MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ertr3d Structured version   Visualization version   GIF version

Theorem ertr3d 8781
Description: A transitivity relation for equivalences. (Contributed by Mario Carneiro, 9-Jul-2014.)
Hypotheses
Ref Expression
ersymb.1 (𝜑𝑅 Er 𝑋)
ertr3d.5 (𝜑𝐵𝑅𝐴)
ertr3d.6 (𝜑𝐵𝑅𝐶)
Assertion
Ref Expression
ertr3d (𝜑𝐴𝑅𝐶)

Proof of Theorem ertr3d
StepHypRef Expression
1 ersymb.1 . 2 (𝜑𝑅 Er 𝑋)
2 ertr3d.5 . . 3 (𝜑𝐵𝑅𝐴)
31, 2ersym 8775 . 2 (𝜑𝐴𝑅𝐵)
4 ertr3d.6 . 2 (𝜑𝐵𝑅𝐶)
51, 3, 4ertrd 8779 1 (𝜑𝐴𝑅𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   class class class wbr 5166   Er wer 8760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-er 8763
This theorem is referenced by:  nqereq  11004  efgred2  19795  xmetresbl  24468  pcophtb  25081  pi1xfr  25107  pi1xfrcnvlem  25108  erbr3b  32639  prtlem10  38821
  Copyright terms: Public domain W3C validator