MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ertr3d Structured version   Visualization version   GIF version

Theorem ertr3d 8640
Description: A transitivity relation for equivalences. (Contributed by Mario Carneiro, 9-Jul-2014.)
Hypotheses
Ref Expression
ersymb.1 (𝜑𝑅 Er 𝑋)
ertr3d.5 (𝜑𝐵𝑅𝐴)
ertr3d.6 (𝜑𝐵𝑅𝐶)
Assertion
Ref Expression
ertr3d (𝜑𝐴𝑅𝐶)

Proof of Theorem ertr3d
StepHypRef Expression
1 ersymb.1 . 2 (𝜑𝑅 Er 𝑋)
2 ertr3d.5 . . 3 (𝜑𝐵𝑅𝐴)
31, 2ersym 8634 . 2 (𝜑𝐴𝑅𝐵)
4 ertr3d.6 . 2 (𝜑𝐵𝑅𝐶)
51, 3, 4ertrd 8638 1 (𝜑𝐴𝑅𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   class class class wbr 5091   Er wer 8619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-br 5092  df-opab 5154  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-er 8622
This theorem is referenced by:  nqereq  10823  efgred2  19663  xmetresbl  24350  pcophtb  24954  pi1xfr  24980  pi1xfrcnvlem  24981  erbr3b  32595  prtlem10  38903
  Copyright terms: Public domain W3C validator