MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prm23lt5 Structured version   Visualization version   GIF version

Theorem prm23lt5 16761
Description: A prime less than 5 is either 2 or 3. (Contributed by AV, 5-Jul-2021.)
Assertion
Ref Expression
prm23lt5 ((𝑃 ∈ ℙ ∧ 𝑃 < 5) → (𝑃 = 2 ∨ 𝑃 = 3))

Proof of Theorem prm23lt5
StepHypRef Expression
1 prmnn 16620 . . . . 5 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
21nnnn0d 12479 . . . 4 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ0)
32adantr 480 . . 3 ((𝑃 ∈ ℙ ∧ 𝑃 < 5) → 𝑃 ∈ ℕ0)
4 4nn0 12437 . . . 4 4 ∈ ℕ0
54a1i 11 . . 3 ((𝑃 ∈ ℙ ∧ 𝑃 < 5) → 4 ∈ ℕ0)
6 df-5 12228 . . . . . 6 5 = (4 + 1)
76breq2i 5110 . . . . 5 (𝑃 < 5 ↔ 𝑃 < (4 + 1))
8 prmz 16621 . . . . . . 7 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
9 4z 12543 . . . . . . 7 4 ∈ ℤ
10 zleltp1 12560 . . . . . . 7 ((𝑃 ∈ ℤ ∧ 4 ∈ ℤ) → (𝑃 ≤ 4 ↔ 𝑃 < (4 + 1)))
118, 9, 10sylancl 586 . . . . . 6 (𝑃 ∈ ℙ → (𝑃 ≤ 4 ↔ 𝑃 < (4 + 1)))
1211biimprd 248 . . . . 5 (𝑃 ∈ ℙ → (𝑃 < (4 + 1) → 𝑃 ≤ 4))
137, 12biimtrid 242 . . . 4 (𝑃 ∈ ℙ → (𝑃 < 5 → 𝑃 ≤ 4))
1413imp 406 . . 3 ((𝑃 ∈ ℙ ∧ 𝑃 < 5) → 𝑃 ≤ 4)
15 elfz2nn0 13555 . . 3 (𝑃 ∈ (0...4) ↔ (𝑃 ∈ ℕ0 ∧ 4 ∈ ℕ0𝑃 ≤ 4))
163, 5, 14, 15syl3anbrc 1344 . 2 ((𝑃 ∈ ℙ ∧ 𝑃 < 5) → 𝑃 ∈ (0...4))
17 fz0to4untppr 13567 . . . 4 (0...4) = ({0, 1, 2} ∪ {3, 4})
1817eleq2i 2820 . . 3 (𝑃 ∈ (0...4) ↔ 𝑃 ∈ ({0, 1, 2} ∪ {3, 4}))
19 elun 4112 . . . . . 6 (𝑃 ∈ ({0, 1, 2} ∪ {3, 4}) ↔ (𝑃 ∈ {0, 1, 2} ∨ 𝑃 ∈ {3, 4}))
20 eltpi 4648 . . . . . . . 8 (𝑃 ∈ {0, 1, 2} → (𝑃 = 0 ∨ 𝑃 = 1 ∨ 𝑃 = 2))
21 nnne0 12196 . . . . . . . . . . 11 (𝑃 ∈ ℕ → 𝑃 ≠ 0)
22 eqneqall 2936 . . . . . . . . . . . 12 (𝑃 = 0 → (𝑃 ≠ 0 → (𝑃 = 2 ∨ 𝑃 = 3)))
2322com12 32 . . . . . . . . . . 11 (𝑃 ≠ 0 → (𝑃 = 0 → (𝑃 = 2 ∨ 𝑃 = 3)))
241, 21, 233syl 18 . . . . . . . . . 10 (𝑃 ∈ ℙ → (𝑃 = 0 → (𝑃 = 2 ∨ 𝑃 = 3)))
2524com12 32 . . . . . . . . 9 (𝑃 = 0 → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3)))
26 eleq1 2816 . . . . . . . . . 10 (𝑃 = 1 → (𝑃 ∈ ℙ ↔ 1 ∈ ℙ))
27 1nprm 16625 . . . . . . . . . . 11 ¬ 1 ∈ ℙ
2827pm2.21i 119 . . . . . . . . . 10 (1 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3))
2926, 28biimtrdi 253 . . . . . . . . 9 (𝑃 = 1 → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3)))
30 orc 867 . . . . . . . . . 10 (𝑃 = 2 → (𝑃 = 2 ∨ 𝑃 = 3))
3130a1d 25 . . . . . . . . 9 (𝑃 = 2 → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3)))
3225, 29, 313jaoi 1430 . . . . . . . 8 ((𝑃 = 0 ∨ 𝑃 = 1 ∨ 𝑃 = 2) → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3)))
3320, 32syl 17 . . . . . . 7 (𝑃 ∈ {0, 1, 2} → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3)))
34 elpri 4609 . . . . . . . 8 (𝑃 ∈ {3, 4} → (𝑃 = 3 ∨ 𝑃 = 4))
35 olc 868 . . . . . . . . . 10 (𝑃 = 3 → (𝑃 = 2 ∨ 𝑃 = 3))
3635a1d 25 . . . . . . . . 9 (𝑃 = 3 → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3)))
37 eleq1 2816 . . . . . . . . . 10 (𝑃 = 4 → (𝑃 ∈ ℙ ↔ 4 ∈ ℙ))
38 4nprm 16641 . . . . . . . . . . 11 ¬ 4 ∈ ℙ
3938pm2.21i 119 . . . . . . . . . 10 (4 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3))
4037, 39biimtrdi 253 . . . . . . . . 9 (𝑃 = 4 → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3)))
4136, 40jaoi 857 . . . . . . . 8 ((𝑃 = 3 ∨ 𝑃 = 4) → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3)))
4234, 41syl 17 . . . . . . 7 (𝑃 ∈ {3, 4} → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3)))
4333, 42jaoi 857 . . . . . 6 ((𝑃 ∈ {0, 1, 2} ∨ 𝑃 ∈ {3, 4}) → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3)))
4419, 43sylbi 217 . . . . 5 (𝑃 ∈ ({0, 1, 2} ∪ {3, 4}) → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3)))
4544com12 32 . . . 4 (𝑃 ∈ ℙ → (𝑃 ∈ ({0, 1, 2} ∪ {3, 4}) → (𝑃 = 2 ∨ 𝑃 = 3)))
4645adantr 480 . . 3 ((𝑃 ∈ ℙ ∧ 𝑃 < 5) → (𝑃 ∈ ({0, 1, 2} ∪ {3, 4}) → (𝑃 = 2 ∨ 𝑃 = 3)))
4718, 46biimtrid 242 . 2 ((𝑃 ∈ ℙ ∧ 𝑃 < 5) → (𝑃 ∈ (0...4) → (𝑃 = 2 ∨ 𝑃 = 3)))
4816, 47mpd 15 1 ((𝑃 ∈ ℙ ∧ 𝑃 < 5) → (𝑃 = 2 ∨ 𝑃 = 3))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3o 1085   = wceq 1540  wcel 2109  wne 2925  cun 3909  {cpr 4587  {ctp 4589   class class class wbr 5102  (class class class)co 7369  0cc0 11044  1c1 11045   + caddc 11047   < clt 11184  cle 11185  cn 12162  2c2 12217  3c3 12218  4c4 12219  5c5 12220  0cn0 12418  cz 12505  ...cfz 13444  cprime 16617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-fz 13445  df-seq 13943  df-exp 14003  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-dvds 16199  df-prm 16618
This theorem is referenced by:  prm23ge5  16762
  Copyright terms: Public domain W3C validator