 32817
Description: If two real numbers are of different signs, so are their signs. (Contributed by Thierry Arnoux, 12-Oct-2018.)
Assertion
Ref Expression
sgnmulsgn ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 · 𝐵) < 0 ↔ ((sgn‘𝐴) · (sgn‘𝐵)) < 0))

Proof of Theorem sgnmulsgn
StepHypRef Expression
1 neg1lt0 12150 . . . . 5 -1 < 0
2 breq1 5105 . . . . 5 ((sgn‘(𝐴 · 𝐵)) = -1 → ((sgn‘(𝐴 · 𝐵)) < 0 ↔ -1 < 0))
31, 2mpbiri 258 . . . 4 ((sgn‘(𝐴 · 𝐵)) = -1 → (sgn‘(𝐴 · 𝐵)) < 0)
43adantl 481 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (sgn‘(𝐴 · 𝐵)) = -1) → (sgn‘(𝐴 · 𝐵)) < 0)
5 simpr 484 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (sgn‘(𝐴 · 𝐵)) < 0) ∧ (sgn‘(𝐴 · 𝐵)) = -1) → (sgn‘(𝐴 · 𝐵)) = -1)
6 simpr 484 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (sgn‘(𝐴 · 𝐵)) < 0) ∧ (sgn‘(𝐴 · 𝐵)) = 0) → (sgn‘(𝐴 · 𝐵)) = 0)
7 simplr 768 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (sgn‘(𝐴 · 𝐵)) < 0) ∧ (sgn‘(𝐴 · 𝐵)) = 0) → (sgn‘(𝐴 · 𝐵)) < 0)
87lt0ne0d 11719 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (sgn‘(𝐴 · 𝐵)) < 0) ∧ (sgn‘(𝐴 · 𝐵)) = 0) → (sgn‘(𝐴 · 𝐵)) ≠ 0)
96, 8pm2.21ddne 3009 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (sgn‘(𝐴 · 𝐵)) < 0) ∧ (sgn‘(𝐴 · 𝐵)) = 0) → (sgn‘(𝐴 · 𝐵)) = -1)
10 simpr 484 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (sgn‘(𝐴 · 𝐵)) < 0) ∧ (sgn‘(𝐴 · 𝐵)) = 1) → (sgn‘(𝐴 · 𝐵)) = 1)
11 simplr 768 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (sgn‘(𝐴 · 𝐵)) < 0) ∧ (sgn‘(𝐴 · 𝐵)) = 1) → (sgn‘(𝐴 · 𝐵)) < 0)
1210, 11eqbrtrrd 5126 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (sgn‘(𝐴 · 𝐵)) < 0) ∧ (sgn‘(𝐴 · 𝐵)) = 1) → 1 < 0)
13 1nn0 12434 . . . . . 6 1 ∈ ℕ0
14 nn0nlt0 12444 . . . . . 6 (1 ∈ ℕ0 → ¬ 1 < 0)
1513, 14mp1i 13 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (sgn‘(𝐴 · 𝐵)) < 0) ∧ (sgn‘(𝐴 · 𝐵)) = 1) → ¬ 1 < 0)
1612, 15pm2.21dd 195 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (sgn‘(𝐴 · 𝐵)) < 0) ∧ (sgn‘(𝐴 · 𝐵)) = 1) → (sgn‘(𝐴 · 𝐵)) = -1)
17 remulcl 11129 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ)
1817rexrd 11200 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ*)
1918adantr 480 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (sgn‘(𝐴 · 𝐵)) < 0) → (𝐴 · 𝐵) ∈ ℝ*)
20 sgncl 32806 . . . . 5 ((𝐴 · 𝐵) ∈ ℝ* → (sgn‘(𝐴 · 𝐵)) ∈ {-1, 0, 1})
21 eltpi 4648 . . . . 5 ((sgn‘(𝐴 · 𝐵)) ∈ {-1, 0, 1} → ((sgn‘(𝐴 · 𝐵)) = -1 ∨ (sgn‘(𝐴 · 𝐵)) = 0 ∨ (sgn‘(𝐴 · 𝐵)) = 1))
2219, 20, 213syl 18 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (sgn‘(𝐴 · 𝐵)) < 0) → ((sgn‘(𝐴 · 𝐵)) = -1 ∨ (sgn‘(𝐴 · 𝐵)) = 0 ∨ (sgn‘(𝐴 · 𝐵)) = 1))
235, 9, 16, 22mpjao3dan 1434 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (sgn‘(𝐴 · 𝐵)) < 0) → (sgn‘(𝐴 · 𝐵)) = -1)
244, 23impbida 800 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((sgn‘(𝐴 · 𝐵)) = -1 ↔ (sgn‘(𝐴 · 𝐵)) < 0))
25 sgnnbi 32813 . . 3 ((𝐴 · 𝐵) ∈ ℝ* → ((sgn‘(𝐴 · 𝐵)) = -1 ↔ (𝐴 · 𝐵) < 0))
2618, 25syl 17 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((sgn‘(𝐴 · 𝐵)) = -1 ↔ (𝐴 · 𝐵) < 0))
27 sgnmul 32810 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (sgn‘(𝐴 · 𝐵)) = ((sgn‘𝐴) · (sgn‘𝐵)))
2827breq1d 5112 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((sgn‘(𝐴 · 𝐵)) < 0 ↔ ((sgn‘𝐴) · (sgn‘𝐵)) < 0))
2924, 26, 283bitr3d 309 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 · 𝐵) < 0 ↔ ((sgn‘𝐴) · (sgn‘𝐵)) < 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3o 1085   = wceq 1540  wcel 2109  {ctp 4589   class class class wbr 5102  cfv 6499  (class class class)co 7369  cr 11043  0cc0 11044  1c1 11045   · cmul 11049  *cxr 11183   < clt 11184  -cneg 11382  0cn0 12418  sgncsgn 15028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-n0 12419  df-rp 12928  df-sgn 15029
This theorem is referenced by:  signsvfn  34566  signsvfnn  34570
  Copyright terms: Public domain W3C validator