Proof of Theorem prm23lt5
Step | Hyp | Ref
| Expression |
1 | | prmnn 16379 |
. . . . 5
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℕ) |
2 | 1 | nnnn0d 12293 |
. . . 4
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℕ0) |
3 | 2 | adantr 481 |
. . 3
⊢ ((𝑃 ∈ ℙ ∧ 𝑃 < 5) → 𝑃 ∈
ℕ0) |
4 | | 4nn0 12252 |
. . . 4
⊢ 4 ∈
ℕ0 |
5 | 4 | a1i 11 |
. . 3
⊢ ((𝑃 ∈ ℙ ∧ 𝑃 < 5) → 4 ∈
ℕ0) |
6 | | df-5 12039 |
. . . . . 6
⊢ 5 = (4 +
1) |
7 | 6 | breq2i 5082 |
. . . . 5
⊢ (𝑃 < 5 ↔ 𝑃 < (4 + 1)) |
8 | | prmz 16380 |
. . . . . . 7
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℤ) |
9 | | 4z 12354 |
. . . . . . 7
⊢ 4 ∈
ℤ |
10 | | zleltp1 12371 |
. . . . . . 7
⊢ ((𝑃 ∈ ℤ ∧ 4 ∈
ℤ) → (𝑃 ≤ 4
↔ 𝑃 < (4 +
1))) |
11 | 8, 9, 10 | sylancl 586 |
. . . . . 6
⊢ (𝑃 ∈ ℙ → (𝑃 ≤ 4 ↔ 𝑃 < (4 + 1))) |
12 | 11 | biimprd 247 |
. . . . 5
⊢ (𝑃 ∈ ℙ → (𝑃 < (4 + 1) → 𝑃 ≤ 4)) |
13 | 7, 12 | syl5bi 241 |
. . . 4
⊢ (𝑃 ∈ ℙ → (𝑃 < 5 → 𝑃 ≤ 4)) |
14 | 13 | imp 407 |
. . 3
⊢ ((𝑃 ∈ ℙ ∧ 𝑃 < 5) → 𝑃 ≤ 4) |
15 | | elfz2nn0 13347 |
. . 3
⊢ (𝑃 ∈ (0...4) ↔ (𝑃 ∈ ℕ0
∧ 4 ∈ ℕ0 ∧ 𝑃 ≤ 4)) |
16 | 3, 5, 14, 15 | syl3anbrc 1342 |
. 2
⊢ ((𝑃 ∈ ℙ ∧ 𝑃 < 5) → 𝑃 ∈
(0...4)) |
17 | | fz0to4untppr 13359 |
. . . 4
⊢ (0...4) =
({0, 1, 2} ∪ {3, 4}) |
18 | 17 | eleq2i 2830 |
. . 3
⊢ (𝑃 ∈ (0...4) ↔ 𝑃 ∈ ({0, 1, 2} ∪ {3,
4})) |
19 | | elun 4083 |
. . . . . 6
⊢ (𝑃 ∈ ({0, 1, 2} ∪ {3, 4})
↔ (𝑃 ∈ {0, 1, 2}
∨ 𝑃 ∈ {3,
4})) |
20 | | eltpi 4623 |
. . . . . . . 8
⊢ (𝑃 ∈ {0, 1, 2} → (𝑃 = 0 ∨ 𝑃 = 1 ∨ 𝑃 = 2)) |
21 | | nnne0 12007 |
. . . . . . . . . . 11
⊢ (𝑃 ∈ ℕ → 𝑃 ≠ 0) |
22 | | eqneqall 2954 |
. . . . . . . . . . . 12
⊢ (𝑃 = 0 → (𝑃 ≠ 0 → (𝑃 = 2 ∨ 𝑃 = 3))) |
23 | 22 | com12 32 |
. . . . . . . . . . 11
⊢ (𝑃 ≠ 0 → (𝑃 = 0 → (𝑃 = 2 ∨ 𝑃 = 3))) |
24 | 1, 21, 23 | 3syl 18 |
. . . . . . . . . 10
⊢ (𝑃 ∈ ℙ → (𝑃 = 0 → (𝑃 = 2 ∨ 𝑃 = 3))) |
25 | 24 | com12 32 |
. . . . . . . . 9
⊢ (𝑃 = 0 → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3))) |
26 | | eleq1 2826 |
. . . . . . . . . 10
⊢ (𝑃 = 1 → (𝑃 ∈ ℙ ↔ 1 ∈
ℙ)) |
27 | | 1nprm 16384 |
. . . . . . . . . . 11
⊢ ¬ 1
∈ ℙ |
28 | 27 | pm2.21i 119 |
. . . . . . . . . 10
⊢ (1 ∈
ℙ → (𝑃 = 2 ∨
𝑃 = 3)) |
29 | 26, 28 | syl6bi 252 |
. . . . . . . . 9
⊢ (𝑃 = 1 → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3))) |
30 | | orc 864 |
. . . . . . . . . 10
⊢ (𝑃 = 2 → (𝑃 = 2 ∨ 𝑃 = 3)) |
31 | 30 | a1d 25 |
. . . . . . . . 9
⊢ (𝑃 = 2 → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3))) |
32 | 25, 29, 31 | 3jaoi 1426 |
. . . . . . . 8
⊢ ((𝑃 = 0 ∨ 𝑃 = 1 ∨ 𝑃 = 2) → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3))) |
33 | 20, 32 | syl 17 |
. . . . . . 7
⊢ (𝑃 ∈ {0, 1, 2} → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3))) |
34 | | elpri 4583 |
. . . . . . . 8
⊢ (𝑃 ∈ {3, 4} → (𝑃 = 3 ∨ 𝑃 = 4)) |
35 | | olc 865 |
. . . . . . . . . 10
⊢ (𝑃 = 3 → (𝑃 = 2 ∨ 𝑃 = 3)) |
36 | 35 | a1d 25 |
. . . . . . . . 9
⊢ (𝑃 = 3 → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3))) |
37 | | eleq1 2826 |
. . . . . . . . . 10
⊢ (𝑃 = 4 → (𝑃 ∈ ℙ ↔ 4 ∈
ℙ)) |
38 | | 4nprm 16400 |
. . . . . . . . . . 11
⊢ ¬ 4
∈ ℙ |
39 | 38 | pm2.21i 119 |
. . . . . . . . . 10
⊢ (4 ∈
ℙ → (𝑃 = 2 ∨
𝑃 = 3)) |
40 | 37, 39 | syl6bi 252 |
. . . . . . . . 9
⊢ (𝑃 = 4 → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3))) |
41 | 36, 40 | jaoi 854 |
. . . . . . . 8
⊢ ((𝑃 = 3 ∨ 𝑃 = 4) → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3))) |
42 | 34, 41 | syl 17 |
. . . . . . 7
⊢ (𝑃 ∈ {3, 4} → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3))) |
43 | 33, 42 | jaoi 854 |
. . . . . 6
⊢ ((𝑃 ∈ {0, 1, 2} ∨ 𝑃 ∈ {3, 4}) → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3))) |
44 | 19, 43 | sylbi 216 |
. . . . 5
⊢ (𝑃 ∈ ({0, 1, 2} ∪ {3, 4})
→ (𝑃 ∈ ℙ
→ (𝑃 = 2 ∨ 𝑃 = 3))) |
45 | 44 | com12 32 |
. . . 4
⊢ (𝑃 ∈ ℙ → (𝑃 ∈ ({0, 1, 2} ∪ {3, 4})
→ (𝑃 = 2 ∨ 𝑃 = 3))) |
46 | 45 | adantr 481 |
. . 3
⊢ ((𝑃 ∈ ℙ ∧ 𝑃 < 5) → (𝑃 ∈ ({0, 1, 2} ∪ {3, 4})
→ (𝑃 = 2 ∨ 𝑃 = 3))) |
47 | 18, 46 | syl5bi 241 |
. 2
⊢ ((𝑃 ∈ ℙ ∧ 𝑃 < 5) → (𝑃 ∈ (0...4) → (𝑃 = 2 ∨ 𝑃 = 3))) |
48 | 16, 47 | mpd 15 |
1
⊢ ((𝑃 ∈ ℙ ∧ 𝑃 < 5) → (𝑃 = 2 ∨ 𝑃 = 3)) |