Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmtnofz04prm Structured version   Visualization version   GIF version

Theorem fmtnofz04prm 47608
Description: The first five Fermat numbers are prime, see remark in [ApostolNT] p. 7. (Contributed by AV, 28-Jul-2021.)
Assertion
Ref Expression
fmtnofz04prm (𝑁 ∈ (0...4) → (FermatNo‘𝑁) ∈ ℙ)

Proof of Theorem fmtnofz04prm
StepHypRef Expression
1 4nn0 12395 . . 3 4 ∈ ℕ0
2 el1fzopredsuc 47356 . . 3 (4 ∈ ℕ0 → (𝑁 ∈ (0...4) ↔ (𝑁 = 0 ∨ 𝑁 ∈ (1..^4) ∨ 𝑁 = 4)))
31, 2ax-mp 5 . 2 (𝑁 ∈ (0...4) ↔ (𝑁 = 0 ∨ 𝑁 ∈ (1..^4) ∨ 𝑁 = 4))
4 fveq2 6817 . . . 4 (𝑁 = 0 → (FermatNo‘𝑁) = (FermatNo‘0))
5 fmtno0prm 47589 . . . 4 (FermatNo‘0) ∈ ℙ
64, 5eqeltrdi 2839 . . 3 (𝑁 = 0 → (FermatNo‘𝑁) ∈ ℙ)
7 eltpi 4636 . . . . 5 (𝑁 ∈ {1, 2, 3} → (𝑁 = 1 ∨ 𝑁 = 2 ∨ 𝑁 = 3))
8 fveq2 6817 . . . . . . 7 (𝑁 = 1 → (FermatNo‘𝑁) = (FermatNo‘1))
9 fmtno1prm 47590 . . . . . . 7 (FermatNo‘1) ∈ ℙ
108, 9eqeltrdi 2839 . . . . . 6 (𝑁 = 1 → (FermatNo‘𝑁) ∈ ℙ)
11 fveq2 6817 . . . . . . 7 (𝑁 = 2 → (FermatNo‘𝑁) = (FermatNo‘2))
12 fmtno2prm 47591 . . . . . . 7 (FermatNo‘2) ∈ ℙ
1311, 12eqeltrdi 2839 . . . . . 6 (𝑁 = 2 → (FermatNo‘𝑁) ∈ ℙ)
14 fveq2 6817 . . . . . . 7 (𝑁 = 3 → (FermatNo‘𝑁) = (FermatNo‘3))
15 fmtno3prm 47593 . . . . . . 7 (FermatNo‘3) ∈ ℙ
1614, 15eqeltrdi 2839 . . . . . 6 (𝑁 = 3 → (FermatNo‘𝑁) ∈ ℙ)
1710, 13, 163jaoi 1430 . . . . 5 ((𝑁 = 1 ∨ 𝑁 = 2 ∨ 𝑁 = 3) → (FermatNo‘𝑁) ∈ ℙ)
187, 17syl 17 . . . 4 (𝑁 ∈ {1, 2, 3} → (FermatNo‘𝑁) ∈ ℙ)
19 fzo1to4tp 13649 . . . 4 (1..^4) = {1, 2, 3}
2018, 19eleq2s 2849 . . 3 (𝑁 ∈ (1..^4) → (FermatNo‘𝑁) ∈ ℙ)
21 fveq2 6817 . . . 4 (𝑁 = 4 → (FermatNo‘𝑁) = (FermatNo‘4))
22 fmtno4prm 47606 . . . 4 (FermatNo‘4) ∈ ℙ
2321, 22eqeltrdi 2839 . . 3 (𝑁 = 4 → (FermatNo‘𝑁) ∈ ℙ)
246, 20, 233jaoi 1430 . 2 ((𝑁 = 0 ∨ 𝑁 ∈ (1..^4) ∨ 𝑁 = 4) → (FermatNo‘𝑁) ∈ ℙ)
253, 24sylbi 217 1 (𝑁 ∈ (0...4) → (FermatNo‘𝑁) ∈ ℙ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3o 1085   = wceq 1541  wcel 2111  {ctp 4575  cfv 6476  (class class class)co 7341  0cc0 11001  1c1 11002  2c2 12175  3c3 12176  4c4 12177  0cn0 12376  ...cfz 13402  ..^cfzo 13549  cprime 16577  FermatNocfmtno 47558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-inf2 9526  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-se 5565  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-isom 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-oadd 8384  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-sup 9321  df-inf 9322  df-oi 9391  df-dju 9789  df-card 9827  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-7 12188  df-8 12189  df-9 12190  df-n0 12377  df-xnn0 12450  df-z 12464  df-dec 12584  df-uz 12728  df-q 12842  df-rp 12886  df-ioo 13244  df-ico 13246  df-fz 13403  df-fzo 13550  df-fl 13691  df-mod 13769  df-seq 13904  df-exp 13964  df-fac 14176  df-hash 14233  df-cj 15001  df-re 15002  df-im 15003  df-sqrt 15137  df-abs 15138  df-clim 15390  df-prod 15806  df-dvds 16159  df-gcd 16401  df-prm 16578  df-odz 16671  df-phi 16672  df-pc 16744  df-lgs 27228  df-fmtno 47559
This theorem is referenced by:  fmtnole4prm  47609
  Copyright terms: Public domain W3C validator