| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ertr3d | Structured version Visualization version GIF version | ||
| Description: A transitivity relation for equivalences. (Contributed by Mario Carneiro, 9-Jul-2014.) |
| Ref | Expression |
|---|---|
| ersymb.1 | ⊢ (𝜑 → 𝑅 Er 𝑋) |
| ertr3d.5 | ⊢ (𝜑 → 𝐵𝑅𝐴) |
| ertr3d.6 | ⊢ (𝜑 → 𝐵𝑅𝐶) |
| Ref | Expression |
|---|---|
| ertr3d | ⊢ (𝜑 → 𝐴𝑅𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ersymb.1 | . 2 ⊢ (𝜑 → 𝑅 Er 𝑋) | |
| 2 | ertr3d.5 | . . 3 ⊢ (𝜑 → 𝐵𝑅𝐴) | |
| 3 | 1, 2 | ersym 8686 | . 2 ⊢ (𝜑 → 𝐴𝑅𝐵) |
| 4 | ertr3d.6 | . 2 ⊢ (𝜑 → 𝐵𝑅𝐶) | |
| 5 | 1, 3, 4 | ertrd 8690 | 1 ⊢ (𝜑 → 𝐴𝑅𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 class class class wbr 5110 Er wer 8671 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-er 8674 |
| This theorem is referenced by: nqereq 10895 efgred2 19690 xmetresbl 24332 pcophtb 24936 pi1xfr 24962 pi1xfrcnvlem 24963 erbr3b 32552 prtlem10 38865 |
| Copyright terms: Public domain | W3C validator |