| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fmtnofz04prm | Structured version Visualization version GIF version | ||
| Description: The first five Fermat numbers are prime, see remark in [ApostolNT] p. 7. (Contributed by AV, 28-Jul-2021.) |
| Ref | Expression |
|---|---|
| fmtnofz04prm | ⊢ (𝑁 ∈ (0...4) → (FermatNo‘𝑁) ∈ ℙ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4nn0 12422 | . . 3 ⊢ 4 ∈ ℕ0 | |
| 2 | el1fzopredsuc 47329 | . . 3 ⊢ (4 ∈ ℕ0 → (𝑁 ∈ (0...4) ↔ (𝑁 = 0 ∨ 𝑁 ∈ (1..^4) ∨ 𝑁 = 4))) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ (𝑁 ∈ (0...4) ↔ (𝑁 = 0 ∨ 𝑁 ∈ (1..^4) ∨ 𝑁 = 4)) |
| 4 | fveq2 6826 | . . . 4 ⊢ (𝑁 = 0 → (FermatNo‘𝑁) = (FermatNo‘0)) | |
| 5 | fmtno0prm 47562 | . . . 4 ⊢ (FermatNo‘0) ∈ ℙ | |
| 6 | 4, 5 | eqeltrdi 2836 | . . 3 ⊢ (𝑁 = 0 → (FermatNo‘𝑁) ∈ ℙ) |
| 7 | eltpi 4642 | . . . . 5 ⊢ (𝑁 ∈ {1, 2, 3} → (𝑁 = 1 ∨ 𝑁 = 2 ∨ 𝑁 = 3)) | |
| 8 | fveq2 6826 | . . . . . . 7 ⊢ (𝑁 = 1 → (FermatNo‘𝑁) = (FermatNo‘1)) | |
| 9 | fmtno1prm 47563 | . . . . . . 7 ⊢ (FermatNo‘1) ∈ ℙ | |
| 10 | 8, 9 | eqeltrdi 2836 | . . . . . 6 ⊢ (𝑁 = 1 → (FermatNo‘𝑁) ∈ ℙ) |
| 11 | fveq2 6826 | . . . . . . 7 ⊢ (𝑁 = 2 → (FermatNo‘𝑁) = (FermatNo‘2)) | |
| 12 | fmtno2prm 47564 | . . . . . . 7 ⊢ (FermatNo‘2) ∈ ℙ | |
| 13 | 11, 12 | eqeltrdi 2836 | . . . . . 6 ⊢ (𝑁 = 2 → (FermatNo‘𝑁) ∈ ℙ) |
| 14 | fveq2 6826 | . . . . . . 7 ⊢ (𝑁 = 3 → (FermatNo‘𝑁) = (FermatNo‘3)) | |
| 15 | fmtno3prm 47566 | . . . . . . 7 ⊢ (FermatNo‘3) ∈ ℙ | |
| 16 | 14, 15 | eqeltrdi 2836 | . . . . . 6 ⊢ (𝑁 = 3 → (FermatNo‘𝑁) ∈ ℙ) |
| 17 | 10, 13, 16 | 3jaoi 1430 | . . . . 5 ⊢ ((𝑁 = 1 ∨ 𝑁 = 2 ∨ 𝑁 = 3) → (FermatNo‘𝑁) ∈ ℙ) |
| 18 | 7, 17 | syl 17 | . . . 4 ⊢ (𝑁 ∈ {1, 2, 3} → (FermatNo‘𝑁) ∈ ℙ) |
| 19 | fzo1to4tp 13676 | . . . 4 ⊢ (1..^4) = {1, 2, 3} | |
| 20 | 18, 19 | eleq2s 2846 | . . 3 ⊢ (𝑁 ∈ (1..^4) → (FermatNo‘𝑁) ∈ ℙ) |
| 21 | fveq2 6826 | . . . 4 ⊢ (𝑁 = 4 → (FermatNo‘𝑁) = (FermatNo‘4)) | |
| 22 | fmtno4prm 47579 | . . . 4 ⊢ (FermatNo‘4) ∈ ℙ | |
| 23 | 21, 22 | eqeltrdi 2836 | . . 3 ⊢ (𝑁 = 4 → (FermatNo‘𝑁) ∈ ℙ) |
| 24 | 6, 20, 23 | 3jaoi 1430 | . 2 ⊢ ((𝑁 = 0 ∨ 𝑁 ∈ (1..^4) ∨ 𝑁 = 4) → (FermatNo‘𝑁) ∈ ℙ) |
| 25 | 3, 24 | sylbi 217 | 1 ⊢ (𝑁 ∈ (0...4) → (FermatNo‘𝑁) ∈ ℙ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∨ w3o 1085 = wceq 1540 ∈ wcel 2109 {ctp 4583 ‘cfv 6486 (class class class)co 7353 0cc0 11028 1c1 11029 2c2 12202 3c3 12203 4c4 12204 ℕ0cn0 12403 ...cfz 13429 ..^cfzo 13576 ℙcprime 16601 FermatNocfmtno 47531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-inf2 9556 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-oadd 8399 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-sup 9351 df-inf 9352 df-oi 9421 df-dju 9816 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11368 df-neg 11369 df-div 11797 df-nn 12148 df-2 12210 df-3 12211 df-4 12212 df-5 12213 df-6 12214 df-7 12215 df-8 12216 df-9 12217 df-n0 12404 df-xnn0 12477 df-z 12491 df-dec 12611 df-uz 12755 df-q 12869 df-rp 12913 df-ioo 13271 df-ico 13273 df-fz 13430 df-fzo 13577 df-fl 13715 df-mod 13793 df-seq 13928 df-exp 13988 df-fac 14200 df-hash 14257 df-cj 15025 df-re 15026 df-im 15027 df-sqrt 15161 df-abs 15162 df-clim 15414 df-prod 15830 df-dvds 16183 df-gcd 16425 df-prm 16602 df-odz 16695 df-phi 16696 df-pc 16768 df-lgs 27223 df-fmtno 47532 |
| This theorem is referenced by: fmtnole4prm 47582 |
| Copyright terms: Public domain | W3C validator |