MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prm23lt5 Structured version   Visualization version   GIF version

Theorem prm23lt5 16733
Description: A prime less than 5 is either 2 or 3. (Contributed by AV, 5-Jul-2021.)
Assertion
Ref Expression
prm23lt5 ((𝑃 ∈ ℙ ∧ 𝑃 < 5) → (𝑃 = 2 ∨ 𝑃 = 3))

Proof of Theorem prm23lt5
StepHypRef Expression
1 prmnn 16592 . . . . 5 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
21nnnn0d 12453 . . . 4 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ0)
32adantr 480 . . 3 ((𝑃 ∈ ℙ ∧ 𝑃 < 5) → 𝑃 ∈ ℕ0)
4 4nn0 12411 . . . 4 4 ∈ ℕ0
54a1i 11 . . 3 ((𝑃 ∈ ℙ ∧ 𝑃 < 5) → 4 ∈ ℕ0)
6 df-5 12202 . . . . . 6 5 = (4 + 1)
76breq2i 5103 . . . . 5 (𝑃 < 5 ↔ 𝑃 < (4 + 1))
8 prmz 16593 . . . . . . 7 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
9 4z 12516 . . . . . . 7 4 ∈ ℤ
10 zleltp1 12533 . . . . . . 7 ((𝑃 ∈ ℤ ∧ 4 ∈ ℤ) → (𝑃 ≤ 4 ↔ 𝑃 < (4 + 1)))
118, 9, 10sylancl 586 . . . . . 6 (𝑃 ∈ ℙ → (𝑃 ≤ 4 ↔ 𝑃 < (4 + 1)))
1211biimprd 248 . . . . 5 (𝑃 ∈ ℙ → (𝑃 < (4 + 1) → 𝑃 ≤ 4))
137, 12biimtrid 242 . . . 4 (𝑃 ∈ ℙ → (𝑃 < 5 → 𝑃 ≤ 4))
1413imp 406 . . 3 ((𝑃 ∈ ℙ ∧ 𝑃 < 5) → 𝑃 ≤ 4)
15 elfz2nn0 13525 . . 3 (𝑃 ∈ (0...4) ↔ (𝑃 ∈ ℕ0 ∧ 4 ∈ ℕ0𝑃 ≤ 4))
163, 5, 14, 15syl3anbrc 1344 . 2 ((𝑃 ∈ ℙ ∧ 𝑃 < 5) → 𝑃 ∈ (0...4))
17 fz0to4untppr 13537 . . . 4 (0...4) = ({0, 1, 2} ∪ {3, 4})
1817eleq2i 2825 . . 3 (𝑃 ∈ (0...4) ↔ 𝑃 ∈ ({0, 1, 2} ∪ {3, 4}))
19 elun 4102 . . . . . 6 (𝑃 ∈ ({0, 1, 2} ∪ {3, 4}) ↔ (𝑃 ∈ {0, 1, 2} ∨ 𝑃 ∈ {3, 4}))
20 eltpi 4642 . . . . . . . 8 (𝑃 ∈ {0, 1, 2} → (𝑃 = 0 ∨ 𝑃 = 1 ∨ 𝑃 = 2))
21 nnne0 12170 . . . . . . . . . . 11 (𝑃 ∈ ℕ → 𝑃 ≠ 0)
22 eqneqall 2940 . . . . . . . . . . . 12 (𝑃 = 0 → (𝑃 ≠ 0 → (𝑃 = 2 ∨ 𝑃 = 3)))
2322com12 32 . . . . . . . . . . 11 (𝑃 ≠ 0 → (𝑃 = 0 → (𝑃 = 2 ∨ 𝑃 = 3)))
241, 21, 233syl 18 . . . . . . . . . 10 (𝑃 ∈ ℙ → (𝑃 = 0 → (𝑃 = 2 ∨ 𝑃 = 3)))
2524com12 32 . . . . . . . . 9 (𝑃 = 0 → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3)))
26 eleq1 2821 . . . . . . . . . 10 (𝑃 = 1 → (𝑃 ∈ ℙ ↔ 1 ∈ ℙ))
27 1nprm 16597 . . . . . . . . . . 11 ¬ 1 ∈ ℙ
2827pm2.21i 119 . . . . . . . . . 10 (1 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3))
2926, 28biimtrdi 253 . . . . . . . . 9 (𝑃 = 1 → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3)))
30 orc 867 . . . . . . . . . 10 (𝑃 = 2 → (𝑃 = 2 ∨ 𝑃 = 3))
3130a1d 25 . . . . . . . . 9 (𝑃 = 2 → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3)))
3225, 29, 313jaoi 1430 . . . . . . . 8 ((𝑃 = 0 ∨ 𝑃 = 1 ∨ 𝑃 = 2) → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3)))
3320, 32syl 17 . . . . . . 7 (𝑃 ∈ {0, 1, 2} → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3)))
34 elpri 4601 . . . . . . . 8 (𝑃 ∈ {3, 4} → (𝑃 = 3 ∨ 𝑃 = 4))
35 olc 868 . . . . . . . . . 10 (𝑃 = 3 → (𝑃 = 2 ∨ 𝑃 = 3))
3635a1d 25 . . . . . . . . 9 (𝑃 = 3 → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3)))
37 eleq1 2821 . . . . . . . . . 10 (𝑃 = 4 → (𝑃 ∈ ℙ ↔ 4 ∈ ℙ))
38 4nprm 16613 . . . . . . . . . . 11 ¬ 4 ∈ ℙ
3938pm2.21i 119 . . . . . . . . . 10 (4 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3))
4037, 39biimtrdi 253 . . . . . . . . 9 (𝑃 = 4 → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3)))
4136, 40jaoi 857 . . . . . . . 8 ((𝑃 = 3 ∨ 𝑃 = 4) → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3)))
4234, 41syl 17 . . . . . . 7 (𝑃 ∈ {3, 4} → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3)))
4333, 42jaoi 857 . . . . . 6 ((𝑃 ∈ {0, 1, 2} ∨ 𝑃 ∈ {3, 4}) → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3)))
4419, 43sylbi 217 . . . . 5 (𝑃 ∈ ({0, 1, 2} ∪ {3, 4}) → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3)))
4544com12 32 . . . 4 (𝑃 ∈ ℙ → (𝑃 ∈ ({0, 1, 2} ∪ {3, 4}) → (𝑃 = 2 ∨ 𝑃 = 3)))
4645adantr 480 . . 3 ((𝑃 ∈ ℙ ∧ 𝑃 < 5) → (𝑃 ∈ ({0, 1, 2} ∪ {3, 4}) → (𝑃 = 2 ∨ 𝑃 = 3)))
4718, 46biimtrid 242 . 2 ((𝑃 ∈ ℙ ∧ 𝑃 < 5) → (𝑃 ∈ (0...4) → (𝑃 = 2 ∨ 𝑃 = 3)))
4816, 47mpd 15 1 ((𝑃 ∈ ℙ ∧ 𝑃 < 5) → (𝑃 = 2 ∨ 𝑃 = 3))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3o 1085   = wceq 1541  wcel 2113  wne 2929  cun 3896  {cpr 4579  {ctp 4581   class class class wbr 5095  (class class class)co 7355  0cc0 11017  1c1 11018   + caddc 11020   < clt 11157  cle 11158  cn 12136  2c2 12191  3c3 12192  4c4 12193  5c5 12194  0cn0 12392  cz 12479  ...cfz 13414  cprime 16589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094  ax-pre-sup 11095
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-er 8631  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9337  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-div 11786  df-nn 12137  df-2 12199  df-3 12200  df-4 12201  df-5 12202  df-n0 12393  df-z 12480  df-uz 12743  df-rp 12897  df-fz 13415  df-seq 13916  df-exp 13976  df-cj 15013  df-re 15014  df-im 15015  df-sqrt 15149  df-abs 15150  df-dvds 16171  df-prm 16590
This theorem is referenced by:  prm23ge5  16734
  Copyright terms: Public domain W3C validator