MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prm23lt5 Structured version   Visualization version   GIF version

Theorem prm23lt5 16780
Description: A prime less than 5 is either 2 or 3. (Contributed by AV, 5-Jul-2021.)
Assertion
Ref Expression
prm23lt5 ((𝑃 ∈ ℙ ∧ 𝑃 < 5) → (𝑃 = 2 ∨ 𝑃 = 3))

Proof of Theorem prm23lt5
StepHypRef Expression
1 prmnn 16642 . . . . 5 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
21nnnn0d 12560 . . . 4 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ0)
32adantr 479 . . 3 ((𝑃 ∈ ℙ ∧ 𝑃 < 5) → 𝑃 ∈ ℕ0)
4 4nn0 12519 . . . 4 4 ∈ ℕ0
54a1i 11 . . 3 ((𝑃 ∈ ℙ ∧ 𝑃 < 5) → 4 ∈ ℕ0)
6 df-5 12306 . . . . . 6 5 = (4 + 1)
76breq2i 5149 . . . . 5 (𝑃 < 5 ↔ 𝑃 < (4 + 1))
8 prmz 16643 . . . . . . 7 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
9 4z 12624 . . . . . . 7 4 ∈ ℤ
10 zleltp1 12641 . . . . . . 7 ((𝑃 ∈ ℤ ∧ 4 ∈ ℤ) → (𝑃 ≤ 4 ↔ 𝑃 < (4 + 1)))
118, 9, 10sylancl 584 . . . . . 6 (𝑃 ∈ ℙ → (𝑃 ≤ 4 ↔ 𝑃 < (4 + 1)))
1211biimprd 247 . . . . 5 (𝑃 ∈ ℙ → (𝑃 < (4 + 1) → 𝑃 ≤ 4))
137, 12biimtrid 241 . . . 4 (𝑃 ∈ ℙ → (𝑃 < 5 → 𝑃 ≤ 4))
1413imp 405 . . 3 ((𝑃 ∈ ℙ ∧ 𝑃 < 5) → 𝑃 ≤ 4)
15 elfz2nn0 13622 . . 3 (𝑃 ∈ (0...4) ↔ (𝑃 ∈ ℕ0 ∧ 4 ∈ ℕ0𝑃 ≤ 4))
163, 5, 14, 15syl3anbrc 1340 . 2 ((𝑃 ∈ ℙ ∧ 𝑃 < 5) → 𝑃 ∈ (0...4))
17 fz0to4untppr 13634 . . . 4 (0...4) = ({0, 1, 2} ∪ {3, 4})
1817eleq2i 2817 . . 3 (𝑃 ∈ (0...4) ↔ 𝑃 ∈ ({0, 1, 2} ∪ {3, 4}))
19 elun 4139 . . . . . 6 (𝑃 ∈ ({0, 1, 2} ∪ {3, 4}) ↔ (𝑃 ∈ {0, 1, 2} ∨ 𝑃 ∈ {3, 4}))
20 eltpi 4685 . . . . . . . 8 (𝑃 ∈ {0, 1, 2} → (𝑃 = 0 ∨ 𝑃 = 1 ∨ 𝑃 = 2))
21 nnne0 12274 . . . . . . . . . . 11 (𝑃 ∈ ℕ → 𝑃 ≠ 0)
22 eqneqall 2941 . . . . . . . . . . . 12 (𝑃 = 0 → (𝑃 ≠ 0 → (𝑃 = 2 ∨ 𝑃 = 3)))
2322com12 32 . . . . . . . . . . 11 (𝑃 ≠ 0 → (𝑃 = 0 → (𝑃 = 2 ∨ 𝑃 = 3)))
241, 21, 233syl 18 . . . . . . . . . 10 (𝑃 ∈ ℙ → (𝑃 = 0 → (𝑃 = 2 ∨ 𝑃 = 3)))
2524com12 32 . . . . . . . . 9 (𝑃 = 0 → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3)))
26 eleq1 2813 . . . . . . . . . 10 (𝑃 = 1 → (𝑃 ∈ ℙ ↔ 1 ∈ ℙ))
27 1nprm 16647 . . . . . . . . . . 11 ¬ 1 ∈ ℙ
2827pm2.21i 119 . . . . . . . . . 10 (1 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3))
2926, 28biimtrdi 252 . . . . . . . . 9 (𝑃 = 1 → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3)))
30 orc 865 . . . . . . . . . 10 (𝑃 = 2 → (𝑃 = 2 ∨ 𝑃 = 3))
3130a1d 25 . . . . . . . . 9 (𝑃 = 2 → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3)))
3225, 29, 313jaoi 1424 . . . . . . . 8 ((𝑃 = 0 ∨ 𝑃 = 1 ∨ 𝑃 = 2) → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3)))
3320, 32syl 17 . . . . . . 7 (𝑃 ∈ {0, 1, 2} → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3)))
34 elpri 4645 . . . . . . . 8 (𝑃 ∈ {3, 4} → (𝑃 = 3 ∨ 𝑃 = 4))
35 olc 866 . . . . . . . . . 10 (𝑃 = 3 → (𝑃 = 2 ∨ 𝑃 = 3))
3635a1d 25 . . . . . . . . 9 (𝑃 = 3 → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3)))
37 eleq1 2813 . . . . . . . . . 10 (𝑃 = 4 → (𝑃 ∈ ℙ ↔ 4 ∈ ℙ))
38 4nprm 16663 . . . . . . . . . . 11 ¬ 4 ∈ ℙ
3938pm2.21i 119 . . . . . . . . . 10 (4 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3))
4037, 39biimtrdi 252 . . . . . . . . 9 (𝑃 = 4 → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3)))
4136, 40jaoi 855 . . . . . . . 8 ((𝑃 = 3 ∨ 𝑃 = 4) → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3)))
4234, 41syl 17 . . . . . . 7 (𝑃 ∈ {3, 4} → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3)))
4333, 42jaoi 855 . . . . . 6 ((𝑃 ∈ {0, 1, 2} ∨ 𝑃 ∈ {3, 4}) → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3)))
4419, 43sylbi 216 . . . . 5 (𝑃 ∈ ({0, 1, 2} ∪ {3, 4}) → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3)))
4544com12 32 . . . 4 (𝑃 ∈ ℙ → (𝑃 ∈ ({0, 1, 2} ∪ {3, 4}) → (𝑃 = 2 ∨ 𝑃 = 3)))
4645adantr 479 . . 3 ((𝑃 ∈ ℙ ∧ 𝑃 < 5) → (𝑃 ∈ ({0, 1, 2} ∪ {3, 4}) → (𝑃 = 2 ∨ 𝑃 = 3)))
4718, 46biimtrid 241 . 2 ((𝑃 ∈ ℙ ∧ 𝑃 < 5) → (𝑃 ∈ (0...4) → (𝑃 = 2 ∨ 𝑃 = 3)))
4816, 47mpd 15 1 ((𝑃 ∈ ℙ ∧ 𝑃 < 5) → (𝑃 = 2 ∨ 𝑃 = 3))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wo 845  w3o 1083   = wceq 1533  wcel 2098  wne 2930  cun 3937  {cpr 4624  {ctp 4626   class class class wbr 5141  (class class class)co 7414  0cc0 11136  1c1 11137   + caddc 11139   < clt 11276  cle 11277  cn 12240  2c2 12295  3c3 12296  4c4 12297  5c5 12298  0cn0 12500  cz 12586  ...cfz 13514  cprime 16639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5292  ax-nul 5299  ax-pow 5357  ax-pr 5421  ax-un 7736  ax-cnex 11192  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212  ax-pre-mulgt0 11213  ax-pre-sup 11214
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-pss 3958  df-nul 4317  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-tp 4627  df-op 4629  df-uni 4902  df-iun 4991  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5568  df-eprel 5574  df-po 5582  df-so 5583  df-fr 5625  df-we 5627  df-xp 5676  df-rel 5677  df-cnv 5678  df-co 5679  df-dm 5680  df-rn 5681  df-res 5682  df-ima 5683  df-pred 6298  df-ord 6365  df-on 6366  df-lim 6367  df-suc 6368  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7867  df-1st 7989  df-2nd 7990  df-frecs 8283  df-wrecs 8314  df-recs 8388  df-rdg 8427  df-1o 8483  df-2o 8484  df-er 8721  df-en 8961  df-dom 8962  df-sdom 8963  df-fin 8964  df-sup 9463  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-le 11282  df-sub 11474  df-neg 11475  df-div 11900  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-n0 12501  df-z 12587  df-uz 12851  df-rp 13005  df-fz 13515  df-seq 13997  df-exp 14057  df-cj 15076  df-re 15077  df-im 15078  df-sqrt 15212  df-abs 15213  df-dvds 16229  df-prm 16640
This theorem is referenced by:  prm23ge5  16781
  Copyright terms: Public domain W3C validator