| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fmtnofz04prm | Structured version Visualization version GIF version | ||
| Description: The first five Fermat numbers are prime, see remark in [ApostolNT] p. 7. (Contributed by AV, 28-Jul-2021.) |
| Ref | Expression |
|---|---|
| fmtnofz04prm | ⊢ (𝑁 ∈ (0...4) → (FermatNo‘𝑁) ∈ ℙ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4nn0 12437 | . . 3 ⊢ 4 ∈ ℕ0 | |
| 2 | el1fzopredsuc 47299 | . . 3 ⊢ (4 ∈ ℕ0 → (𝑁 ∈ (0...4) ↔ (𝑁 = 0 ∨ 𝑁 ∈ (1..^4) ∨ 𝑁 = 4))) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ (𝑁 ∈ (0...4) ↔ (𝑁 = 0 ∨ 𝑁 ∈ (1..^4) ∨ 𝑁 = 4)) |
| 4 | fveq2 6840 | . . . 4 ⊢ (𝑁 = 0 → (FermatNo‘𝑁) = (FermatNo‘0)) | |
| 5 | fmtno0prm 47532 | . . . 4 ⊢ (FermatNo‘0) ∈ ℙ | |
| 6 | 4, 5 | eqeltrdi 2836 | . . 3 ⊢ (𝑁 = 0 → (FermatNo‘𝑁) ∈ ℙ) |
| 7 | eltpi 4648 | . . . . 5 ⊢ (𝑁 ∈ {1, 2, 3} → (𝑁 = 1 ∨ 𝑁 = 2 ∨ 𝑁 = 3)) | |
| 8 | fveq2 6840 | . . . . . . 7 ⊢ (𝑁 = 1 → (FermatNo‘𝑁) = (FermatNo‘1)) | |
| 9 | fmtno1prm 47533 | . . . . . . 7 ⊢ (FermatNo‘1) ∈ ℙ | |
| 10 | 8, 9 | eqeltrdi 2836 | . . . . . 6 ⊢ (𝑁 = 1 → (FermatNo‘𝑁) ∈ ℙ) |
| 11 | fveq2 6840 | . . . . . . 7 ⊢ (𝑁 = 2 → (FermatNo‘𝑁) = (FermatNo‘2)) | |
| 12 | fmtno2prm 47534 | . . . . . . 7 ⊢ (FermatNo‘2) ∈ ℙ | |
| 13 | 11, 12 | eqeltrdi 2836 | . . . . . 6 ⊢ (𝑁 = 2 → (FermatNo‘𝑁) ∈ ℙ) |
| 14 | fveq2 6840 | . . . . . . 7 ⊢ (𝑁 = 3 → (FermatNo‘𝑁) = (FermatNo‘3)) | |
| 15 | fmtno3prm 47536 | . . . . . . 7 ⊢ (FermatNo‘3) ∈ ℙ | |
| 16 | 14, 15 | eqeltrdi 2836 | . . . . . 6 ⊢ (𝑁 = 3 → (FermatNo‘𝑁) ∈ ℙ) |
| 17 | 10, 13, 16 | 3jaoi 1430 | . . . . 5 ⊢ ((𝑁 = 1 ∨ 𝑁 = 2 ∨ 𝑁 = 3) → (FermatNo‘𝑁) ∈ ℙ) |
| 18 | 7, 17 | syl 17 | . . . 4 ⊢ (𝑁 ∈ {1, 2, 3} → (FermatNo‘𝑁) ∈ ℙ) |
| 19 | fzo1to4tp 13691 | . . . 4 ⊢ (1..^4) = {1, 2, 3} | |
| 20 | 18, 19 | eleq2s 2846 | . . 3 ⊢ (𝑁 ∈ (1..^4) → (FermatNo‘𝑁) ∈ ℙ) |
| 21 | fveq2 6840 | . . . 4 ⊢ (𝑁 = 4 → (FermatNo‘𝑁) = (FermatNo‘4)) | |
| 22 | fmtno4prm 47549 | . . . 4 ⊢ (FermatNo‘4) ∈ ℙ | |
| 23 | 21, 22 | eqeltrdi 2836 | . . 3 ⊢ (𝑁 = 4 → (FermatNo‘𝑁) ∈ ℙ) |
| 24 | 6, 20, 23 | 3jaoi 1430 | . 2 ⊢ ((𝑁 = 0 ∨ 𝑁 ∈ (1..^4) ∨ 𝑁 = 4) → (FermatNo‘𝑁) ∈ ℙ) |
| 25 | 3, 24 | sylbi 217 | 1 ⊢ (𝑁 ∈ (0...4) → (FermatNo‘𝑁) ∈ ℙ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∨ w3o 1085 = wceq 1540 ∈ wcel 2109 {ctp 4589 ‘cfv 6499 (class class class)co 7369 0cc0 11044 1c1 11045 2c2 12217 3c3 12218 4c4 12219 ℕ0cn0 12418 ...cfz 13444 ..^cfzo 13591 ℙcprime 16617 FermatNocfmtno 47501 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9570 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-oadd 8415 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-sup 9369 df-inf 9370 df-oi 9439 df-dju 9830 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-xnn0 12492 df-z 12506 df-dec 12626 df-uz 12770 df-q 12884 df-rp 12928 df-ioo 13286 df-ico 13288 df-fz 13445 df-fzo 13592 df-fl 13730 df-mod 13808 df-seq 13943 df-exp 14003 df-fac 14215 df-hash 14272 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-clim 15430 df-prod 15846 df-dvds 16199 df-gcd 16441 df-prm 16618 df-odz 16711 df-phi 16712 df-pc 16784 df-lgs 27182 df-fmtno 47502 |
| This theorem is referenced by: fmtnole4prm 47552 |
| Copyright terms: Public domain | W3C validator |