|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > ertr3d | Structured version Visualization version GIF version | ||
| Description: A transitivity relation for equivalences. (Contributed by Mario Carneiro, 9-Jul-2014.) | 
| Ref | Expression | 
|---|---|
| ersymb.1 | ⊢ (𝜑 → 𝑅 Er 𝑋) | 
| ertr3d.5 | ⊢ (𝜑 → 𝐵𝑅𝐴) | 
| ertr3d.6 | ⊢ (𝜑 → 𝐵𝑅𝐶) | 
| Ref | Expression | 
|---|---|
| ertr3d | ⊢ (𝜑 → 𝐴𝑅𝐶) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ersymb.1 | . 2 ⊢ (𝜑 → 𝑅 Er 𝑋) | |
| 2 | ertr3d.5 | . . 3 ⊢ (𝜑 → 𝐵𝑅𝐴) | |
| 3 | 1, 2 | ersym 8758 | . 2 ⊢ (𝜑 → 𝐴𝑅𝐵) | 
| 4 | ertr3d.6 | . 2 ⊢ (𝜑 → 𝐵𝑅𝐶) | |
| 5 | 1, 3, 4 | ertrd 8762 | 1 ⊢ (𝜑 → 𝐴𝑅𝐶) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 class class class wbr 5142 Er wer 8743 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-br 5143 df-opab 5205 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-er 8746 | 
| This theorem is referenced by: nqereq 10976 efgred2 19772 xmetresbl 24448 pcophtb 25063 pi1xfr 25089 pi1xfrcnvlem 25090 erbr3b 32630 prtlem10 38867 | 
| Copyright terms: Public domain | W3C validator |