MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ertr2d Structured version   Visualization version   GIF version

Theorem ertr2d 8639
Description: A transitivity relation for equivalences. (Contributed by Mario Carneiro, 9-Jul-2014.)
Hypotheses
Ref Expression
ersymb.1 (𝜑𝑅 Er 𝑋)
ertrd.5 (𝜑𝐴𝑅𝐵)
ertrd.6 (𝜑𝐵𝑅𝐶)
Assertion
Ref Expression
ertr2d (𝜑𝐶𝑅𝐴)

Proof of Theorem ertr2d
StepHypRef Expression
1 ersymb.1 . 2 (𝜑𝑅 Er 𝑋)
2 ertrd.5 . . 3 (𝜑𝐴𝑅𝐵)
3 ertrd.6 . . 3 (𝜑𝐵𝑅𝐶)
41, 2, 3ertrd 8638 . 2 (𝜑𝐴𝑅𝐶)
51, 4ersym 8634 1 (𝜑𝐶𝑅𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   class class class wbr 5089   Er wer 8619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-er 8622
This theorem is referenced by:  pi1xfrcnvlem  24983
  Copyright terms: Public domain W3C validator