MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  perfectlem2 Structured version   Visualization version   GIF version

Theorem perfectlem2 27117
Description: Lemma for perfect 27118. (Contributed by Mario Carneiro, 17-May-2016.) (Revised by Wolf Lammen, 17-Sep-2020.)
Hypotheses
Ref Expression
perfectlem.1 (𝜑𝐴 ∈ ℕ)
perfectlem.2 (𝜑𝐵 ∈ ℕ)
perfectlem.3 (𝜑 → ¬ 2 ∥ 𝐵)
perfectlem.4 (𝜑 → (1 σ ((2↑𝐴) · 𝐵)) = (2 · ((2↑𝐴) · 𝐵)))
Assertion
Ref Expression
perfectlem2 (𝜑 → (𝐵 ∈ ℙ ∧ 𝐵 = ((2↑(𝐴 + 1)) − 1)))

Proof of Theorem perfectlem2
Dummy variables 𝑘 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 perfectlem.2 . . . 4 (𝜑𝐵 ∈ ℕ)
2 1red 11151 . . . . 5 (𝜑 → 1 ∈ ℝ)
3 perfectlem.1 . . . . . . . 8 (𝜑𝐴 ∈ ℕ)
4 perfectlem.3 . . . . . . . 8 (𝜑 → ¬ 2 ∥ 𝐵)
5 perfectlem.4 . . . . . . . 8 (𝜑 → (1 σ ((2↑𝐴) · 𝐵)) = (2 · ((2↑𝐴) · 𝐵)))
63, 1, 4, 5perfectlem1 27116 . . . . . . 7 (𝜑 → ((2↑(𝐴 + 1)) ∈ ℕ ∧ ((2↑(𝐴 + 1)) − 1) ∈ ℕ ∧ (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∈ ℕ))
76simp3d 1144 . . . . . 6 (𝜑 → (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∈ ℕ)
87nnred 12177 . . . . 5 (𝜑 → (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∈ ℝ)
91nnred 12177 . . . . 5 (𝜑𝐵 ∈ ℝ)
107nnge1d 12210 . . . . 5 (𝜑 → 1 ≤ (𝐵 / ((2↑(𝐴 + 1)) − 1)))
11 2cn 12237 . . . . . . . . . . 11 2 ∈ ℂ
12 exp1 14008 . . . . . . . . . . 11 (2 ∈ ℂ → (2↑1) = 2)
1311, 12ax-mp 5 . . . . . . . . . 10 (2↑1) = 2
14 df-2 12225 . . . . . . . . . 10 2 = (1 + 1)
1513, 14eqtri 2752 . . . . . . . . 9 (2↑1) = (1 + 1)
16 2re 12236 . . . . . . . . . . 11 2 ∈ ℝ
1716a1i 11 . . . . . . . . . 10 (𝜑 → 2 ∈ ℝ)
18 1zzd 12540 . . . . . . . . . 10 (𝜑 → 1 ∈ ℤ)
193peano2nnd 12179 . . . . . . . . . . 11 (𝜑 → (𝐴 + 1) ∈ ℕ)
2019nnzd 12532 . . . . . . . . . 10 (𝜑 → (𝐴 + 1) ∈ ℤ)
21 1lt2 12328 . . . . . . . . . . 11 1 < 2
2221a1i 11 . . . . . . . . . 10 (𝜑 → 1 < 2)
23 1re 11150 . . . . . . . . . . . 12 1 ∈ ℝ
243nnrpd 12969 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℝ+)
25 ltaddrp 12966 . . . . . . . . . . . 12 ((1 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → 1 < (1 + 𝐴))
2623, 24, 25sylancr 587 . . . . . . . . . . 11 (𝜑 → 1 < (1 + 𝐴))
27 ax-1cn 11102 . . . . . . . . . . . 12 1 ∈ ℂ
283nncnd 12178 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℂ)
29 addcom 11336 . . . . . . . . . . . 12 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 + 𝐴) = (𝐴 + 1))
3027, 28, 29sylancr 587 . . . . . . . . . . 11 (𝜑 → (1 + 𝐴) = (𝐴 + 1))
3126, 30breqtrd 5128 . . . . . . . . . 10 (𝜑 → 1 < (𝐴 + 1))
32 ltexp2a 14107 . . . . . . . . . 10 (((2 ∈ ℝ ∧ 1 ∈ ℤ ∧ (𝐴 + 1) ∈ ℤ) ∧ (1 < 2 ∧ 1 < (𝐴 + 1))) → (2↑1) < (2↑(𝐴 + 1)))
3317, 18, 20, 22, 31, 32syl32anc 1380 . . . . . . . . 9 (𝜑 → (2↑1) < (2↑(𝐴 + 1)))
3415, 33eqbrtrrid 5138 . . . . . . . 8 (𝜑 → (1 + 1) < (2↑(𝐴 + 1)))
356simp1d 1142 . . . . . . . . . 10 (𝜑 → (2↑(𝐴 + 1)) ∈ ℕ)
3635nnred 12177 . . . . . . . . 9 (𝜑 → (2↑(𝐴 + 1)) ∈ ℝ)
372, 2, 36ltaddsubd 11754 . . . . . . . 8 (𝜑 → ((1 + 1) < (2↑(𝐴 + 1)) ↔ 1 < ((2↑(𝐴 + 1)) − 1)))
3834, 37mpbid 232 . . . . . . 7 (𝜑 → 1 < ((2↑(𝐴 + 1)) − 1))
39 0lt1 11676 . . . . . . . . 9 0 < 1
4039a1i 11 . . . . . . . 8 (𝜑 → 0 < 1)
41 peano2rem 11465 . . . . . . . . 9 ((2↑(𝐴 + 1)) ∈ ℝ → ((2↑(𝐴 + 1)) − 1) ∈ ℝ)
4236, 41syl 17 . . . . . . . 8 (𝜑 → ((2↑(𝐴 + 1)) − 1) ∈ ℝ)
43 expgt1 14041 . . . . . . . . . 10 ((2 ∈ ℝ ∧ (𝐴 + 1) ∈ ℕ ∧ 1 < 2) → 1 < (2↑(𝐴 + 1)))
4416, 19, 22, 43mp3an2i 1468 . . . . . . . . 9 (𝜑 → 1 < (2↑(𝐴 + 1)))
45 posdif 11647 . . . . . . . . . 10 ((1 ∈ ℝ ∧ (2↑(𝐴 + 1)) ∈ ℝ) → (1 < (2↑(𝐴 + 1)) ↔ 0 < ((2↑(𝐴 + 1)) − 1)))
4623, 36, 45sylancr 587 . . . . . . . . 9 (𝜑 → (1 < (2↑(𝐴 + 1)) ↔ 0 < ((2↑(𝐴 + 1)) − 1)))
4744, 46mpbid 232 . . . . . . . 8 (𝜑 → 0 < ((2↑(𝐴 + 1)) − 1))
481nngt0d 12211 . . . . . . . 8 (𝜑 → 0 < 𝐵)
49 ltdiv2 12045 . . . . . . . 8 (((1 ∈ ℝ ∧ 0 < 1) ∧ (((2↑(𝐴 + 1)) − 1) ∈ ℝ ∧ 0 < ((2↑(𝐴 + 1)) − 1)) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (1 < ((2↑(𝐴 + 1)) − 1) ↔ (𝐵 / ((2↑(𝐴 + 1)) − 1)) < (𝐵 / 1)))
502, 40, 42, 47, 9, 48, 49syl222anc 1388 . . . . . . 7 (𝜑 → (1 < ((2↑(𝐴 + 1)) − 1) ↔ (𝐵 / ((2↑(𝐴 + 1)) − 1)) < (𝐵 / 1)))
5138, 50mpbid 232 . . . . . 6 (𝜑 → (𝐵 / ((2↑(𝐴 + 1)) − 1)) < (𝐵 / 1))
521nncnd 12178 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
5352div1d 11926 . . . . . 6 (𝜑 → (𝐵 / 1) = 𝐵)
5451, 53breqtrd 5128 . . . . 5 (𝜑 → (𝐵 / ((2↑(𝐴 + 1)) − 1)) < 𝐵)
552, 8, 9, 10, 54lelttrd 11308 . . . 4 (𝜑 → 1 < 𝐵)
56 eluz2b2 12856 . . . 4 (𝐵 ∈ (ℤ‘2) ↔ (𝐵 ∈ ℕ ∧ 1 < 𝐵))
571, 55, 56sylanbrc 583 . . 3 (𝜑𝐵 ∈ (ℤ‘2))
58 fzfid 13914 . . . . . . . . . . . 12 (𝜑 → (1...𝐵) ∈ Fin)
59 dvdsssfz1 16264 . . . . . . . . . . . . 13 (𝐵 ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥𝐵} ⊆ (1...𝐵))
601, 59syl 17 . . . . . . . . . . . 12 (𝜑 → {𝑥 ∈ ℕ ∣ 𝑥𝐵} ⊆ (1...𝐵))
6158, 60ssfid 9188 . . . . . . . . . . 11 (𝜑 → {𝑥 ∈ ℕ ∣ 𝑥𝐵} ∈ Fin)
6261ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → {𝑥 ∈ ℕ ∣ 𝑥𝐵} ∈ Fin)
63 ssrab2 4039 . . . . . . . . . . . . 13 {𝑥 ∈ ℕ ∣ 𝑥𝐵} ⊆ ℕ
6463a1i 11 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → {𝑥 ∈ ℕ ∣ 𝑥𝐵} ⊆ ℕ)
6564sselda 3943 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐵}) → 𝑘 ∈ ℕ)
6665nnred 12177 . . . . . . . . . 10 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐵}) → 𝑘 ∈ ℝ)
6765nnnn0d 12479 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐵}) → 𝑘 ∈ ℕ0)
6867nn0ge0d 12482 . . . . . . . . . 10 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐵}) → 0 ≤ 𝑘)
69 df-tp 4590 . . . . . . . . . . . 12 {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 𝑛} = ({(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵} ∪ {𝑛})
707, 1prssd 4782 . . . . . . . . . . . . . 14 (𝜑 → {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵} ⊆ ℕ)
7170ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵} ⊆ ℕ)
72 simplrl 776 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → 𝑛 ∈ ℕ)
7372snssd 4769 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → {𝑛} ⊆ ℕ)
7471, 73unssd 4151 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → ({(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵} ∪ {𝑛}) ⊆ ℕ)
7569, 74eqsstrid 3982 . . . . . . . . . . 11 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 𝑛} ⊆ ℕ)
766simp2d 1143 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((2↑(𝐴 + 1)) − 1) ∈ ℕ)
7776nnzd 12532 . . . . . . . . . . . . . . . . 17 (𝜑 → ((2↑(𝐴 + 1)) − 1) ∈ ℤ)
787nnzd 12532 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∈ ℤ)
79 dvdsmul2 16224 . . . . . . . . . . . . . . . . 17 ((((2↑(𝐴 + 1)) − 1) ∈ ℤ ∧ (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∈ ℤ) → (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∥ (((2↑(𝐴 + 1)) − 1) · (𝐵 / ((2↑(𝐴 + 1)) − 1))))
8077, 78, 79syl2anc 584 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∥ (((2↑(𝐴 + 1)) − 1) · (𝐵 / ((2↑(𝐴 + 1)) − 1))))
8176nncnd 12178 . . . . . . . . . . . . . . . . 17 (𝜑 → ((2↑(𝐴 + 1)) − 1) ∈ ℂ)
8276nnne0d 12212 . . . . . . . . . . . . . . . . 17 (𝜑 → ((2↑(𝐴 + 1)) − 1) ≠ 0)
8352, 81, 82divcan2d 11936 . . . . . . . . . . . . . . . 16 (𝜑 → (((2↑(𝐴 + 1)) − 1) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) = 𝐵)
8480, 83breqtrd 5128 . . . . . . . . . . . . . . 15 (𝜑 → (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∥ 𝐵)
85 breq1 5105 . . . . . . . . . . . . . . 15 (𝑥 = (𝐵 / ((2↑(𝐴 + 1)) − 1)) → (𝑥𝐵 ↔ (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∥ 𝐵))
8684, 85syl5ibrcom 247 . . . . . . . . . . . . . 14 (𝜑 → (𝑥 = (𝐵 / ((2↑(𝐴 + 1)) − 1)) → 𝑥𝐵))
8786ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → (𝑥 = (𝐵 / ((2↑(𝐴 + 1)) − 1)) → 𝑥𝐵))
881nnzd 12532 . . . . . . . . . . . . . . . 16 (𝜑𝐵 ∈ ℤ)
89 iddvds 16215 . . . . . . . . . . . . . . . 16 (𝐵 ∈ ℤ → 𝐵𝐵)
9088, 89syl 17 . . . . . . . . . . . . . . 15 (𝜑𝐵𝐵)
91 breq1 5105 . . . . . . . . . . . . . . 15 (𝑥 = 𝐵 → (𝑥𝐵𝐵𝐵))
9290, 91syl5ibrcom 247 . . . . . . . . . . . . . 14 (𝜑 → (𝑥 = 𝐵𝑥𝐵))
9392ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → (𝑥 = 𝐵𝑥𝐵))
94 simplrr 777 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → 𝑛𝐵)
95 breq1 5105 . . . . . . . . . . . . . 14 (𝑥 = 𝑛 → (𝑥𝐵𝑛𝐵))
9694, 95syl5ibrcom 247 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → (𝑥 = 𝑛𝑥𝐵))
9787, 93, 963jaod 1431 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → ((𝑥 = (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∨ 𝑥 = 𝐵𝑥 = 𝑛) → 𝑥𝐵))
98 eltpi 4648 . . . . . . . . . . . 12 (𝑥 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 𝑛} → (𝑥 = (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∨ 𝑥 = 𝐵𝑥 = 𝑛))
9997, 98impel 505 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) ∧ 𝑥 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 𝑛}) → 𝑥𝐵)
10075, 99ssrabdv 4033 . . . . . . . . . 10 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 𝑛} ⊆ {𝑥 ∈ ℕ ∣ 𝑥𝐵})
10162, 66, 68, 100fsumless 15738 . . . . . . . . 9 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → Σ𝑘 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 𝑛}𝑘 ≤ Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐵}𝑘)
102 simpr 484 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵})
103 disjsn 4671 . . . . . . . . . . . 12 (({(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵} ∩ {𝑛}) = ∅ ↔ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵})
104102, 103sylibr 234 . . . . . . . . . . 11 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → ({(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵} ∩ {𝑛}) = ∅)
10569a1i 11 . . . . . . . . . . 11 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 𝑛} = ({(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵} ∪ {𝑛}))
106 tpfi 9252 . . . . . . . . . . . 12 {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 𝑛} ∈ Fin
107106a1i 11 . . . . . . . . . . 11 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 𝑛} ∈ Fin)
10875sselda 3943 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) ∧ 𝑘 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 𝑛}) → 𝑘 ∈ ℕ)
109108nncnd 12178 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) ∧ 𝑘 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 𝑛}) → 𝑘 ∈ ℂ)
110104, 105, 107, 109fsumsplit 15683 . . . . . . . . . 10 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → Σ𝑘 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 𝑛}𝑘 = (Σ𝑘 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}𝑘 + Σ𝑘 ∈ {𝑛}𝑘))
1117nncnd 12178 . . . . . . . . . . . . . . 15 (𝜑 → (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∈ ℂ)
112 id 22 . . . . . . . . . . . . . . . 16 (𝑘 = (𝐵 / ((2↑(𝐴 + 1)) − 1)) → 𝑘 = (𝐵 / ((2↑(𝐴 + 1)) − 1)))
113112sumsn 15688 . . . . . . . . . . . . . . 15 (((𝐵 / ((2↑(𝐴 + 1)) − 1)) ∈ ℕ ∧ (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∈ ℂ) → Σ𝑘 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1))}𝑘 = (𝐵 / ((2↑(𝐴 + 1)) − 1)))
1147, 111, 113syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → Σ𝑘 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1))}𝑘 = (𝐵 / ((2↑(𝐴 + 1)) − 1)))
115 id 22 . . . . . . . . . . . . . . . 16 (𝑘 = 𝐵𝑘 = 𝐵)
116115sumsn 15688 . . . . . . . . . . . . . . 15 ((𝐵 ∈ ℕ ∧ 𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝐵}𝑘 = 𝐵)
1171, 52, 116syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → Σ𝑘 ∈ {𝐵}𝑘 = 𝐵)
118114, 117oveq12d 7387 . . . . . . . . . . . . 13 (𝜑 → (Σ𝑘 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1))}𝑘 + Σ𝑘 ∈ {𝐵}𝑘) = ((𝐵 / ((2↑(𝐴 + 1)) − 1)) + 𝐵))
119 incom 4168 . . . . . . . . . . . . . . 15 ({𝐵} ∩ {(𝐵 / ((2↑(𝐴 + 1)) − 1))}) = ({(𝐵 / ((2↑(𝐴 + 1)) − 1))} ∩ {𝐵})
1208, 54gtned 11285 . . . . . . . . . . . . . . . 16 (𝜑𝐵 ≠ (𝐵 / ((2↑(𝐴 + 1)) − 1)))
121 disjsn2 4672 . . . . . . . . . . . . . . . 16 (𝐵 ≠ (𝐵 / ((2↑(𝐴 + 1)) − 1)) → ({𝐵} ∩ {(𝐵 / ((2↑(𝐴 + 1)) − 1))}) = ∅)
122120, 121syl 17 . . . . . . . . . . . . . . 15 (𝜑 → ({𝐵} ∩ {(𝐵 / ((2↑(𝐴 + 1)) − 1))}) = ∅)
123119, 122eqtr3id 2778 . . . . . . . . . . . . . 14 (𝜑 → ({(𝐵 / ((2↑(𝐴 + 1)) − 1))} ∩ {𝐵}) = ∅)
124 df-pr 4588 . . . . . . . . . . . . . . 15 {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵} = ({(𝐵 / ((2↑(𝐴 + 1)) − 1))} ∪ {𝐵})
125124a1i 11 . . . . . . . . . . . . . 14 (𝜑 → {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵} = ({(𝐵 / ((2↑(𝐴 + 1)) − 1))} ∪ {𝐵}))
126 prfi 9250 . . . . . . . . . . . . . . 15 {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵} ∈ Fin
127126a1i 11 . . . . . . . . . . . . . 14 (𝜑 → {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵} ∈ Fin)
12870sselda 3943 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → 𝑘 ∈ ℕ)
129128nncnd 12178 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → 𝑘 ∈ ℂ)
130123, 125, 127, 129fsumsplit 15683 . . . . . . . . . . . . 13 (𝜑 → Σ𝑘 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}𝑘 = (Σ𝑘 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1))}𝑘 + Σ𝑘 ∈ {𝐵}𝑘))
13181, 52mulcld 11170 . . . . . . . . . . . . . . 15 (𝜑 → (((2↑(𝐴 + 1)) − 1) · 𝐵) ∈ ℂ)
13252, 131, 81, 82divdird 11972 . . . . . . . . . . . . . 14 (𝜑 → ((𝐵 + (((2↑(𝐴 + 1)) − 1) · 𝐵)) / ((2↑(𝐴 + 1)) − 1)) = ((𝐵 / ((2↑(𝐴 + 1)) − 1)) + ((((2↑(𝐴 + 1)) − 1) · 𝐵) / ((2↑(𝐴 + 1)) − 1))))
13335nncnd 12178 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (2↑(𝐴 + 1)) ∈ ℂ)
134 1cnd 11145 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → 1 ∈ ℂ)
135133, 134, 52subdird 11611 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (((2↑(𝐴 + 1)) − 1) · 𝐵) = (((2↑(𝐴 + 1)) · 𝐵) − (1 · 𝐵)))
13652mullidd 11168 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (1 · 𝐵) = 𝐵)
137136oveq2d 7385 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (((2↑(𝐴 + 1)) · 𝐵) − (1 · 𝐵)) = (((2↑(𝐴 + 1)) · 𝐵) − 𝐵))
138135, 137eqtrd 2764 . . . . . . . . . . . . . . . . . 18 (𝜑 → (((2↑(𝐴 + 1)) − 1) · 𝐵) = (((2↑(𝐴 + 1)) · 𝐵) − 𝐵))
139138oveq2d 7385 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐵 + (((2↑(𝐴 + 1)) − 1) · 𝐵)) = (𝐵 + (((2↑(𝐴 + 1)) · 𝐵) − 𝐵)))
140133, 52mulcld 11170 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((2↑(𝐴 + 1)) · 𝐵) ∈ ℂ)
14152, 140pncan3d 11512 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐵 + (((2↑(𝐴 + 1)) · 𝐵) − 𝐵)) = ((2↑(𝐴 + 1)) · 𝐵))
142139, 141eqtrd 2764 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐵 + (((2↑(𝐴 + 1)) − 1) · 𝐵)) = ((2↑(𝐴 + 1)) · 𝐵))
143142oveq1d 7384 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐵 + (((2↑(𝐴 + 1)) − 1) · 𝐵)) / ((2↑(𝐴 + 1)) − 1)) = (((2↑(𝐴 + 1)) · 𝐵) / ((2↑(𝐴 + 1)) − 1)))
144133, 52, 81, 82divassd 11969 . . . . . . . . . . . . . . 15 (𝜑 → (((2↑(𝐴 + 1)) · 𝐵) / ((2↑(𝐴 + 1)) − 1)) = ((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))))
145143, 144eqtrd 2764 . . . . . . . . . . . . . 14 (𝜑 → ((𝐵 + (((2↑(𝐴 + 1)) − 1) · 𝐵)) / ((2↑(𝐴 + 1)) − 1)) = ((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))))
14652, 81, 82divcan3d 11939 . . . . . . . . . . . . . . 15 (𝜑 → ((((2↑(𝐴 + 1)) − 1) · 𝐵) / ((2↑(𝐴 + 1)) − 1)) = 𝐵)
147146oveq2d 7385 . . . . . . . . . . . . . 14 (𝜑 → ((𝐵 / ((2↑(𝐴 + 1)) − 1)) + ((((2↑(𝐴 + 1)) − 1) · 𝐵) / ((2↑(𝐴 + 1)) − 1))) = ((𝐵 / ((2↑(𝐴 + 1)) − 1)) + 𝐵))
148132, 145, 1473eqtr3d 2772 . . . . . . . . . . . . 13 (𝜑 → ((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) = ((𝐵 / ((2↑(𝐴 + 1)) − 1)) + 𝐵))
149118, 130, 1483eqtr4d 2774 . . . . . . . . . . . 12 (𝜑 → Σ𝑘 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}𝑘 = ((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))))
150149ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → Σ𝑘 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}𝑘 = ((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))))
15172nncnd 12178 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → 𝑛 ∈ ℂ)
152 id 22 . . . . . . . . . . . . 13 (𝑘 = 𝑛𝑘 = 𝑛)
153152sumsn 15688 . . . . . . . . . . . 12 ((𝑛 ∈ ℂ ∧ 𝑛 ∈ ℂ) → Σ𝑘 ∈ {𝑛}𝑘 = 𝑛)
154151, 151, 153syl2anc 584 . . . . . . . . . . 11 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → Σ𝑘 ∈ {𝑛}𝑘 = 𝑛)
155150, 154oveq12d 7387 . . . . . . . . . 10 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → (Σ𝑘 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}𝑘 + Σ𝑘 ∈ {𝑛}𝑘) = (((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) + 𝑛))
156110, 155eqtrd 2764 . . . . . . . . 9 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → Σ𝑘 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 𝑛}𝑘 = (((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) + 𝑛))
1573nnnn0d 12479 . . . . . . . . . . . . . . . . 17 (𝜑𝐴 ∈ ℕ0)
158 expp1 14009 . . . . . . . . . . . . . . . . 17 ((2 ∈ ℂ ∧ 𝐴 ∈ ℕ0) → (2↑(𝐴 + 1)) = ((2↑𝐴) · 2))
15911, 157, 158sylancr 587 . . . . . . . . . . . . . . . 16 (𝜑 → (2↑(𝐴 + 1)) = ((2↑𝐴) · 2))
160 2nn 12235 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℕ
161 nnexpcl 14015 . . . . . . . . . . . . . . . . . . 19 ((2 ∈ ℕ ∧ 𝐴 ∈ ℕ0) → (2↑𝐴) ∈ ℕ)
162160, 157, 161sylancr 587 . . . . . . . . . . . . . . . . . 18 (𝜑 → (2↑𝐴) ∈ ℕ)
163162nncnd 12178 . . . . . . . . . . . . . . . . 17 (𝜑 → (2↑𝐴) ∈ ℂ)
164 mulcom 11130 . . . . . . . . . . . . . . . . 17 (((2↑𝐴) ∈ ℂ ∧ 2 ∈ ℂ) → ((2↑𝐴) · 2) = (2 · (2↑𝐴)))
165163, 11, 164sylancl 586 . . . . . . . . . . . . . . . 16 (𝜑 → ((2↑𝐴) · 2) = (2 · (2↑𝐴)))
166159, 165eqtrd 2764 . . . . . . . . . . . . . . 15 (𝜑 → (2↑(𝐴 + 1)) = (2 · (2↑𝐴)))
167166oveq1d 7384 . . . . . . . . . . . . . 14 (𝜑 → ((2↑(𝐴 + 1)) · 𝐵) = ((2 · (2↑𝐴)) · 𝐵))
168 2cnd 12240 . . . . . . . . . . . . . . 15 (𝜑 → 2 ∈ ℂ)
169168, 163, 52mulassd 11173 . . . . . . . . . . . . . 14 (𝜑 → ((2 · (2↑𝐴)) · 𝐵) = (2 · ((2↑𝐴) · 𝐵)))
170 2prm 16638 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℙ
171 coprm 16657 . . . . . . . . . . . . . . . . . . 19 ((2 ∈ ℙ ∧ 𝐵 ∈ ℤ) → (¬ 2 ∥ 𝐵 ↔ (2 gcd 𝐵) = 1))
172170, 88, 171sylancr 587 . . . . . . . . . . . . . . . . . 18 (𝜑 → (¬ 2 ∥ 𝐵 ↔ (2 gcd 𝐵) = 1))
1734, 172mpbid 232 . . . . . . . . . . . . . . . . 17 (𝜑 → (2 gcd 𝐵) = 1)
174 2z 12541 . . . . . . . . . . . . . . . . . 18 2 ∈ ℤ
175 rpexp1i 16669 . . . . . . . . . . . . . . . . . 18 ((2 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∈ ℕ0) → ((2 gcd 𝐵) = 1 → ((2↑𝐴) gcd 𝐵) = 1))
176174, 88, 157, 175mp3an2i 1468 . . . . . . . . . . . . . . . . 17 (𝜑 → ((2 gcd 𝐵) = 1 → ((2↑𝐴) gcd 𝐵) = 1))
177173, 176mpd 15 . . . . . . . . . . . . . . . 16 (𝜑 → ((2↑𝐴) gcd 𝐵) = 1)
178 sgmmul 27088 . . . . . . . . . . . . . . . 16 ((1 ∈ ℂ ∧ ((2↑𝐴) ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ((2↑𝐴) gcd 𝐵) = 1)) → (1 σ ((2↑𝐴) · 𝐵)) = ((1 σ (2↑𝐴)) · (1 σ 𝐵)))
179134, 162, 1, 177, 178syl13anc 1374 . . . . . . . . . . . . . . 15 (𝜑 → (1 σ ((2↑𝐴) · 𝐵)) = ((1 σ (2↑𝐴)) · (1 σ 𝐵)))
180 pncan 11403 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 + 1) − 1) = 𝐴)
18128, 27, 180sylancl 586 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝐴 + 1) − 1) = 𝐴)
182181oveq2d 7385 . . . . . . . . . . . . . . . . . 18 (𝜑 → (2↑((𝐴 + 1) − 1)) = (2↑𝐴))
183182oveq2d 7385 . . . . . . . . . . . . . . . . 17 (𝜑 → (1 σ (2↑((𝐴 + 1) − 1))) = (1 σ (2↑𝐴)))
184 1sgm2ppw 27087 . . . . . . . . . . . . . . . . . 18 ((𝐴 + 1) ∈ ℕ → (1 σ (2↑((𝐴 + 1) − 1))) = ((2↑(𝐴 + 1)) − 1))
18519, 184syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (1 σ (2↑((𝐴 + 1) − 1))) = ((2↑(𝐴 + 1)) − 1))
186183, 185eqtr3d 2766 . . . . . . . . . . . . . . . 16 (𝜑 → (1 σ (2↑𝐴)) = ((2↑(𝐴 + 1)) − 1))
187186oveq1d 7384 . . . . . . . . . . . . . . 15 (𝜑 → ((1 σ (2↑𝐴)) · (1 σ 𝐵)) = (((2↑(𝐴 + 1)) − 1) · (1 σ 𝐵)))
188179, 5, 1873eqtr3d 2772 . . . . . . . . . . . . . 14 (𝜑 → (2 · ((2↑𝐴) · 𝐵)) = (((2↑(𝐴 + 1)) − 1) · (1 σ 𝐵)))
189167, 169, 1883eqtrd 2768 . . . . . . . . . . . . 13 (𝜑 → ((2↑(𝐴 + 1)) · 𝐵) = (((2↑(𝐴 + 1)) − 1) · (1 σ 𝐵)))
190189oveq1d 7384 . . . . . . . . . . . 12 (𝜑 → (((2↑(𝐴 + 1)) · 𝐵) / ((2↑(𝐴 + 1)) − 1)) = ((((2↑(𝐴 + 1)) − 1) · (1 σ 𝐵)) / ((2↑(𝐴 + 1)) − 1)))
191 1nn0 12434 . . . . . . . . . . . . . . 15 1 ∈ ℕ0
192 sgmnncl 27033 . . . . . . . . . . . . . . 15 ((1 ∈ ℕ0𝐵 ∈ ℕ) → (1 σ 𝐵) ∈ ℕ)
193191, 1, 192sylancr 587 . . . . . . . . . . . . . 14 (𝜑 → (1 σ 𝐵) ∈ ℕ)
194193nncnd 12178 . . . . . . . . . . . . 13 (𝜑 → (1 σ 𝐵) ∈ ℂ)
195194, 81, 82divcan3d 11939 . . . . . . . . . . . 12 (𝜑 → ((((2↑(𝐴 + 1)) − 1) · (1 σ 𝐵)) / ((2↑(𝐴 + 1)) − 1)) = (1 σ 𝐵))
196190, 144, 1953eqtr3d 2772 . . . . . . . . . . 11 (𝜑 → ((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) = (1 σ 𝐵))
197 sgmval 27028 . . . . . . . . . . . 12 ((1 ∈ ℂ ∧ 𝐵 ∈ ℕ) → (1 σ 𝐵) = Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐵} (𝑘𝑐1))
19827, 1, 197sylancr 587 . . . . . . . . . . 11 (𝜑 → (1 σ 𝐵) = Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐵} (𝑘𝑐1))
199 simpr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐵}) → 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐵})
20063, 199sselid 3941 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐵}) → 𝑘 ∈ ℕ)
201200nncnd 12178 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐵}) → 𝑘 ∈ ℂ)
202201cxp1d 26591 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐵}) → (𝑘𝑐1) = 𝑘)
203202sumeq2dv 15644 . . . . . . . . . . 11 (𝜑 → Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐵} (𝑘𝑐1) = Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐵}𝑘)
204196, 198, 2033eqtrrd 2769 . . . . . . . . . 10 (𝜑 → Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐵}𝑘 = ((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))))
205204ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐵}𝑘 = ((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))))
206101, 156, 2053brtr3d 5133 . . . . . . . 8 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → (((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) + 𝑛) ≤ ((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))))
20736, 8remulcld 11180 . . . . . . . . . . 11 (𝜑 → ((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) ∈ ℝ)
208207ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → ((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) ∈ ℝ)
20972nnrpd 12969 . . . . . . . . . 10 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → 𝑛 ∈ ℝ+)
210208, 209ltaddrpd 13004 . . . . . . . . 9 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → ((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) < (((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) + 𝑛))
21172nnred 12177 . . . . . . . . . . 11 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → 𝑛 ∈ ℝ)
212208, 211readdcld 11179 . . . . . . . . . 10 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → (((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) + 𝑛) ∈ ℝ)
213208, 212ltnled 11297 . . . . . . . . 9 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → (((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) < (((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) + 𝑛) ↔ ¬ (((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) + 𝑛) ≤ ((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1)))))
214210, 213mpbid 232 . . . . . . . 8 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → ¬ (((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) + 𝑛) ≤ ((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))))
215206, 214condan 817 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) → 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵})
216 elpri 4609 . . . . . . 7 (𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵} → (𝑛 = (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∨ 𝑛 = 𝐵))
217215, 216syl 17 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) → (𝑛 = (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∨ 𝑛 = 𝐵))
218217expr 456 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝑛𝐵 → (𝑛 = (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∨ 𝑛 = 𝐵)))
219218ralrimiva 3125 . . . 4 (𝜑 → ∀𝑛 ∈ ℕ (𝑛𝐵 → (𝑛 = (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∨ 𝑛 = 𝐵)))
2202, 55gtned 11285 . . . . . . . . . 10 (𝜑𝐵 ≠ 1)
221220necomd 2980 . . . . . . . . 9 (𝜑 → 1 ≠ 𝐵)
222 1dvds 16216 . . . . . . . . . . . . 13 (𝐵 ∈ ℤ → 1 ∥ 𝐵)
22388, 222syl 17 . . . . . . . . . . . 12 (𝜑 → 1 ∥ 𝐵)
224 breq1 5105 . . . . . . . . . . . . . 14 (𝑛 = 1 → (𝑛𝐵 ↔ 1 ∥ 𝐵))
225 eqeq1 2733 . . . . . . . . . . . . . . 15 (𝑛 = 1 → (𝑛 = (𝐵 / ((2↑(𝐴 + 1)) − 1)) ↔ 1 = (𝐵 / ((2↑(𝐴 + 1)) − 1))))
226 eqeq1 2733 . . . . . . . . . . . . . . 15 (𝑛 = 1 → (𝑛 = 𝐵 ↔ 1 = 𝐵))
227225, 226orbi12d 918 . . . . . . . . . . . . . 14 (𝑛 = 1 → ((𝑛 = (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∨ 𝑛 = 𝐵) ↔ (1 = (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∨ 1 = 𝐵)))
228224, 227imbi12d 344 . . . . . . . . . . . . 13 (𝑛 = 1 → ((𝑛𝐵 → (𝑛 = (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∨ 𝑛 = 𝐵)) ↔ (1 ∥ 𝐵 → (1 = (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∨ 1 = 𝐵))))
229 1nn 12173 . . . . . . . . . . . . . 14 1 ∈ ℕ
230229a1i 11 . . . . . . . . . . . . 13 (𝜑 → 1 ∈ ℕ)
231228, 219, 230rspcdva 3586 . . . . . . . . . . . 12 (𝜑 → (1 ∥ 𝐵 → (1 = (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∨ 1 = 𝐵)))
232223, 231mpd 15 . . . . . . . . . . 11 (𝜑 → (1 = (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∨ 1 = 𝐵))
233232ord 864 . . . . . . . . . 10 (𝜑 → (¬ 1 = (𝐵 / ((2↑(𝐴 + 1)) − 1)) → 1 = 𝐵))
234233necon1ad 2942 . . . . . . . . 9 (𝜑 → (1 ≠ 𝐵 → 1 = (𝐵 / ((2↑(𝐴 + 1)) − 1))))
235221, 234mpd 15 . . . . . . . 8 (𝜑 → 1 = (𝐵 / ((2↑(𝐴 + 1)) − 1)))
236235eqeq2d 2740 . . . . . . 7 (𝜑 → (𝑛 = 1 ↔ 𝑛 = (𝐵 / ((2↑(𝐴 + 1)) − 1))))
237236orbi1d 916 . . . . . 6 (𝜑 → ((𝑛 = 1 ∨ 𝑛 = 𝐵) ↔ (𝑛 = (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∨ 𝑛 = 𝐵)))
238237imbi2d 340 . . . . 5 (𝜑 → ((𝑛𝐵 → (𝑛 = 1 ∨ 𝑛 = 𝐵)) ↔ (𝑛𝐵 → (𝑛 = (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∨ 𝑛 = 𝐵))))
239238ralbidv 3156 . . . 4 (𝜑 → (∀𝑛 ∈ ℕ (𝑛𝐵 → (𝑛 = 1 ∨ 𝑛 = 𝐵)) ↔ ∀𝑛 ∈ ℕ (𝑛𝐵 → (𝑛 = (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∨ 𝑛 = 𝐵))))
240219, 239mpbird 257 . . 3 (𝜑 → ∀𝑛 ∈ ℕ (𝑛𝐵 → (𝑛 = 1 ∨ 𝑛 = 𝐵)))
241 isprm2 16628 . . 3 (𝐵 ∈ ℙ ↔ (𝐵 ∈ (ℤ‘2) ∧ ∀𝑛 ∈ ℕ (𝑛𝐵 → (𝑛 = 1 ∨ 𝑛 = 𝐵))))
24257, 240, 241sylanbrc 583 . 2 (𝜑𝐵 ∈ ℙ)
243207ltp1d 12089 . . . 4 (𝜑 → ((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) < (((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) + 1))
244 peano2re 11323 . . . . . 6 (((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) ∈ ℝ → (((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) + 1) ∈ ℝ)
245207, 244syl 17 . . . . 5 (𝜑 → (((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) + 1) ∈ ℝ)
246207, 245ltnled 11297 . . . 4 (𝜑 → (((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) < (((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) + 1) ↔ ¬ (((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) + 1) ≤ ((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1)))))
247243, 246mpbid 232 . . 3 (𝜑 → ¬ (((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) + 1) ≤ ((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))))
248200nnred 12177 . . . . . . . 8 ((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐵}) → 𝑘 ∈ ℝ)
249200nnnn0d 12479 . . . . . . . . 9 ((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐵}) → 𝑘 ∈ ℕ0)
250249nn0ge0d 12482 . . . . . . . 8 ((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐵}) → 0 ≤ 𝑘)
251 df-tp 4590 . . . . . . . . . 10 {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 1} = ({(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵} ∪ {1})
252 snssi 4768 . . . . . . . . . . . 12 (1 ∈ ℕ → {1} ⊆ ℕ)
253229, 252mp1i 13 . . . . . . . . . . 11 (𝜑 → {1} ⊆ ℕ)
25470, 253unssd 4151 . . . . . . . . . 10 (𝜑 → ({(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵} ∪ {1}) ⊆ ℕ)
255251, 254eqsstrid 3982 . . . . . . . . 9 (𝜑 → {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 1} ⊆ ℕ)
256 breq1 5105 . . . . . . . . . . . 12 (𝑥 = 1 → (𝑥𝐵 ↔ 1 ∥ 𝐵))
257223, 256syl5ibrcom 247 . . . . . . . . . . 11 (𝜑 → (𝑥 = 1 → 𝑥𝐵))
25886, 92, 2573jaod 1431 . . . . . . . . . 10 (𝜑 → ((𝑥 = (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∨ 𝑥 = 𝐵𝑥 = 1) → 𝑥𝐵))
259 eltpi 4648 . . . . . . . . . 10 (𝑥 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 1} → (𝑥 = (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∨ 𝑥 = 𝐵𝑥 = 1))
260258, 259impel 505 . . . . . . . . 9 ((𝜑𝑥 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 1}) → 𝑥𝐵)
261255, 260ssrabdv 4033 . . . . . . . 8 (𝜑 → {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 1} ⊆ {𝑥 ∈ ℕ ∣ 𝑥𝐵})
26261, 248, 250, 261fsumless 15738 . . . . . . 7 (𝜑 → Σ𝑘 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 1}𝑘 ≤ Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐵}𝑘)
263262adantr 480 . . . . . 6 ((𝜑𝐵 ≠ ((2↑(𝐴 + 1)) − 1)) → Σ𝑘 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 1}𝑘 ≤ Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐵}𝑘)
26452, 81, 82diveq1ad 11943 . . . . . . . . . . . . 13 (𝜑 → ((𝐵 / ((2↑(𝐴 + 1)) − 1)) = 1 ↔ 𝐵 = ((2↑(𝐴 + 1)) − 1)))
265264necon3bid 2969 . . . . . . . . . . . 12 (𝜑 → ((𝐵 / ((2↑(𝐴 + 1)) − 1)) ≠ 1 ↔ 𝐵 ≠ ((2↑(𝐴 + 1)) − 1)))
266265biimpar 477 . . . . . . . . . . 11 ((𝜑𝐵 ≠ ((2↑(𝐴 + 1)) − 1)) → (𝐵 / ((2↑(𝐴 + 1)) − 1)) ≠ 1)
267266necomd 2980 . . . . . . . . . 10 ((𝜑𝐵 ≠ ((2↑(𝐴 + 1)) − 1)) → 1 ≠ (𝐵 / ((2↑(𝐴 + 1)) − 1)))
268221adantr 480 . . . . . . . . . 10 ((𝜑𝐵 ≠ ((2↑(𝐴 + 1)) − 1)) → 1 ≠ 𝐵)
269267, 268nelprd 4617 . . . . . . . . 9 ((𝜑𝐵 ≠ ((2↑(𝐴 + 1)) − 1)) → ¬ 1 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵})
270 disjsn 4671 . . . . . . . . 9 (({(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵} ∩ {1}) = ∅ ↔ ¬ 1 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵})
271269, 270sylibr 234 . . . . . . . 8 ((𝜑𝐵 ≠ ((2↑(𝐴 + 1)) − 1)) → ({(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵} ∩ {1}) = ∅)
272251a1i 11 . . . . . . . 8 ((𝜑𝐵 ≠ ((2↑(𝐴 + 1)) − 1)) → {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 1} = ({(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵} ∪ {1}))
273 tpfi 9252 . . . . . . . . 9 {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 1} ∈ Fin
274273a1i 11 . . . . . . . 8 ((𝜑𝐵 ≠ ((2↑(𝐴 + 1)) − 1)) → {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 1} ∈ Fin)
275255adantr 480 . . . . . . . . . 10 ((𝜑𝐵 ≠ ((2↑(𝐴 + 1)) − 1)) → {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 1} ⊆ ℕ)
276275sselda 3943 . . . . . . . . 9 (((𝜑𝐵 ≠ ((2↑(𝐴 + 1)) − 1)) ∧ 𝑘 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 1}) → 𝑘 ∈ ℕ)
277276nncnd 12178 . . . . . . . 8 (((𝜑𝐵 ≠ ((2↑(𝐴 + 1)) − 1)) ∧ 𝑘 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 1}) → 𝑘 ∈ ℂ)
278271, 272, 274, 277fsumsplit 15683 . . . . . . 7 ((𝜑𝐵 ≠ ((2↑(𝐴 + 1)) − 1)) → Σ𝑘 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 1}𝑘 = (Σ𝑘 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}𝑘 + Σ𝑘 ∈ {1}𝑘))
279 id 22 . . . . . . . . . . 11 (𝑘 = 1 → 𝑘 = 1)
280279sumsn 15688 . . . . . . . . . 10 ((1 ∈ ℝ ∧ 1 ∈ ℂ) → Σ𝑘 ∈ {1}𝑘 = 1)
2812, 27, 280sylancl 586 . . . . . . . . 9 (𝜑 → Σ𝑘 ∈ {1}𝑘 = 1)
282149, 281oveq12d 7387 . . . . . . . 8 (𝜑 → (Σ𝑘 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}𝑘 + Σ𝑘 ∈ {1}𝑘) = (((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) + 1))
283282adantr 480 . . . . . . 7 ((𝜑𝐵 ≠ ((2↑(𝐴 + 1)) − 1)) → (Σ𝑘 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}𝑘 + Σ𝑘 ∈ {1}𝑘) = (((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) + 1))
284278, 283eqtrd 2764 . . . . . 6 ((𝜑𝐵 ≠ ((2↑(𝐴 + 1)) − 1)) → Σ𝑘 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 1}𝑘 = (((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) + 1))
285204adantr 480 . . . . . 6 ((𝜑𝐵 ≠ ((2↑(𝐴 + 1)) − 1)) → Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐵}𝑘 = ((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))))
286263, 284, 2853brtr3d 5133 . . . . 5 ((𝜑𝐵 ≠ ((2↑(𝐴 + 1)) − 1)) → (((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) + 1) ≤ ((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))))
287286ex 412 . . . 4 (𝜑 → (𝐵 ≠ ((2↑(𝐴 + 1)) − 1) → (((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) + 1) ≤ ((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1)))))
288287necon1bd 2943 . . 3 (𝜑 → (¬ (((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) + 1) ≤ ((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) → 𝐵 = ((2↑(𝐴 + 1)) − 1)))
289247, 288mpd 15 . 2 (𝜑𝐵 = ((2↑(𝐴 + 1)) − 1))
290242, 289jca 511 1 (𝜑 → (𝐵 ∈ ℙ ∧ 𝐵 = ((2↑(𝐴 + 1)) − 1)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3o 1085   = wceq 1540  wcel 2109  wne 2925  wral 3044  {crab 3402  cun 3909  cin 3910  wss 3911  c0 4292  {csn 4585  {cpr 4587  {ctp 4589   class class class wbr 5102  cfv 6499  (class class class)co 7369  Fincfn 8895  cc 11042  cr 11043  0cc0 11044  1c1 11045   + caddc 11047   · cmul 11049   < clt 11184  cle 11185  cmin 11381   / cdiv 11811  cn 12162  2c2 12217  0cn0 12418  cz 12505  cuz 12769  +crp 12927  ...cfz 13444  cexp 14002  Σcsu 15628  cdvds 16198   gcd cgcd 16440  cprime 16617  𝑐ccxp 26440   σ csgm 26982
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ioc 13287  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-fac 14215  df-bc 14244  df-hash 14272  df-shft 15009  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-limsup 15413  df-clim 15430  df-rlim 15431  df-sum 15629  df-ef 16009  df-sin 16011  df-cos 16012  df-pi 16014  df-dvds 16199  df-gcd 16441  df-prm 16618  df-pc 16784  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17361  df-topn 17362  df-0g 17380  df-gsum 17381  df-topgen 17382  df-pt 17383  df-prds 17386  df-xrs 17441  df-qtop 17446  df-imas 17447  df-xps 17449  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-mulg 18976  df-cntz 19225  df-cmn 19688  df-psmet 21232  df-xmet 21233  df-met 21234  df-bl 21235  df-mopn 21236  df-fbas 21237  df-fg 21238  df-cnfld 21241  df-top 22757  df-topon 22774  df-topsp 22796  df-bases 22809  df-cld 22882  df-ntr 22883  df-cls 22884  df-nei 22961  df-lp 22999  df-perf 23000  df-cn 23090  df-cnp 23091  df-haus 23178  df-tx 23425  df-hmeo 23618  df-fil 23709  df-fm 23801  df-flim 23802  df-flf 23803  df-xms 24184  df-ms 24185  df-tms 24186  df-cncf 24747  df-limc 25743  df-dv 25744  df-log 26441  df-cxp 26442  df-sgm 26988
This theorem is referenced by:  perfect  27118
  Copyright terms: Public domain W3C validator