![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sgnmulsgn | Structured version Visualization version GIF version |
Description: If two real numbers are of different signs, so are their signs. (Contributed by Thierry Arnoux, 12-Oct-2018.) |
Ref | Expression |
---|---|
sgnmulsgn | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 · 𝐵) < 0 ↔ ((sgn‘𝐴) · (sgn‘𝐵)) < 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neg1lt0 12325 | . . . . 5 ⊢ -1 < 0 | |
2 | breq1 5150 | . . . . 5 ⊢ ((sgn‘(𝐴 · 𝐵)) = -1 → ((sgn‘(𝐴 · 𝐵)) < 0 ↔ -1 < 0)) | |
3 | 1, 2 | mpbiri 257 | . . . 4 ⊢ ((sgn‘(𝐴 · 𝐵)) = -1 → (sgn‘(𝐴 · 𝐵)) < 0) |
4 | 3 | adantl 482 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (sgn‘(𝐴 · 𝐵)) = -1) → (sgn‘(𝐴 · 𝐵)) < 0) |
5 | simpr 485 | . . . 4 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (sgn‘(𝐴 · 𝐵)) < 0) ∧ (sgn‘(𝐴 · 𝐵)) = -1) → (sgn‘(𝐴 · 𝐵)) = -1) | |
6 | simpr 485 | . . . . 5 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (sgn‘(𝐴 · 𝐵)) < 0) ∧ (sgn‘(𝐴 · 𝐵)) = 0) → (sgn‘(𝐴 · 𝐵)) = 0) | |
7 | simplr 767 | . . . . . 6 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (sgn‘(𝐴 · 𝐵)) < 0) ∧ (sgn‘(𝐴 · 𝐵)) = 0) → (sgn‘(𝐴 · 𝐵)) < 0) | |
8 | 7 | lt0ne0d 11775 | . . . . 5 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (sgn‘(𝐴 · 𝐵)) < 0) ∧ (sgn‘(𝐴 · 𝐵)) = 0) → (sgn‘(𝐴 · 𝐵)) ≠ 0) |
9 | 6, 8 | pm2.21ddne 3026 | . . . 4 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (sgn‘(𝐴 · 𝐵)) < 0) ∧ (sgn‘(𝐴 · 𝐵)) = 0) → (sgn‘(𝐴 · 𝐵)) = -1) |
10 | simpr 485 | . . . . . 6 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (sgn‘(𝐴 · 𝐵)) < 0) ∧ (sgn‘(𝐴 · 𝐵)) = 1) → (sgn‘(𝐴 · 𝐵)) = 1) | |
11 | simplr 767 | . . . . . 6 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (sgn‘(𝐴 · 𝐵)) < 0) ∧ (sgn‘(𝐴 · 𝐵)) = 1) → (sgn‘(𝐴 · 𝐵)) < 0) | |
12 | 10, 11 | eqbrtrrd 5171 | . . . . 5 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (sgn‘(𝐴 · 𝐵)) < 0) ∧ (sgn‘(𝐴 · 𝐵)) = 1) → 1 < 0) |
13 | 1nn0 12484 | . . . . . 6 ⊢ 1 ∈ ℕ0 | |
14 | nn0nlt0 12494 | . . . . . 6 ⊢ (1 ∈ ℕ0 → ¬ 1 < 0) | |
15 | 13, 14 | mp1i 13 | . . . . 5 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (sgn‘(𝐴 · 𝐵)) < 0) ∧ (sgn‘(𝐴 · 𝐵)) = 1) → ¬ 1 < 0) |
16 | 12, 15 | pm2.21dd 194 | . . . 4 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (sgn‘(𝐴 · 𝐵)) < 0) ∧ (sgn‘(𝐴 · 𝐵)) = 1) → (sgn‘(𝐴 · 𝐵)) = -1) |
17 | remulcl 11191 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ) | |
18 | 17 | rexrd 11260 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ*) |
19 | 18 | adantr 481 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (sgn‘(𝐴 · 𝐵)) < 0) → (𝐴 · 𝐵) ∈ ℝ*) |
20 | sgncl 33525 | . . . . 5 ⊢ ((𝐴 · 𝐵) ∈ ℝ* → (sgn‘(𝐴 · 𝐵)) ∈ {-1, 0, 1}) | |
21 | eltpi 4690 | . . . . 5 ⊢ ((sgn‘(𝐴 · 𝐵)) ∈ {-1, 0, 1} → ((sgn‘(𝐴 · 𝐵)) = -1 ∨ (sgn‘(𝐴 · 𝐵)) = 0 ∨ (sgn‘(𝐴 · 𝐵)) = 1)) | |
22 | 19, 20, 21 | 3syl 18 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (sgn‘(𝐴 · 𝐵)) < 0) → ((sgn‘(𝐴 · 𝐵)) = -1 ∨ (sgn‘(𝐴 · 𝐵)) = 0 ∨ (sgn‘(𝐴 · 𝐵)) = 1)) |
23 | 5, 9, 16, 22 | mpjao3dan 1431 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (sgn‘(𝐴 · 𝐵)) < 0) → (sgn‘(𝐴 · 𝐵)) = -1) |
24 | 4, 23 | impbida 799 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((sgn‘(𝐴 · 𝐵)) = -1 ↔ (sgn‘(𝐴 · 𝐵)) < 0)) |
25 | sgnnbi 33532 | . . 3 ⊢ ((𝐴 · 𝐵) ∈ ℝ* → ((sgn‘(𝐴 · 𝐵)) = -1 ↔ (𝐴 · 𝐵) < 0)) | |
26 | 18, 25 | syl 17 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((sgn‘(𝐴 · 𝐵)) = -1 ↔ (𝐴 · 𝐵) < 0)) |
27 | sgnmul 33529 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (sgn‘(𝐴 · 𝐵)) = ((sgn‘𝐴) · (sgn‘𝐵))) | |
28 | 27 | breq1d 5157 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((sgn‘(𝐴 · 𝐵)) < 0 ↔ ((sgn‘𝐴) · (sgn‘𝐵)) < 0)) |
29 | 24, 26, 28 | 3bitr3d 308 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 · 𝐵) < 0 ↔ ((sgn‘𝐴) · (sgn‘𝐵)) < 0)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∨ w3o 1086 = wceq 1541 ∈ wcel 2106 {ctp 4631 class class class wbr 5147 ‘cfv 6540 (class class class)co 7405 ℝcr 11105 0cc0 11106 1c1 11107 · cmul 11111 ℝ*cxr 11243 < clt 11244 -cneg 11441 ℕ0cn0 12468 sgncsgn 15029 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-n0 12469 df-rp 12971 df-sgn 15030 |
This theorem is referenced by: signsvfn 33581 signsvfnn 33585 |
Copyright terms: Public domain | W3C validator |