MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prm23lt5 Structured version   Visualization version   GIF version

Theorem prm23lt5 16852
Description: A prime less than 5 is either 2 or 3. (Contributed by AV, 5-Jul-2021.)
Assertion
Ref Expression
prm23lt5 ((𝑃 ∈ ℙ ∧ 𝑃 < 5) → (𝑃 = 2 ∨ 𝑃 = 3))

Proof of Theorem prm23lt5
StepHypRef Expression
1 prmnn 16711 . . . . 5 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
21nnnn0d 12587 . . . 4 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ0)
32adantr 480 . . 3 ((𝑃 ∈ ℙ ∧ 𝑃 < 5) → 𝑃 ∈ ℕ0)
4 4nn0 12545 . . . 4 4 ∈ ℕ0
54a1i 11 . . 3 ((𝑃 ∈ ℙ ∧ 𝑃 < 5) → 4 ∈ ℕ0)
6 df-5 12332 . . . . . 6 5 = (4 + 1)
76breq2i 5151 . . . . 5 (𝑃 < 5 ↔ 𝑃 < (4 + 1))
8 prmz 16712 . . . . . . 7 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
9 4z 12651 . . . . . . 7 4 ∈ ℤ
10 zleltp1 12668 . . . . . . 7 ((𝑃 ∈ ℤ ∧ 4 ∈ ℤ) → (𝑃 ≤ 4 ↔ 𝑃 < (4 + 1)))
118, 9, 10sylancl 586 . . . . . 6 (𝑃 ∈ ℙ → (𝑃 ≤ 4 ↔ 𝑃 < (4 + 1)))
1211biimprd 248 . . . . 5 (𝑃 ∈ ℙ → (𝑃 < (4 + 1) → 𝑃 ≤ 4))
137, 12biimtrid 242 . . . 4 (𝑃 ∈ ℙ → (𝑃 < 5 → 𝑃 ≤ 4))
1413imp 406 . . 3 ((𝑃 ∈ ℙ ∧ 𝑃 < 5) → 𝑃 ≤ 4)
15 elfz2nn0 13658 . . 3 (𝑃 ∈ (0...4) ↔ (𝑃 ∈ ℕ0 ∧ 4 ∈ ℕ0𝑃 ≤ 4))
163, 5, 14, 15syl3anbrc 1344 . 2 ((𝑃 ∈ ℙ ∧ 𝑃 < 5) → 𝑃 ∈ (0...4))
17 fz0to4untppr 13670 . . . 4 (0...4) = ({0, 1, 2} ∪ {3, 4})
1817eleq2i 2833 . . 3 (𝑃 ∈ (0...4) ↔ 𝑃 ∈ ({0, 1, 2} ∪ {3, 4}))
19 elun 4153 . . . . . 6 (𝑃 ∈ ({0, 1, 2} ∪ {3, 4}) ↔ (𝑃 ∈ {0, 1, 2} ∨ 𝑃 ∈ {3, 4}))
20 eltpi 4688 . . . . . . . 8 (𝑃 ∈ {0, 1, 2} → (𝑃 = 0 ∨ 𝑃 = 1 ∨ 𝑃 = 2))
21 nnne0 12300 . . . . . . . . . . 11 (𝑃 ∈ ℕ → 𝑃 ≠ 0)
22 eqneqall 2951 . . . . . . . . . . . 12 (𝑃 = 0 → (𝑃 ≠ 0 → (𝑃 = 2 ∨ 𝑃 = 3)))
2322com12 32 . . . . . . . . . . 11 (𝑃 ≠ 0 → (𝑃 = 0 → (𝑃 = 2 ∨ 𝑃 = 3)))
241, 21, 233syl 18 . . . . . . . . . 10 (𝑃 ∈ ℙ → (𝑃 = 0 → (𝑃 = 2 ∨ 𝑃 = 3)))
2524com12 32 . . . . . . . . 9 (𝑃 = 0 → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3)))
26 eleq1 2829 . . . . . . . . . 10 (𝑃 = 1 → (𝑃 ∈ ℙ ↔ 1 ∈ ℙ))
27 1nprm 16716 . . . . . . . . . . 11 ¬ 1 ∈ ℙ
2827pm2.21i 119 . . . . . . . . . 10 (1 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3))
2926, 28biimtrdi 253 . . . . . . . . 9 (𝑃 = 1 → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3)))
30 orc 868 . . . . . . . . . 10 (𝑃 = 2 → (𝑃 = 2 ∨ 𝑃 = 3))
3130a1d 25 . . . . . . . . 9 (𝑃 = 2 → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3)))
3225, 29, 313jaoi 1430 . . . . . . . 8 ((𝑃 = 0 ∨ 𝑃 = 1 ∨ 𝑃 = 2) → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3)))
3320, 32syl 17 . . . . . . 7 (𝑃 ∈ {0, 1, 2} → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3)))
34 elpri 4649 . . . . . . . 8 (𝑃 ∈ {3, 4} → (𝑃 = 3 ∨ 𝑃 = 4))
35 olc 869 . . . . . . . . . 10 (𝑃 = 3 → (𝑃 = 2 ∨ 𝑃 = 3))
3635a1d 25 . . . . . . . . 9 (𝑃 = 3 → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3)))
37 eleq1 2829 . . . . . . . . . 10 (𝑃 = 4 → (𝑃 ∈ ℙ ↔ 4 ∈ ℙ))
38 4nprm 16732 . . . . . . . . . . 11 ¬ 4 ∈ ℙ
3938pm2.21i 119 . . . . . . . . . 10 (4 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3))
4037, 39biimtrdi 253 . . . . . . . . 9 (𝑃 = 4 → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3)))
4136, 40jaoi 858 . . . . . . . 8 ((𝑃 = 3 ∨ 𝑃 = 4) → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3)))
4234, 41syl 17 . . . . . . 7 (𝑃 ∈ {3, 4} → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3)))
4333, 42jaoi 858 . . . . . 6 ((𝑃 ∈ {0, 1, 2} ∨ 𝑃 ∈ {3, 4}) → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3)))
4419, 43sylbi 217 . . . . 5 (𝑃 ∈ ({0, 1, 2} ∪ {3, 4}) → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3)))
4544com12 32 . . . 4 (𝑃 ∈ ℙ → (𝑃 ∈ ({0, 1, 2} ∪ {3, 4}) → (𝑃 = 2 ∨ 𝑃 = 3)))
4645adantr 480 . . 3 ((𝑃 ∈ ℙ ∧ 𝑃 < 5) → (𝑃 ∈ ({0, 1, 2} ∪ {3, 4}) → (𝑃 = 2 ∨ 𝑃 = 3)))
4718, 46biimtrid 242 . 2 ((𝑃 ∈ ℙ ∧ 𝑃 < 5) → (𝑃 ∈ (0...4) → (𝑃 = 2 ∨ 𝑃 = 3)))
4816, 47mpd 15 1 ((𝑃 ∈ ℙ ∧ 𝑃 < 5) → (𝑃 = 2 ∨ 𝑃 = 3))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 848  w3o 1086   = wceq 1540  wcel 2108  wne 2940  cun 3949  {cpr 4628  {ctp 4630   class class class wbr 5143  (class class class)co 7431  0cc0 11155  1c1 11156   + caddc 11158   < clt 11295  cle 11296  cn 12266  2c2 12321  3c3 12322  4c4 12323  5c5 12324  0cn0 12526  cz 12613  ...cfz 13547  cprime 16708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-fz 13548  df-seq 14043  df-exp 14103  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-dvds 16291  df-prm 16709
This theorem is referenced by:  prm23ge5  16853
  Copyright terms: Public domain W3C validator