MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  perfectlem2 Structured version   Visualization version   GIF version

Theorem perfectlem2 25192
Description: Lemma for perfect 25193. (Contributed by Mario Carneiro, 17-May-2016.) Replace OLD theorem. (Revised by Wolf Lammen, 17-Sep-2020.)
Hypotheses
Ref Expression
perfectlem.1 (𝜑𝐴 ∈ ℕ)
perfectlem.2 (𝜑𝐵 ∈ ℕ)
perfectlem.3 (𝜑 → ¬ 2 ∥ 𝐵)
perfectlem.4 (𝜑 → (1 σ ((2↑𝐴) · 𝐵)) = (2 · ((2↑𝐴) · 𝐵)))
Assertion
Ref Expression
perfectlem2 (𝜑 → (𝐵 ∈ ℙ ∧ 𝐵 = ((2↑(𝐴 + 1)) − 1)))

Proof of Theorem perfectlem2
Dummy variables 𝑘 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 perfectlem.2 . . . 4 (𝜑𝐵 ∈ ℕ)
2 1red 10336 . . . . 5 (𝜑 → 1 ∈ ℝ)
3 perfectlem.1 . . . . . . . 8 (𝜑𝐴 ∈ ℕ)
4 perfectlem.3 . . . . . . . 8 (𝜑 → ¬ 2 ∥ 𝐵)
5 perfectlem.4 . . . . . . . 8 (𝜑 → (1 σ ((2↑𝐴) · 𝐵)) = (2 · ((2↑𝐴) · 𝐵)))
63, 1, 4, 5perfectlem1 25191 . . . . . . 7 (𝜑 → ((2↑(𝐴 + 1)) ∈ ℕ ∧ ((2↑(𝐴 + 1)) − 1) ∈ ℕ ∧ (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∈ ℕ))
76simp3d 1167 . . . . . 6 (𝜑 → (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∈ ℕ)
87nnred 11332 . . . . 5 (𝜑 → (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∈ ℝ)
91nnred 11332 . . . . 5 (𝜑𝐵 ∈ ℝ)
107nnge1d 11361 . . . . 5 (𝜑 → 1 ≤ (𝐵 / ((2↑(𝐴 + 1)) − 1)))
11 2cn 11388 . . . . . . . . . . 11 2 ∈ ℂ
12 exp1 13109 . . . . . . . . . . 11 (2 ∈ ℂ → (2↑1) = 2)
1311, 12ax-mp 5 . . . . . . . . . 10 (2↑1) = 2
14 df-2 11376 . . . . . . . . . 10 2 = (1 + 1)
1513, 14eqtri 2839 . . . . . . . . 9 (2↑1) = (1 + 1)
16 2re 11387 . . . . . . . . . . 11 2 ∈ ℝ
1716a1i 11 . . . . . . . . . 10 (𝜑 → 2 ∈ ℝ)
18 1zzd 11694 . . . . . . . . . 10 (𝜑 → 1 ∈ ℤ)
193peano2nnd 11334 . . . . . . . . . . 11 (𝜑 → (𝐴 + 1) ∈ ℕ)
2019nnzd 11767 . . . . . . . . . 10 (𝜑 → (𝐴 + 1) ∈ ℤ)
21 1lt2 11490 . . . . . . . . . . 11 1 < 2
2221a1i 11 . . . . . . . . . 10 (𝜑 → 1 < 2)
23 1re 10335 . . . . . . . . . . . 12 1 ∈ ℝ
243nnrpd 12104 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℝ+)
25 ltaddrp 12101 . . . . . . . . . . . 12 ((1 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → 1 < (1 + 𝐴))
2623, 24, 25sylancr 577 . . . . . . . . . . 11 (𝜑 → 1 < (1 + 𝐴))
27 ax-1cn 10289 . . . . . . . . . . . 12 1 ∈ ℂ
283nncnd 11333 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℂ)
29 addcom 10517 . . . . . . . . . . . 12 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 + 𝐴) = (𝐴 + 1))
3027, 28, 29sylancr 577 . . . . . . . . . . 11 (𝜑 → (1 + 𝐴) = (𝐴 + 1))
3126, 30breqtrd 4881 . . . . . . . . . 10 (𝜑 → 1 < (𝐴 + 1))
32 ltexp2a 13155 . . . . . . . . . 10 (((2 ∈ ℝ ∧ 1 ∈ ℤ ∧ (𝐴 + 1) ∈ ℤ) ∧ (1 < 2 ∧ 1 < (𝐴 + 1))) → (2↑1) < (2↑(𝐴 + 1)))
3317, 18, 20, 22, 31, 32syl32anc 1490 . . . . . . . . 9 (𝜑 → (2↑1) < (2↑(𝐴 + 1)))
3415, 33syl5eqbrr 4891 . . . . . . . 8 (𝜑 → (1 + 1) < (2↑(𝐴 + 1)))
356simp1d 1165 . . . . . . . . . 10 (𝜑 → (2↑(𝐴 + 1)) ∈ ℕ)
3635nnred 11332 . . . . . . . . 9 (𝜑 → (2↑(𝐴 + 1)) ∈ ℝ)
372, 2, 36ltaddsubd 10922 . . . . . . . 8 (𝜑 → ((1 + 1) < (2↑(𝐴 + 1)) ↔ 1 < ((2↑(𝐴 + 1)) − 1)))
3834, 37mpbid 223 . . . . . . 7 (𝜑 → 1 < ((2↑(𝐴 + 1)) − 1))
39 0lt1 10845 . . . . . . . . 9 0 < 1
4039a1i 11 . . . . . . . 8 (𝜑 → 0 < 1)
41 peano2rem 10643 . . . . . . . . 9 ((2↑(𝐴 + 1)) ∈ ℝ → ((2↑(𝐴 + 1)) − 1) ∈ ℝ)
4236, 41syl 17 . . . . . . . 8 (𝜑 → ((2↑(𝐴 + 1)) − 1) ∈ ℝ)
43 expgt1 13141 . . . . . . . . . 10 ((2 ∈ ℝ ∧ (𝐴 + 1) ∈ ℕ ∧ 1 < 2) → 1 < (2↑(𝐴 + 1)))
4417, 19, 22, 43syl3anc 1483 . . . . . . . . 9 (𝜑 → 1 < (2↑(𝐴 + 1)))
45 posdif 10816 . . . . . . . . . 10 ((1 ∈ ℝ ∧ (2↑(𝐴 + 1)) ∈ ℝ) → (1 < (2↑(𝐴 + 1)) ↔ 0 < ((2↑(𝐴 + 1)) − 1)))
4623, 36, 45sylancr 577 . . . . . . . . 9 (𝜑 → (1 < (2↑(𝐴 + 1)) ↔ 0 < ((2↑(𝐴 + 1)) − 1)))
4744, 46mpbid 223 . . . . . . . 8 (𝜑 → 0 < ((2↑(𝐴 + 1)) − 1))
481nngt0d 11362 . . . . . . . 8 (𝜑 → 0 < 𝐵)
49 ltdiv2 11204 . . . . . . . 8 (((1 ∈ ℝ ∧ 0 < 1) ∧ (((2↑(𝐴 + 1)) − 1) ∈ ℝ ∧ 0 < ((2↑(𝐴 + 1)) − 1)) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (1 < ((2↑(𝐴 + 1)) − 1) ↔ (𝐵 / ((2↑(𝐴 + 1)) − 1)) < (𝐵 / 1)))
502, 40, 42, 47, 9, 48, 49syl222anc 1498 . . . . . . 7 (𝜑 → (1 < ((2↑(𝐴 + 1)) − 1) ↔ (𝐵 / ((2↑(𝐴 + 1)) − 1)) < (𝐵 / 1)))
5138, 50mpbid 223 . . . . . 6 (𝜑 → (𝐵 / ((2↑(𝐴 + 1)) − 1)) < (𝐵 / 1))
521nncnd 11333 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
5352div1d 11088 . . . . . 6 (𝜑 → (𝐵 / 1) = 𝐵)
5451, 53breqtrd 4881 . . . . 5 (𝜑 → (𝐵 / ((2↑(𝐴 + 1)) − 1)) < 𝐵)
552, 8, 9, 10, 54lelttrd 10490 . . . 4 (𝜑 → 1 < 𝐵)
56 eluz2b2 12000 . . . 4 (𝐵 ∈ (ℤ‘2) ↔ (𝐵 ∈ ℕ ∧ 1 < 𝐵))
571, 55, 56sylanbrc 574 . . 3 (𝜑𝐵 ∈ (ℤ‘2))
58 fzfid 13016 . . . . . . . . . . . 12 (𝜑 → (1...𝐵) ∈ Fin)
59 dvdsssfz1 15283 . . . . . . . . . . . . 13 (𝐵 ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥𝐵} ⊆ (1...𝐵))
601, 59syl 17 . . . . . . . . . . . 12 (𝜑 → {𝑥 ∈ ℕ ∣ 𝑥𝐵} ⊆ (1...𝐵))
61 ssfi 8429 . . . . . . . . . . . 12 (((1...𝐵) ∈ Fin ∧ {𝑥 ∈ ℕ ∣ 𝑥𝐵} ⊆ (1...𝐵)) → {𝑥 ∈ ℕ ∣ 𝑥𝐵} ∈ Fin)
6258, 60, 61syl2anc 575 . . . . . . . . . . 11 (𝜑 → {𝑥 ∈ ℕ ∣ 𝑥𝐵} ∈ Fin)
6362ad2antrr 708 . . . . . . . . . 10 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → {𝑥 ∈ ℕ ∣ 𝑥𝐵} ∈ Fin)
64 ssrab2 3895 . . . . . . . . . . . . 13 {𝑥 ∈ ℕ ∣ 𝑥𝐵} ⊆ ℕ
6564a1i 11 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → {𝑥 ∈ ℕ ∣ 𝑥𝐵} ⊆ ℕ)
6665sselda 3809 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐵}) → 𝑘 ∈ ℕ)
6766nnred 11332 . . . . . . . . . 10 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐵}) → 𝑘 ∈ ℝ)
6866nnnn0d 11637 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐵}) → 𝑘 ∈ ℕ0)
6968nn0ge0d 11640 . . . . . . . . . 10 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐵}) → 0 ≤ 𝑘)
70 df-tp 4386 . . . . . . . . . . . 12 {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 𝑛} = ({(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵} ∪ {𝑛})
71 prssi 4553 . . . . . . . . . . . . . . 15 (((𝐵 / ((2↑(𝐴 + 1)) − 1)) ∈ ℕ ∧ 𝐵 ∈ ℕ) → {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵} ⊆ ℕ)
727, 1, 71syl2anc 575 . . . . . . . . . . . . . 14 (𝜑 → {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵} ⊆ ℕ)
7372ad2antrr 708 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵} ⊆ ℕ)
74 simplrl 786 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → 𝑛 ∈ ℕ)
7574snssd 4541 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → {𝑛} ⊆ ℕ)
7673, 75unssd 3999 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → ({(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵} ∪ {𝑛}) ⊆ ℕ)
7770, 76syl5eqss 3857 . . . . . . . . . . 11 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 𝑛} ⊆ ℕ)
78 eltpi 4432 . . . . . . . . . . . . 13 (𝑥 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 𝑛} → (𝑥 = (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∨ 𝑥 = 𝐵𝑥 = 𝑛))
796simp2d 1166 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((2↑(𝐴 + 1)) − 1) ∈ ℕ)
8079nnzd 11767 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((2↑(𝐴 + 1)) − 1) ∈ ℤ)
817nnzd 11767 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∈ ℤ)
82 dvdsmul2 15247 . . . . . . . . . . . . . . . . . 18 ((((2↑(𝐴 + 1)) − 1) ∈ ℤ ∧ (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∈ ℤ) → (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∥ (((2↑(𝐴 + 1)) − 1) · (𝐵 / ((2↑(𝐴 + 1)) − 1))))
8380, 81, 82syl2anc 575 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∥ (((2↑(𝐴 + 1)) − 1) · (𝐵 / ((2↑(𝐴 + 1)) − 1))))
8479nncnd 11333 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((2↑(𝐴 + 1)) − 1) ∈ ℂ)
8579nnne0d 11363 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((2↑(𝐴 + 1)) − 1) ≠ 0)
8652, 84, 85divcan2d 11098 . . . . . . . . . . . . . . . . 17 (𝜑 → (((2↑(𝐴 + 1)) − 1) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) = 𝐵)
8783, 86breqtrd 4881 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∥ 𝐵)
88 breq1 4858 . . . . . . . . . . . . . . . 16 (𝑥 = (𝐵 / ((2↑(𝐴 + 1)) − 1)) → (𝑥𝐵 ↔ (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∥ 𝐵))
8987, 88syl5ibrcom 238 . . . . . . . . . . . . . . 15 (𝜑 → (𝑥 = (𝐵 / ((2↑(𝐴 + 1)) − 1)) → 𝑥𝐵))
9089ad2antrr 708 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → (𝑥 = (𝐵 / ((2↑(𝐴 + 1)) − 1)) → 𝑥𝐵))
911nnzd 11767 . . . . . . . . . . . . . . . . 17 (𝜑𝐵 ∈ ℤ)
92 iddvds 15238 . . . . . . . . . . . . . . . . 17 (𝐵 ∈ ℤ → 𝐵𝐵)
9391, 92syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝐵𝐵)
94 breq1 4858 . . . . . . . . . . . . . . . 16 (𝑥 = 𝐵 → (𝑥𝐵𝐵𝐵))
9593, 94syl5ibrcom 238 . . . . . . . . . . . . . . 15 (𝜑 → (𝑥 = 𝐵𝑥𝐵))
9695ad2antrr 708 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → (𝑥 = 𝐵𝑥𝐵))
97 simplrr 787 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → 𝑛𝐵)
98 breq1 4858 . . . . . . . . . . . . . . 15 (𝑥 = 𝑛 → (𝑥𝐵𝑛𝐵))
9997, 98syl5ibrcom 238 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → (𝑥 = 𝑛𝑥𝐵))
10090, 96, 993jaod 1546 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → ((𝑥 = (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∨ 𝑥 = 𝐵𝑥 = 𝑛) → 𝑥𝐵))
10178, 100syl5 34 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → (𝑥 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 𝑛} → 𝑥𝐵))
102101imp 395 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) ∧ 𝑥 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 𝑛}) → 𝑥𝐵)
10377, 102ssrabdv 3889 . . . . . . . . . 10 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 𝑛} ⊆ {𝑥 ∈ ℕ ∣ 𝑥𝐵})
10463, 67, 69, 103fsumless 14770 . . . . . . . . 9 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → Σ𝑘 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 𝑛}𝑘 ≤ Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐵}𝑘)
105 simpr 473 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵})
106 disjsn 4449 . . . . . . . . . . . 12 (({(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵} ∩ {𝑛}) = ∅ ↔ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵})
107105, 106sylibr 225 . . . . . . . . . . 11 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → ({(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵} ∩ {𝑛}) = ∅)
10870a1i 11 . . . . . . . . . . 11 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 𝑛} = ({(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵} ∪ {𝑛}))
109 tpfi 8485 . . . . . . . . . . . 12 {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 𝑛} ∈ Fin
110109a1i 11 . . . . . . . . . . 11 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 𝑛} ∈ Fin)
11177sselda 3809 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) ∧ 𝑘 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 𝑛}) → 𝑘 ∈ ℕ)
112111nncnd 11333 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) ∧ 𝑘 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 𝑛}) → 𝑘 ∈ ℂ)
113107, 108, 110, 112fsumsplit 14714 . . . . . . . . . 10 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → Σ𝑘 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 𝑛}𝑘 = (Σ𝑘 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}𝑘 + Σ𝑘 ∈ {𝑛}𝑘))
1147nncnd 11333 . . . . . . . . . . . . . . 15 (𝜑 → (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∈ ℂ)
115 id 22 . . . . . . . . . . . . . . . 16 (𝑘 = (𝐵 / ((2↑(𝐴 + 1)) − 1)) → 𝑘 = (𝐵 / ((2↑(𝐴 + 1)) − 1)))
116115sumsn 14718 . . . . . . . . . . . . . . 15 (((𝐵 / ((2↑(𝐴 + 1)) − 1)) ∈ ℕ ∧ (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∈ ℂ) → Σ𝑘 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1))}𝑘 = (𝐵 / ((2↑(𝐴 + 1)) − 1)))
1177, 114, 116syl2anc 575 . . . . . . . . . . . . . 14 (𝜑 → Σ𝑘 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1))}𝑘 = (𝐵 / ((2↑(𝐴 + 1)) − 1)))
118 id 22 . . . . . . . . . . . . . . . 16 (𝑘 = 𝐵𝑘 = 𝐵)
119118sumsn 14718 . . . . . . . . . . . . . . 15 ((𝐵 ∈ ℕ ∧ 𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝐵}𝑘 = 𝐵)
1201, 52, 119syl2anc 575 . . . . . . . . . . . . . 14 (𝜑 → Σ𝑘 ∈ {𝐵}𝑘 = 𝐵)
121117, 120oveq12d 6902 . . . . . . . . . . . . 13 (𝜑 → (Σ𝑘 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1))}𝑘 + Σ𝑘 ∈ {𝐵}𝑘) = ((𝐵 / ((2↑(𝐴 + 1)) − 1)) + 𝐵))
122 incom 4015 . . . . . . . . . . . . . . 15 ({𝐵} ∩ {(𝐵 / ((2↑(𝐴 + 1)) − 1))}) = ({(𝐵 / ((2↑(𝐴 + 1)) − 1))} ∩ {𝐵})
1238, 54gtned 10467 . . . . . . . . . . . . . . . 16 (𝜑𝐵 ≠ (𝐵 / ((2↑(𝐴 + 1)) − 1)))
124 disjsn2 4450 . . . . . . . . . . . . . . . 16 (𝐵 ≠ (𝐵 / ((2↑(𝐴 + 1)) − 1)) → ({𝐵} ∩ {(𝐵 / ((2↑(𝐴 + 1)) − 1))}) = ∅)
125123, 124syl 17 . . . . . . . . . . . . . . 15 (𝜑 → ({𝐵} ∩ {(𝐵 / ((2↑(𝐴 + 1)) − 1))}) = ∅)
126122, 125syl5eqr 2865 . . . . . . . . . . . . . 14 (𝜑 → ({(𝐵 / ((2↑(𝐴 + 1)) − 1))} ∩ {𝐵}) = ∅)
127 df-pr 4384 . . . . . . . . . . . . . . 15 {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵} = ({(𝐵 / ((2↑(𝐴 + 1)) − 1))} ∪ {𝐵})
128127a1i 11 . . . . . . . . . . . . . 14 (𝜑 → {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵} = ({(𝐵 / ((2↑(𝐴 + 1)) − 1))} ∪ {𝐵}))
129 prfi 8484 . . . . . . . . . . . . . . 15 {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵} ∈ Fin
130129a1i 11 . . . . . . . . . . . . . 14 (𝜑 → {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵} ∈ Fin)
13172sselda 3809 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → 𝑘 ∈ ℕ)
132131nncnd 11333 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → 𝑘 ∈ ℂ)
133126, 128, 130, 132fsumsplit 14714 . . . . . . . . . . . . 13 (𝜑 → Σ𝑘 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}𝑘 = (Σ𝑘 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1))}𝑘 + Σ𝑘 ∈ {𝐵}𝑘))
13484, 52mulcld 10355 . . . . . . . . . . . . . . 15 (𝜑 → (((2↑(𝐴 + 1)) − 1) · 𝐵) ∈ ℂ)
13552, 134, 84, 85divdird 11134 . . . . . . . . . . . . . 14 (𝜑 → ((𝐵 + (((2↑(𝐴 + 1)) − 1) · 𝐵)) / ((2↑(𝐴 + 1)) − 1)) = ((𝐵 / ((2↑(𝐴 + 1)) − 1)) + ((((2↑(𝐴 + 1)) − 1) · 𝐵) / ((2↑(𝐴 + 1)) − 1))))
13635nncnd 11333 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (2↑(𝐴 + 1)) ∈ ℂ)
137 1cnd 10330 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → 1 ∈ ℂ)
138136, 137, 52subdird 10782 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (((2↑(𝐴 + 1)) − 1) · 𝐵) = (((2↑(𝐴 + 1)) · 𝐵) − (1 · 𝐵)))
13952mulid2d 10353 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (1 · 𝐵) = 𝐵)
140139oveq2d 6900 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (((2↑(𝐴 + 1)) · 𝐵) − (1 · 𝐵)) = (((2↑(𝐴 + 1)) · 𝐵) − 𝐵))
141138, 140eqtrd 2851 . . . . . . . . . . . . . . . . . 18 (𝜑 → (((2↑(𝐴 + 1)) − 1) · 𝐵) = (((2↑(𝐴 + 1)) · 𝐵) − 𝐵))
142141oveq2d 6900 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐵 + (((2↑(𝐴 + 1)) − 1) · 𝐵)) = (𝐵 + (((2↑(𝐴 + 1)) · 𝐵) − 𝐵)))
143136, 52mulcld 10355 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((2↑(𝐴 + 1)) · 𝐵) ∈ ℂ)
14452, 143pncan3d 10690 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐵 + (((2↑(𝐴 + 1)) · 𝐵) − 𝐵)) = ((2↑(𝐴 + 1)) · 𝐵))
145142, 144eqtrd 2851 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐵 + (((2↑(𝐴 + 1)) − 1) · 𝐵)) = ((2↑(𝐴 + 1)) · 𝐵))
146145oveq1d 6899 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐵 + (((2↑(𝐴 + 1)) − 1) · 𝐵)) / ((2↑(𝐴 + 1)) − 1)) = (((2↑(𝐴 + 1)) · 𝐵) / ((2↑(𝐴 + 1)) − 1)))
147136, 52, 84, 85divassd 11131 . . . . . . . . . . . . . . 15 (𝜑 → (((2↑(𝐴 + 1)) · 𝐵) / ((2↑(𝐴 + 1)) − 1)) = ((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))))
148146, 147eqtrd 2851 . . . . . . . . . . . . . 14 (𝜑 → ((𝐵 + (((2↑(𝐴 + 1)) − 1) · 𝐵)) / ((2↑(𝐴 + 1)) − 1)) = ((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))))
14952, 84, 85divcan3d 11101 . . . . . . . . . . . . . . 15 (𝜑 → ((((2↑(𝐴 + 1)) − 1) · 𝐵) / ((2↑(𝐴 + 1)) − 1)) = 𝐵)
150149oveq2d 6900 . . . . . . . . . . . . . 14 (𝜑 → ((𝐵 / ((2↑(𝐴 + 1)) − 1)) + ((((2↑(𝐴 + 1)) − 1) · 𝐵) / ((2↑(𝐴 + 1)) − 1))) = ((𝐵 / ((2↑(𝐴 + 1)) − 1)) + 𝐵))
151135, 148, 1503eqtr3d 2859 . . . . . . . . . . . . 13 (𝜑 → ((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) = ((𝐵 / ((2↑(𝐴 + 1)) − 1)) + 𝐵))
152121, 133, 1513eqtr4d 2861 . . . . . . . . . . . 12 (𝜑 → Σ𝑘 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}𝑘 = ((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))))
153152ad2antrr 708 . . . . . . . . . . 11 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → Σ𝑘 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}𝑘 = ((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))))
15474nncnd 11333 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → 𝑛 ∈ ℂ)
155 id 22 . . . . . . . . . . . . 13 (𝑘 = 𝑛𝑘 = 𝑛)
156155sumsn 14718 . . . . . . . . . . . 12 ((𝑛 ∈ ℂ ∧ 𝑛 ∈ ℂ) → Σ𝑘 ∈ {𝑛}𝑘 = 𝑛)
157154, 154, 156syl2anc 575 . . . . . . . . . . 11 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → Σ𝑘 ∈ {𝑛}𝑘 = 𝑛)
158153, 157oveq12d 6902 . . . . . . . . . 10 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → (Σ𝑘 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}𝑘 + Σ𝑘 ∈ {𝑛}𝑘) = (((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) + 𝑛))
159113, 158eqtrd 2851 . . . . . . . . 9 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → Σ𝑘 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 𝑛}𝑘 = (((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) + 𝑛))
1603nnnn0d 11637 . . . . . . . . . . . . . . . . 17 (𝜑𝐴 ∈ ℕ0)
161 expp1 13110 . . . . . . . . . . . . . . . . 17 ((2 ∈ ℂ ∧ 𝐴 ∈ ℕ0) → (2↑(𝐴 + 1)) = ((2↑𝐴) · 2))
16211, 160, 161sylancr 577 . . . . . . . . . . . . . . . 16 (𝜑 → (2↑(𝐴 + 1)) = ((2↑𝐴) · 2))
163 2nn 11386 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℕ
164 nnexpcl 13116 . . . . . . . . . . . . . . . . . . 19 ((2 ∈ ℕ ∧ 𝐴 ∈ ℕ0) → (2↑𝐴) ∈ ℕ)
165163, 160, 164sylancr 577 . . . . . . . . . . . . . . . . . 18 (𝜑 → (2↑𝐴) ∈ ℕ)
166165nncnd 11333 . . . . . . . . . . . . . . . . 17 (𝜑 → (2↑𝐴) ∈ ℂ)
167 mulcom 10317 . . . . . . . . . . . . . . . . 17 (((2↑𝐴) ∈ ℂ ∧ 2 ∈ ℂ) → ((2↑𝐴) · 2) = (2 · (2↑𝐴)))
168166, 11, 167sylancl 576 . . . . . . . . . . . . . . . 16 (𝜑 → ((2↑𝐴) · 2) = (2 · (2↑𝐴)))
169162, 168eqtrd 2851 . . . . . . . . . . . . . . 15 (𝜑 → (2↑(𝐴 + 1)) = (2 · (2↑𝐴)))
170169oveq1d 6899 . . . . . . . . . . . . . 14 (𝜑 → ((2↑(𝐴 + 1)) · 𝐵) = ((2 · (2↑𝐴)) · 𝐵))
171 2cnd 11391 . . . . . . . . . . . . . . 15 (𝜑 → 2 ∈ ℂ)
172171, 166, 52mulassd 10358 . . . . . . . . . . . . . 14 (𝜑 → ((2 · (2↑𝐴)) · 𝐵) = (2 · ((2↑𝐴) · 𝐵)))
173 2prm 15643 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℙ
174 coprm 15660 . . . . . . . . . . . . . . . . . . 19 ((2 ∈ ℙ ∧ 𝐵 ∈ ℤ) → (¬ 2 ∥ 𝐵 ↔ (2 gcd 𝐵) = 1))
175173, 91, 174sylancr 577 . . . . . . . . . . . . . . . . . 18 (𝜑 → (¬ 2 ∥ 𝐵 ↔ (2 gcd 𝐵) = 1))
1764, 175mpbid 223 . . . . . . . . . . . . . . . . 17 (𝜑 → (2 gcd 𝐵) = 1)
177 2z 11695 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℤ
178177a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑 → 2 ∈ ℤ)
179 rpexp1i 15670 . . . . . . . . . . . . . . . . . 18 ((2 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∈ ℕ0) → ((2 gcd 𝐵) = 1 → ((2↑𝐴) gcd 𝐵) = 1))
180178, 91, 160, 179syl3anc 1483 . . . . . . . . . . . . . . . . 17 (𝜑 → ((2 gcd 𝐵) = 1 → ((2↑𝐴) gcd 𝐵) = 1))
181176, 180mpd 15 . . . . . . . . . . . . . . . 16 (𝜑 → ((2↑𝐴) gcd 𝐵) = 1)
182 sgmmul 25163 . . . . . . . . . . . . . . . 16 ((1 ∈ ℂ ∧ ((2↑𝐴) ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ((2↑𝐴) gcd 𝐵) = 1)) → (1 σ ((2↑𝐴) · 𝐵)) = ((1 σ (2↑𝐴)) · (1 σ 𝐵)))
183137, 165, 1, 181, 182syl13anc 1484 . . . . . . . . . . . . . . 15 (𝜑 → (1 σ ((2↑𝐴) · 𝐵)) = ((1 σ (2↑𝐴)) · (1 σ 𝐵)))
184 pncan 10582 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 + 1) − 1) = 𝐴)
18528, 27, 184sylancl 576 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝐴 + 1) − 1) = 𝐴)
186185oveq2d 6900 . . . . . . . . . . . . . . . . . 18 (𝜑 → (2↑((𝐴 + 1) − 1)) = (2↑𝐴))
187186oveq2d 6900 . . . . . . . . . . . . . . . . 17 (𝜑 → (1 σ (2↑((𝐴 + 1) − 1))) = (1 σ (2↑𝐴)))
188 1sgm2ppw 25162 . . . . . . . . . . . . . . . . . 18 ((𝐴 + 1) ∈ ℕ → (1 σ (2↑((𝐴 + 1) − 1))) = ((2↑(𝐴 + 1)) − 1))
18919, 188syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (1 σ (2↑((𝐴 + 1) − 1))) = ((2↑(𝐴 + 1)) − 1))
190187, 189eqtr3d 2853 . . . . . . . . . . . . . . . 16 (𝜑 → (1 σ (2↑𝐴)) = ((2↑(𝐴 + 1)) − 1))
191190oveq1d 6899 . . . . . . . . . . . . . . 15 (𝜑 → ((1 σ (2↑𝐴)) · (1 σ 𝐵)) = (((2↑(𝐴 + 1)) − 1) · (1 σ 𝐵)))
192183, 5, 1913eqtr3d 2859 . . . . . . . . . . . . . 14 (𝜑 → (2 · ((2↑𝐴) · 𝐵)) = (((2↑(𝐴 + 1)) − 1) · (1 σ 𝐵)))
193170, 172, 1923eqtrd 2855 . . . . . . . . . . . . 13 (𝜑 → ((2↑(𝐴 + 1)) · 𝐵) = (((2↑(𝐴 + 1)) − 1) · (1 σ 𝐵)))
194193oveq1d 6899 . . . . . . . . . . . 12 (𝜑 → (((2↑(𝐴 + 1)) · 𝐵) / ((2↑(𝐴 + 1)) − 1)) = ((((2↑(𝐴 + 1)) − 1) · (1 σ 𝐵)) / ((2↑(𝐴 + 1)) − 1)))
195 1nn0 11595 . . . . . . . . . . . . . . 15 1 ∈ ℕ0
196 sgmnncl 25110 . . . . . . . . . . . . . . 15 ((1 ∈ ℕ0𝐵 ∈ ℕ) → (1 σ 𝐵) ∈ ℕ)
197195, 1, 196sylancr 577 . . . . . . . . . . . . . 14 (𝜑 → (1 σ 𝐵) ∈ ℕ)
198197nncnd 11333 . . . . . . . . . . . . 13 (𝜑 → (1 σ 𝐵) ∈ ℂ)
199198, 84, 85divcan3d 11101 . . . . . . . . . . . 12 (𝜑 → ((((2↑(𝐴 + 1)) − 1) · (1 σ 𝐵)) / ((2↑(𝐴 + 1)) − 1)) = (1 σ 𝐵))
200194, 147, 1993eqtr3d 2859 . . . . . . . . . . 11 (𝜑 → ((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) = (1 σ 𝐵))
201 sgmval 25105 . . . . . . . . . . . 12 ((1 ∈ ℂ ∧ 𝐵 ∈ ℕ) → (1 σ 𝐵) = Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐵} (𝑘𝑐1))
20227, 1, 201sylancr 577 . . . . . . . . . . 11 (𝜑 → (1 σ 𝐵) = Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐵} (𝑘𝑐1))
203 simpr 473 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐵}) → 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐵})
20464, 203sseldi 3807 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐵}) → 𝑘 ∈ ℕ)
205204nncnd 11333 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐵}) → 𝑘 ∈ ℂ)
206205cxp1d 24689 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐵}) → (𝑘𝑐1) = 𝑘)
207206sumeq2dv 14676 . . . . . . . . . . 11 (𝜑 → Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐵} (𝑘𝑐1) = Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐵}𝑘)
208200, 202, 2073eqtrrd 2856 . . . . . . . . . 10 (𝜑 → Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐵}𝑘 = ((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))))
209208ad2antrr 708 . . . . . . . . 9 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐵}𝑘 = ((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))))
210104, 159, 2093brtr3d 4886 . . . . . . . 8 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → (((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) + 𝑛) ≤ ((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))))
21136, 8remulcld 10365 . . . . . . . . . . 11 (𝜑 → ((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) ∈ ℝ)
212211ad2antrr 708 . . . . . . . . . 10 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → ((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) ∈ ℝ)
21374nnrpd 12104 . . . . . . . . . 10 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → 𝑛 ∈ ℝ+)
214212, 213ltaddrpd 12139 . . . . . . . . 9 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → ((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) < (((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) + 𝑛))
21574nnred 11332 . . . . . . . . . . 11 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → 𝑛 ∈ ℝ)
216212, 215readdcld 10364 . . . . . . . . . 10 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → (((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) + 𝑛) ∈ ℝ)
217212, 216ltnled 10479 . . . . . . . . 9 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → (((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) < (((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) + 𝑛) ↔ ¬ (((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) + 𝑛) ≤ ((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1)))))
218214, 217mpbid 223 . . . . . . . 8 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → ¬ (((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) + 𝑛) ≤ ((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))))
219210, 218condan 843 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) → 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵})
220 elpri 4403 . . . . . . 7 (𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵} → (𝑛 = (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∨ 𝑛 = 𝐵))
221219, 220syl 17 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) → (𝑛 = (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∨ 𝑛 = 𝐵))
222221expr 446 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝑛𝐵 → (𝑛 = (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∨ 𝑛 = 𝐵)))
223222ralrimiva 3165 . . . 4 (𝜑 → ∀𝑛 ∈ ℕ (𝑛𝐵 → (𝑛 = (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∨ 𝑛 = 𝐵)))
2242, 55gtned 10467 . . . . . . . . . 10 (𝜑𝐵 ≠ 1)
225224necomd 3044 . . . . . . . . 9 (𝜑 → 1 ≠ 𝐵)
226 1dvds 15239 . . . . . . . . . . . . 13 (𝐵 ∈ ℤ → 1 ∥ 𝐵)
22791, 226syl 17 . . . . . . . . . . . 12 (𝜑 → 1 ∥ 𝐵)
228 breq1 4858 . . . . . . . . . . . . . 14 (𝑛 = 1 → (𝑛𝐵 ↔ 1 ∥ 𝐵))
229 eqeq1 2821 . . . . . . . . . . . . . . 15 (𝑛 = 1 → (𝑛 = (𝐵 / ((2↑(𝐴 + 1)) − 1)) ↔ 1 = (𝐵 / ((2↑(𝐴 + 1)) − 1))))
230 eqeq1 2821 . . . . . . . . . . . . . . 15 (𝑛 = 1 → (𝑛 = 𝐵 ↔ 1 = 𝐵))
231229, 230orbi12d 933 . . . . . . . . . . . . . 14 (𝑛 = 1 → ((𝑛 = (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∨ 𝑛 = 𝐵) ↔ (1 = (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∨ 1 = 𝐵)))
232228, 231imbi12d 335 . . . . . . . . . . . . 13 (𝑛 = 1 → ((𝑛𝐵 → (𝑛 = (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∨ 𝑛 = 𝐵)) ↔ (1 ∥ 𝐵 → (1 = (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∨ 1 = 𝐵))))
233 1nn 11328 . . . . . . . . . . . . . 14 1 ∈ ℕ
234233a1i 11 . . . . . . . . . . . . 13 (𝜑 → 1 ∈ ℕ)
235232, 223, 234rspcdva 3519 . . . . . . . . . . . 12 (𝜑 → (1 ∥ 𝐵 → (1 = (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∨ 1 = 𝐵)))
236227, 235mpd 15 . . . . . . . . . . 11 (𝜑 → (1 = (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∨ 1 = 𝐵))
237236ord 882 . . . . . . . . . 10 (𝜑 → (¬ 1 = (𝐵 / ((2↑(𝐴 + 1)) − 1)) → 1 = 𝐵))
238237necon1ad 3006 . . . . . . . . 9 (𝜑 → (1 ≠ 𝐵 → 1 = (𝐵 / ((2↑(𝐴 + 1)) − 1))))
239225, 238mpd 15 . . . . . . . 8 (𝜑 → 1 = (𝐵 / ((2↑(𝐴 + 1)) − 1)))
240239eqeq2d 2827 . . . . . . 7 (𝜑 → (𝑛 = 1 ↔ 𝑛 = (𝐵 / ((2↑(𝐴 + 1)) − 1))))
241240orbi1d 931 . . . . . 6 (𝜑 → ((𝑛 = 1 ∨ 𝑛 = 𝐵) ↔ (𝑛 = (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∨ 𝑛 = 𝐵)))
242241imbi2d 331 . . . . 5 (𝜑 → ((𝑛𝐵 → (𝑛 = 1 ∨ 𝑛 = 𝐵)) ↔ (𝑛𝐵 → (𝑛 = (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∨ 𝑛 = 𝐵))))
243242ralbidv 3185 . . . 4 (𝜑 → (∀𝑛 ∈ ℕ (𝑛𝐵 → (𝑛 = 1 ∨ 𝑛 = 𝐵)) ↔ ∀𝑛 ∈ ℕ (𝑛𝐵 → (𝑛 = (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∨ 𝑛 = 𝐵))))
244223, 243mpbird 248 . . 3 (𝜑 → ∀𝑛 ∈ ℕ (𝑛𝐵 → (𝑛 = 1 ∨ 𝑛 = 𝐵)))
245 isprm2 15633 . . 3 (𝐵 ∈ ℙ ↔ (𝐵 ∈ (ℤ‘2) ∧ ∀𝑛 ∈ ℕ (𝑛𝐵 → (𝑛 = 1 ∨ 𝑛 = 𝐵))))
24657, 244, 245sylanbrc 574 . 2 (𝜑𝐵 ∈ ℙ)
247211ltp1d 11249 . . . 4 (𝜑 → ((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) < (((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) + 1))
248 peano2re 10504 . . . . . 6 (((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) ∈ ℝ → (((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) + 1) ∈ ℝ)
249211, 248syl 17 . . . . 5 (𝜑 → (((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) + 1) ∈ ℝ)
250211, 249ltnled 10479 . . . 4 (𝜑 → (((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) < (((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) + 1) ↔ ¬ (((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) + 1) ≤ ((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1)))))
251247, 250mpbid 223 . . 3 (𝜑 → ¬ (((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) + 1) ≤ ((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))))
252204nnred 11332 . . . . . . . 8 ((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐵}) → 𝑘 ∈ ℝ)
253204nnnn0d 11637 . . . . . . . . 9 ((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐵}) → 𝑘 ∈ ℕ0)
254253nn0ge0d 11640 . . . . . . . 8 ((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐵}) → 0 ≤ 𝑘)
255 df-tp 4386 . . . . . . . . . 10 {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 1} = ({(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵} ∪ {1})
256 snssi 4540 . . . . . . . . . . . 12 (1 ∈ ℕ → {1} ⊆ ℕ)
257233, 256mp1i 13 . . . . . . . . . . 11 (𝜑 → {1} ⊆ ℕ)
25872, 257unssd 3999 . . . . . . . . . 10 (𝜑 → ({(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵} ∪ {1}) ⊆ ℕ)
259255, 258syl5eqss 3857 . . . . . . . . 9 (𝜑 → {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 1} ⊆ ℕ)
260 eltpi 4432 . . . . . . . . . . 11 (𝑥 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 1} → (𝑥 = (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∨ 𝑥 = 𝐵𝑥 = 1))
261 breq1 4858 . . . . . . . . . . . . 13 (𝑥 = 1 → (𝑥𝐵 ↔ 1 ∥ 𝐵))
262227, 261syl5ibrcom 238 . . . . . . . . . . . 12 (𝜑 → (𝑥 = 1 → 𝑥𝐵))
26389, 95, 2623jaod 1546 . . . . . . . . . . 11 (𝜑 → ((𝑥 = (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∨ 𝑥 = 𝐵𝑥 = 1) → 𝑥𝐵))
264260, 263syl5 34 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 1} → 𝑥𝐵))
265264imp 395 . . . . . . . . 9 ((𝜑𝑥 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 1}) → 𝑥𝐵)
266259, 265ssrabdv 3889 . . . . . . . 8 (𝜑 → {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 1} ⊆ {𝑥 ∈ ℕ ∣ 𝑥𝐵})
26762, 252, 254, 266fsumless 14770 . . . . . . 7 (𝜑 → Σ𝑘 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 1}𝑘 ≤ Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐵}𝑘)
268267adantr 468 . . . . . 6 ((𝜑𝐵 ≠ ((2↑(𝐴 + 1)) − 1)) → Σ𝑘 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 1}𝑘 ≤ Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐵}𝑘)
26952, 84, 85diveq1ad 11105 . . . . . . . . . . . . 13 (𝜑 → ((𝐵 / ((2↑(𝐴 + 1)) − 1)) = 1 ↔ 𝐵 = ((2↑(𝐴 + 1)) − 1)))
270269necon3bid 3033 . . . . . . . . . . . 12 (𝜑 → ((𝐵 / ((2↑(𝐴 + 1)) − 1)) ≠ 1 ↔ 𝐵 ≠ ((2↑(𝐴 + 1)) − 1)))
271270biimpar 465 . . . . . . . . . . 11 ((𝜑𝐵 ≠ ((2↑(𝐴 + 1)) − 1)) → (𝐵 / ((2↑(𝐴 + 1)) − 1)) ≠ 1)
272271necomd 3044 . . . . . . . . . 10 ((𝜑𝐵 ≠ ((2↑(𝐴 + 1)) − 1)) → 1 ≠ (𝐵 / ((2↑(𝐴 + 1)) − 1)))
273225adantr 468 . . . . . . . . . 10 ((𝜑𝐵 ≠ ((2↑(𝐴 + 1)) − 1)) → 1 ≠ 𝐵)
274272, 273nelprd 4408 . . . . . . . . 9 ((𝜑𝐵 ≠ ((2↑(𝐴 + 1)) − 1)) → ¬ 1 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵})
275 disjsn 4449 . . . . . . . . 9 (({(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵} ∩ {1}) = ∅ ↔ ¬ 1 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵})
276274, 275sylibr 225 . . . . . . . 8 ((𝜑𝐵 ≠ ((2↑(𝐴 + 1)) − 1)) → ({(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵} ∩ {1}) = ∅)
277255a1i 11 . . . . . . . 8 ((𝜑𝐵 ≠ ((2↑(𝐴 + 1)) − 1)) → {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 1} = ({(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵} ∪ {1}))
278 tpfi 8485 . . . . . . . . 9 {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 1} ∈ Fin
279278a1i 11 . . . . . . . 8 ((𝜑𝐵 ≠ ((2↑(𝐴 + 1)) − 1)) → {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 1} ∈ Fin)
280259adantr 468 . . . . . . . . . 10 ((𝜑𝐵 ≠ ((2↑(𝐴 + 1)) − 1)) → {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 1} ⊆ ℕ)
281280sselda 3809 . . . . . . . . 9 (((𝜑𝐵 ≠ ((2↑(𝐴 + 1)) − 1)) ∧ 𝑘 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 1}) → 𝑘 ∈ ℕ)
282281nncnd 11333 . . . . . . . 8 (((𝜑𝐵 ≠ ((2↑(𝐴 + 1)) − 1)) ∧ 𝑘 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 1}) → 𝑘 ∈ ℂ)
283276, 277, 279, 282fsumsplit 14714 . . . . . . 7 ((𝜑𝐵 ≠ ((2↑(𝐴 + 1)) − 1)) → Σ𝑘 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 1}𝑘 = (Σ𝑘 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}𝑘 + Σ𝑘 ∈ {1}𝑘))
284 id 22 . . . . . . . . . . 11 (𝑘 = 1 → 𝑘 = 1)
285284sumsn 14718 . . . . . . . . . 10 ((1 ∈ ℝ ∧ 1 ∈ ℂ) → Σ𝑘 ∈ {1}𝑘 = 1)
2862, 27, 285sylancl 576 . . . . . . . . 9 (𝜑 → Σ𝑘 ∈ {1}𝑘 = 1)
287152, 286oveq12d 6902 . . . . . . . 8 (𝜑 → (Σ𝑘 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}𝑘 + Σ𝑘 ∈ {1}𝑘) = (((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) + 1))
288287adantr 468 . . . . . . 7 ((𝜑𝐵 ≠ ((2↑(𝐴 + 1)) − 1)) → (Σ𝑘 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}𝑘 + Σ𝑘 ∈ {1}𝑘) = (((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) + 1))
289283, 288eqtrd 2851 . . . . . 6 ((𝜑𝐵 ≠ ((2↑(𝐴 + 1)) − 1)) → Σ𝑘 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 1}𝑘 = (((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) + 1))
290208adantr 468 . . . . . 6 ((𝜑𝐵 ≠ ((2↑(𝐴 + 1)) − 1)) → Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐵}𝑘 = ((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))))
291268, 289, 2903brtr3d 4886 . . . . 5 ((𝜑𝐵 ≠ ((2↑(𝐴 + 1)) − 1)) → (((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) + 1) ≤ ((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))))
292291ex 399 . . . 4 (𝜑 → (𝐵 ≠ ((2↑(𝐴 + 1)) − 1) → (((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) + 1) ≤ ((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1)))))
293292necon1bd 3007 . . 3 (𝜑 → (¬ (((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) + 1) ≤ ((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) → 𝐵 = ((2↑(𝐴 + 1)) − 1)))
294251, 293mpd 15 . 2 (𝜑𝐵 = ((2↑(𝐴 + 1)) − 1))
295246, 294jca 503 1 (𝜑 → (𝐵 ∈ ℙ ∧ 𝐵 = ((2↑(𝐴 + 1)) − 1)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  wo 865  w3o 1099   = wceq 1637  wcel 2157  wne 2989  wral 3107  {crab 3111  cun 3778  cin 3779  wss 3780  c0 4127  {csn 4381  {cpr 4383  {ctp 4385   class class class wbr 4855  cfv 6111  (class class class)co 6884  Fincfn 8202  cc 10229  cr 10230  0cc0 10231  1c1 10232   + caddc 10234   · cmul 10236   < clt 10369  cle 10370  cmin 10561   / cdiv 10979  cn 11315  2c2 11368  0cn0 11579  cz 11663  cuz 11924  +crp 12066  ...cfz 12569  cexp 13103  Σcsu 14659  cdvds 15223   gcd cgcd 15455  cprime 15623  𝑐ccxp 24539   σ csgm 25059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2069  ax-7 2105  ax-8 2159  ax-9 2166  ax-10 2186  ax-11 2202  ax-12 2215  ax-13 2422  ax-ext 2795  ax-rep 4977  ax-sep 4988  ax-nul 4996  ax-pow 5048  ax-pr 5109  ax-un 7189  ax-inf2 8795  ax-cnex 10287  ax-resscn 10288  ax-1cn 10289  ax-icn 10290  ax-addcl 10291  ax-addrcl 10292  ax-mulcl 10293  ax-mulrcl 10294  ax-mulcom 10295  ax-addass 10296  ax-mulass 10297  ax-distr 10298  ax-i2m1 10299  ax-1ne0 10300  ax-1rid 10301  ax-rnegex 10302  ax-rrecex 10303  ax-cnre 10304  ax-pre-lttri 10305  ax-pre-lttrn 10306  ax-pre-ltadd 10307  ax-pre-mulgt0 10308  ax-pre-sup 10309  ax-addf 10310  ax-mulf 10311
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-fal 1651  df-ex 1860  df-nf 1864  df-sb 2062  df-mo 2635  df-eu 2642  df-clab 2804  df-cleq 2810  df-clel 2813  df-nfc 2948  df-ne 2990  df-nel 3093  df-ral 3112  df-rex 3113  df-reu 3114  df-rmo 3115  df-rab 3116  df-v 3404  df-sbc 3645  df-csb 3740  df-dif 3783  df-un 3785  df-in 3787  df-ss 3794  df-pss 3796  df-nul 4128  df-if 4291  df-pw 4364  df-sn 4382  df-pr 4384  df-tp 4386  df-op 4388  df-uni 4642  df-int 4681  df-iun 4725  df-iin 4726  df-br 4856  df-opab 4918  df-mpt 4935  df-tr 4958  df-id 5232  df-eprel 5237  df-po 5245  df-so 5246  df-fr 5283  df-se 5284  df-we 5285  df-xp 5330  df-rel 5331  df-cnv 5332  df-co 5333  df-dm 5334  df-rn 5335  df-res 5336  df-ima 5337  df-pred 5907  df-ord 5953  df-on 5954  df-lim 5955  df-suc 5956  df-iota 6074  df-fun 6113  df-fn 6114  df-f 6115  df-f1 6116  df-fo 6117  df-f1o 6118  df-fv 6119  df-isom 6120  df-riota 6845  df-ov 6887  df-oprab 6888  df-mpt2 6889  df-of 7137  df-om 7306  df-1st 7408  df-2nd 7409  df-supp 7540  df-wrecs 7652  df-recs 7714  df-rdg 7752  df-1o 7806  df-2o 7807  df-oadd 7810  df-er 7989  df-map 8104  df-pm 8105  df-ixp 8156  df-en 8203  df-dom 8204  df-sdom 8205  df-fin 8206  df-fsupp 8525  df-fi 8566  df-sup 8597  df-inf 8598  df-oi 8664  df-card 9058  df-cda 9285  df-pnf 10371  df-mnf 10372  df-xr 10373  df-ltxr 10374  df-le 10375  df-sub 10563  df-neg 10564  df-div 10980  df-nn 11316  df-2 11376  df-3 11377  df-4 11378  df-5 11379  df-6 11380  df-7 11381  df-8 11382  df-9 11383  df-n0 11580  df-z 11664  df-dec 11780  df-uz 11925  df-q 12028  df-rp 12067  df-xneg 12182  df-xadd 12183  df-xmul 12184  df-ioo 12417  df-ioc 12418  df-ico 12419  df-icc 12420  df-fz 12570  df-fzo 12710  df-fl 12837  df-mod 12913  df-seq 13045  df-exp 13104  df-fac 13301  df-bc 13330  df-hash 13358  df-shft 14050  df-cj 14082  df-re 14083  df-im 14084  df-sqrt 14218  df-abs 14219  df-limsup 14445  df-clim 14462  df-rlim 14463  df-sum 14660  df-ef 15038  df-sin 15040  df-cos 15041  df-pi 15043  df-dvds 15224  df-gcd 15456  df-prm 15624  df-pc 15779  df-struct 16090  df-ndx 16091  df-slot 16092  df-base 16094  df-sets 16095  df-ress 16096  df-plusg 16186  df-mulr 16187  df-starv 16188  df-sca 16189  df-vsca 16190  df-ip 16191  df-tset 16192  df-ple 16193  df-ds 16195  df-unif 16196  df-hom 16197  df-cco 16198  df-rest 16308  df-topn 16309  df-0g 16327  df-gsum 16328  df-topgen 16329  df-pt 16330  df-prds 16333  df-xrs 16387  df-qtop 16392  df-imas 16393  df-xps 16395  df-mre 16471  df-mrc 16472  df-acs 16474  df-mgm 17467  df-sgrp 17509  df-mnd 17520  df-submnd 17561  df-mulg 17766  df-cntz 17971  df-cmn 18416  df-psmet 19966  df-xmet 19967  df-met 19968  df-bl 19969  df-mopn 19970  df-fbas 19971  df-fg 19972  df-cnfld 19975  df-top 20933  df-topon 20950  df-topsp 20972  df-bases 20985  df-cld 21058  df-ntr 21059  df-cls 21060  df-nei 21137  df-lp 21175  df-perf 21176  df-cn 21266  df-cnp 21267  df-haus 21354  df-tx 21600  df-hmeo 21793  df-fil 21884  df-fm 21976  df-flim 21977  df-flf 21978  df-xms 22359  df-ms 22360  df-tms 22361  df-cncf 22915  df-limc 23867  df-dv 23868  df-log 24540  df-cxp 24541  df-sgm 25065
This theorem is referenced by:  perfect  25193
  Copyright terms: Public domain W3C validator