MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pi1xfrcnvlem Structured version   Visualization version   GIF version

Theorem pi1xfrcnvlem 25102
Description: Given a path 𝐹 between two basepoints, there is an induced group homomorphism on the fundamental groups. (Contributed by Mario Carneiro, 12-Feb-2015.) (Proof shortened by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
pi1xfr.p 𝑃 = (𝐽 π1 (𝐹‘0))
pi1xfr.q 𝑄 = (𝐽 π1 (𝐹‘1))
pi1xfr.b 𝐵 = (Base‘𝑃)
pi1xfr.g 𝐺 = ran (𝑔 𝐵 ↦ ⟨[𝑔]( ≃ph𝐽), [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽)⟩)
pi1xfr.j (𝜑𝐽 ∈ (TopOn‘𝑋))
pi1xfr.f (𝜑𝐹 ∈ (II Cn 𝐽))
pi1xfr.i 𝐼 = (𝑥 ∈ (0[,]1) ↦ (𝐹‘(1 − 𝑥)))
pi1xfrcnv.h 𝐻 = ran ( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [(𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩)
Assertion
Ref Expression
pi1xfrcnvlem (𝜑𝐺𝐻)
Distinct variable groups:   𝑔,,𝑥,𝐵   𝑔,𝐹,,𝑥   𝑔,𝐼,,𝑥   ,𝐺   𝜑,𝑔,,𝑥   𝑔,𝐽,,𝑥   𝑃,𝑔,,𝑥   𝑄,𝑔,,𝑥
Allowed substitution hints:   𝐺(𝑥,𝑔)   𝐻(𝑥,𝑔,)   𝑋(𝑥,𝑔,)

Proof of Theorem pi1xfrcnvlem
StepHypRef Expression
1 pi1xfr.g . . . 4 𝐺 = ran (𝑔 𝐵 ↦ ⟨[𝑔]( ≃ph𝐽), [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽)⟩)
2 fvex 6919 . . . . 5 ( ≃ph𝐽) ∈ V
3 ecexg 8747 . . . . 5 (( ≃ph𝐽) ∈ V → [𝑔]( ≃ph𝐽) ∈ V)
42, 3mp1i 13 . . . 4 ((𝜑𝑔 𝐵) → [𝑔]( ≃ph𝐽) ∈ V)
5 ecexg 8747 . . . . 5 (( ≃ph𝐽) ∈ V → [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽) ∈ V)
62, 5mp1i 13 . . . 4 ((𝜑𝑔 𝐵) → [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽) ∈ V)
71, 4, 6fliftcnv 7330 . . 3 (𝜑𝐺 = ran (𝑔 𝐵 ↦ ⟨[(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽), [𝑔]( ≃ph𝐽)⟩))
8 pi1xfr.f . . . . . . . . . . 11 (𝜑𝐹 ∈ (II Cn 𝐽))
9 pi1xfr.i . . . . . . . . . . . 12 𝐼 = (𝑥 ∈ (0[,]1) ↦ (𝐹‘(1 − 𝑥)))
109pcorevcl 25071 . . . . . . . . . . 11 (𝐹 ∈ (II Cn 𝐽) → (𝐼 ∈ (II Cn 𝐽) ∧ (𝐼‘0) = (𝐹‘1) ∧ (𝐼‘1) = (𝐹‘0)))
118, 10syl 17 . . . . . . . . . 10 (𝜑 → (𝐼 ∈ (II Cn 𝐽) ∧ (𝐼‘0) = (𝐹‘1) ∧ (𝐼‘1) = (𝐹‘0)))
1211simp1d 1141 . . . . . . . . 9 (𝜑𝐼 ∈ (II Cn 𝐽))
1312adantr 480 . . . . . . . 8 ((𝜑𝑔 𝐵) → 𝐼 ∈ (II Cn 𝐽))
14 pi1xfr.p . . . . . . . . . . . 12 𝑃 = (𝐽 π1 (𝐹‘0))
15 pi1xfr.j . . . . . . . . . . . 12 (𝜑𝐽 ∈ (TopOn‘𝑋))
16 iitopon 24918 . . . . . . . . . . . . . 14 II ∈ (TopOn‘(0[,]1))
17 cnf2 23272 . . . . . . . . . . . . . 14 ((II ∈ (TopOn‘(0[,]1)) ∧ 𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (II Cn 𝐽)) → 𝐹:(0[,]1)⟶𝑋)
1816, 15, 8, 17mp3an2i 1465 . . . . . . . . . . . . 13 (𝜑𝐹:(0[,]1)⟶𝑋)
19 0elunit 13505 . . . . . . . . . . . . 13 0 ∈ (0[,]1)
20 ffvelcdm 7100 . . . . . . . . . . . . 13 ((𝐹:(0[,]1)⟶𝑋 ∧ 0 ∈ (0[,]1)) → (𝐹‘0) ∈ 𝑋)
2118, 19, 20sylancl 586 . . . . . . . . . . . 12 (𝜑 → (𝐹‘0) ∈ 𝑋)
22 pi1xfr.b . . . . . . . . . . . . 13 𝐵 = (Base‘𝑃)
2322a1i 11 . . . . . . . . . . . 12 (𝜑𝐵 = (Base‘𝑃))
2414, 15, 21, 23pi1eluni 25088 . . . . . . . . . . 11 (𝜑 → (𝑔 𝐵 ↔ (𝑔 ∈ (II Cn 𝐽) ∧ (𝑔‘0) = (𝐹‘0) ∧ (𝑔‘1) = (𝐹‘0))))
2524biimpa 476 . . . . . . . . . 10 ((𝜑𝑔 𝐵) → (𝑔 ∈ (II Cn 𝐽) ∧ (𝑔‘0) = (𝐹‘0) ∧ (𝑔‘1) = (𝐹‘0)))
2625simp1d 1141 . . . . . . . . 9 ((𝜑𝑔 𝐵) → 𝑔 ∈ (II Cn 𝐽))
278adantr 480 . . . . . . . . 9 ((𝜑𝑔 𝐵) → 𝐹 ∈ (II Cn 𝐽))
2825simp3d 1143 . . . . . . . . 9 ((𝜑𝑔 𝐵) → (𝑔‘1) = (𝐹‘0))
2926, 27, 28pcocn 25063 . . . . . . . 8 ((𝜑𝑔 𝐵) → (𝑔(*𝑝𝐽)𝐹) ∈ (II Cn 𝐽))
3011simp3d 1143 . . . . . . . . . . 11 (𝜑 → (𝐼‘1) = (𝐹‘0))
3130adantr 480 . . . . . . . . . 10 ((𝜑𝑔 𝐵) → (𝐼‘1) = (𝐹‘0))
3225simp2d 1142 . . . . . . . . . 10 ((𝜑𝑔 𝐵) → (𝑔‘0) = (𝐹‘0))
3331, 32eqtr4d 2777 . . . . . . . . 9 ((𝜑𝑔 𝐵) → (𝐼‘1) = (𝑔‘0))
3426, 27pco0 25060 . . . . . . . . 9 ((𝜑𝑔 𝐵) → ((𝑔(*𝑝𝐽)𝐹)‘0) = (𝑔‘0))
3533, 34eqtr4d 2777 . . . . . . . 8 ((𝜑𝑔 𝐵) → (𝐼‘1) = ((𝑔(*𝑝𝐽)𝐹)‘0))
3613, 29, 35pcocn 25063 . . . . . . 7 ((𝜑𝑔 𝐵) → (𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹)) ∈ (II Cn 𝐽))
3713, 29pco0 25060 . . . . . . . 8 ((𝜑𝑔 𝐵) → ((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))‘0) = (𝐼‘0))
3811simp2d 1142 . . . . . . . . 9 (𝜑 → (𝐼‘0) = (𝐹‘1))
3938adantr 480 . . . . . . . 8 ((𝜑𝑔 𝐵) → (𝐼‘0) = (𝐹‘1))
4037, 39eqtrd 2774 . . . . . . 7 ((𝜑𝑔 𝐵) → ((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))‘0) = (𝐹‘1))
4113, 29pco1 25061 . . . . . . . 8 ((𝜑𝑔 𝐵) → ((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))‘1) = ((𝑔(*𝑝𝐽)𝐹)‘1))
4226, 27pco1 25061 . . . . . . . 8 ((𝜑𝑔 𝐵) → ((𝑔(*𝑝𝐽)𝐹)‘1) = (𝐹‘1))
4341, 42eqtrd 2774 . . . . . . 7 ((𝜑𝑔 𝐵) → ((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))‘1) = (𝐹‘1))
44 pi1xfr.q . . . . . . . . 9 𝑄 = (𝐽 π1 (𝐹‘1))
45 1elunit 13506 . . . . . . . . . 10 1 ∈ (0[,]1)
46 ffvelcdm 7100 . . . . . . . . . 10 ((𝐹:(0[,]1)⟶𝑋 ∧ 1 ∈ (0[,]1)) → (𝐹‘1) ∈ 𝑋)
4718, 45, 46sylancl 586 . . . . . . . . 9 (𝜑 → (𝐹‘1) ∈ 𝑋)
48 eqidd 2735 . . . . . . . . 9 (𝜑 → (Base‘𝑄) = (Base‘𝑄))
4944, 15, 47, 48pi1eluni 25088 . . . . . . . 8 (𝜑 → ((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹)) ∈ (Base‘𝑄) ↔ ((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹)) ∈ (II Cn 𝐽) ∧ ((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))‘0) = (𝐹‘1) ∧ ((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))‘1) = (𝐹‘1))))
5049adantr 480 . . . . . . 7 ((𝜑𝑔 𝐵) → ((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹)) ∈ (Base‘𝑄) ↔ ((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹)) ∈ (II Cn 𝐽) ∧ ((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))‘0) = (𝐹‘1) ∧ ((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))‘1) = (𝐹‘1))))
5136, 40, 43, 50mpbir3and 1341 . . . . . 6 ((𝜑𝑔 𝐵) → (𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹)) ∈ (Base‘𝑄))
52 eqidd 2735 . . . . . 6 (𝜑 → (𝑔 𝐵 ↦ (𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))) = (𝑔 𝐵 ↦ (𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))))
53 eqidd 2735 . . . . . 6 (𝜑 → ( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [(𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩) = ( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [(𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩))
54 eceq1 8782 . . . . . . 7 ( = (𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹)) → []( ≃ph𝐽) = [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽))
55 oveq1 7437 . . . . . . . . 9 ( = (𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹)) → ((*𝑝𝐽)𝐼) = ((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))(*𝑝𝐽)𝐼))
5655oveq2d 7446 . . . . . . . 8 ( = (𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹)) → (𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼)) = (𝐹(*𝑝𝐽)((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))(*𝑝𝐽)𝐼)))
5756eceq1d 8783 . . . . . . 7 ( = (𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹)) → [(𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽) = [(𝐹(*𝑝𝐽)((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))(*𝑝𝐽)𝐼))]( ≃ph𝐽))
5854, 57opeq12d 4885 . . . . . 6 ( = (𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹)) → ⟨[]( ≃ph𝐽), [(𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩ = ⟨[(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽), [(𝐹(*𝑝𝐽)((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))(*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩)
5951, 52, 53, 58fmptco 7148 . . . . 5 (𝜑 → (( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [(𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩) ∘ (𝑔 𝐵 ↦ (𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹)))) = (𝑔 𝐵 ↦ ⟨[(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽), [(𝐹(*𝑝𝐽)((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))(*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩))
60 phtpcer 25040 . . . . . . . . 9 ( ≃ph𝐽) Er (II Cn 𝐽)
6160a1i 11 . . . . . . . 8 ((𝜑𝑔 𝐵) → ( ≃ph𝐽) Er (II Cn 𝐽))
6213, 26pco0 25060 . . . . . . . . . . 11 ((𝜑𝑔 𝐵) → ((𝐼(*𝑝𝐽)𝑔)‘0) = (𝐼‘0))
6362, 39eqtr2d 2775 . . . . . . . . . 10 ((𝜑𝑔 𝐵) → (𝐹‘1) = ((𝐼(*𝑝𝐽)𝑔)‘0))
6461, 27erref 8763 . . . . . . . . . 10 ((𝜑𝑔 𝐵) → 𝐹( ≃ph𝐽)𝐹)
6561, 13erref 8763 . . . . . . . . . . . 12 ((𝜑𝑔 𝐵) → 𝐼( ≃ph𝐽)𝐼)
66 eqid 2734 . . . . . . . . . . . . . . 15 ((0[,]1) × {(𝐹‘0)}) = ((0[,]1) × {(𝐹‘0)})
6766pcopt2 25069 . . . . . . . . . . . . . 14 ((𝑔 ∈ (II Cn 𝐽) ∧ (𝑔‘1) = (𝐹‘0)) → (𝑔(*𝑝𝐽)((0[,]1) × {(𝐹‘0)}))( ≃ph𝐽)𝑔)
6826, 28, 67syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑔 𝐵) → (𝑔(*𝑝𝐽)((0[,]1) × {(𝐹‘0)}))( ≃ph𝐽)𝑔)
6939eqcomd 2740 . . . . . . . . . . . . . . 15 ((𝜑𝑔 𝐵) → (𝐹‘1) = (𝐼‘0))
70 eqid 2734 . . . . . . . . . . . . . . 15 (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2)))) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2))))
7126, 27, 13, 28, 69, 70pcoass 25070 . . . . . . . . . . . . . 14 ((𝜑𝑔 𝐵) → ((𝑔(*𝑝𝐽)𝐹)(*𝑝𝐽)𝐼)( ≃ph𝐽)(𝑔(*𝑝𝐽)(𝐹(*𝑝𝐽)𝐼)))
7227, 13pco0 25060 . . . . . . . . . . . . . . . 16 ((𝜑𝑔 𝐵) → ((𝐹(*𝑝𝐽)𝐼)‘0) = (𝐹‘0))
7328, 72eqtr4d 2777 . . . . . . . . . . . . . . 15 ((𝜑𝑔 𝐵) → (𝑔‘1) = ((𝐹(*𝑝𝐽)𝐼)‘0))
7461, 26erref 8763 . . . . . . . . . . . . . . 15 ((𝜑𝑔 𝐵) → 𝑔( ≃ph𝐽)𝑔)
759, 66pcorev2 25074 . . . . . . . . . . . . . . . 16 (𝐹 ∈ (II Cn 𝐽) → (𝐹(*𝑝𝐽)𝐼)( ≃ph𝐽)((0[,]1) × {(𝐹‘0)}))
7627, 75syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑔 𝐵) → (𝐹(*𝑝𝐽)𝐼)( ≃ph𝐽)((0[,]1) × {(𝐹‘0)}))
7773, 74, 76pcohtpy 25066 . . . . . . . . . . . . . 14 ((𝜑𝑔 𝐵) → (𝑔(*𝑝𝐽)(𝐹(*𝑝𝐽)𝐼))( ≃ph𝐽)(𝑔(*𝑝𝐽)((0[,]1) × {(𝐹‘0)})))
7861, 71, 77ertr2d 8760 . . . . . . . . . . . . 13 ((𝜑𝑔 𝐵) → (𝑔(*𝑝𝐽)((0[,]1) × {(𝐹‘0)}))( ≃ph𝐽)((𝑔(*𝑝𝐽)𝐹)(*𝑝𝐽)𝐼))
7961, 68, 78ertr3d 8761 . . . . . . . . . . . 12 ((𝜑𝑔 𝐵) → 𝑔( ≃ph𝐽)((𝑔(*𝑝𝐽)𝐹)(*𝑝𝐽)𝐼))
8033, 65, 79pcohtpy 25066 . . . . . . . . . . 11 ((𝜑𝑔 𝐵) → (𝐼(*𝑝𝐽)𝑔)( ≃ph𝐽)(𝐼(*𝑝𝐽)((𝑔(*𝑝𝐽)𝐹)(*𝑝𝐽)𝐼)))
8142, 39eqtr4d 2777 . . . . . . . . . . . 12 ((𝜑𝑔 𝐵) → ((𝑔(*𝑝𝐽)𝐹)‘1) = (𝐼‘0))
8213, 29, 13, 35, 81, 70pcoass 25070 . . . . . . . . . . 11 ((𝜑𝑔 𝐵) → ((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))(*𝑝𝐽)𝐼)( ≃ph𝐽)(𝐼(*𝑝𝐽)((𝑔(*𝑝𝐽)𝐹)(*𝑝𝐽)𝐼)))
8361, 80, 82ertr4d 8762 . . . . . . . . . 10 ((𝜑𝑔 𝐵) → (𝐼(*𝑝𝐽)𝑔)( ≃ph𝐽)((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))(*𝑝𝐽)𝐼))
8463, 64, 83pcohtpy 25066 . . . . . . . . 9 ((𝜑𝑔 𝐵) → (𝐹(*𝑝𝐽)(𝐼(*𝑝𝐽)𝑔))( ≃ph𝐽)(𝐹(*𝑝𝐽)((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))(*𝑝𝐽)𝐼)))
8527, 13, 26, 69, 33, 70pcoass 25070 . . . . . . . . . 10 ((𝜑𝑔 𝐵) → ((𝐹(*𝑝𝐽)𝐼)(*𝑝𝐽)𝑔)( ≃ph𝐽)(𝐹(*𝑝𝐽)(𝐼(*𝑝𝐽)𝑔)))
8627, 13pco1 25061 . . . . . . . . . . . . 13 ((𝜑𝑔 𝐵) → ((𝐹(*𝑝𝐽)𝐼)‘1) = (𝐼‘1))
8786, 33eqtrd 2774 . . . . . . . . . . . 12 ((𝜑𝑔 𝐵) → ((𝐹(*𝑝𝐽)𝐼)‘1) = (𝑔‘0))
8887, 76, 74pcohtpy 25066 . . . . . . . . . . 11 ((𝜑𝑔 𝐵) → ((𝐹(*𝑝𝐽)𝐼)(*𝑝𝐽)𝑔)( ≃ph𝐽)(((0[,]1) × {(𝐹‘0)})(*𝑝𝐽)𝑔))
8966pcopt 25068 . . . . . . . . . . . 12 ((𝑔 ∈ (II Cn 𝐽) ∧ (𝑔‘0) = (𝐹‘0)) → (((0[,]1) × {(𝐹‘0)})(*𝑝𝐽)𝑔)( ≃ph𝐽)𝑔)
9026, 32, 89syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑔 𝐵) → (((0[,]1) × {(𝐹‘0)})(*𝑝𝐽)𝑔)( ≃ph𝐽)𝑔)
9161, 88, 90ertrd 8759 . . . . . . . . . 10 ((𝜑𝑔 𝐵) → ((𝐹(*𝑝𝐽)𝐼)(*𝑝𝐽)𝑔)( ≃ph𝐽)𝑔)
9261, 85, 91ertr3d 8761 . . . . . . . . 9 ((𝜑𝑔 𝐵) → (𝐹(*𝑝𝐽)(𝐼(*𝑝𝐽)𝑔))( ≃ph𝐽)𝑔)
9361, 84, 92ertr3d 8761 . . . . . . . 8 ((𝜑𝑔 𝐵) → (𝐹(*𝑝𝐽)((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))(*𝑝𝐽)𝐼))( ≃ph𝐽)𝑔)
9461, 93erthi 8796 . . . . . . 7 ((𝜑𝑔 𝐵) → [(𝐹(*𝑝𝐽)((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))(*𝑝𝐽)𝐼))]( ≃ph𝐽) = [𝑔]( ≃ph𝐽))
9594opeq2d 4884 . . . . . 6 ((𝜑𝑔 𝐵) → ⟨[(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽), [(𝐹(*𝑝𝐽)((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))(*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩ = ⟨[(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽), [𝑔]( ≃ph𝐽)⟩)
9695mpteq2dva 5247 . . . . 5 (𝜑 → (𝑔 𝐵 ↦ ⟨[(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽), [(𝐹(*𝑝𝐽)((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))(*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩) = (𝑔 𝐵 ↦ ⟨[(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽), [𝑔]( ≃ph𝐽)⟩))
9759, 96eqtrd 2774 . . . 4 (𝜑 → (( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [(𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩) ∘ (𝑔 𝐵 ↦ (𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹)))) = (𝑔 𝐵 ↦ ⟨[(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽), [𝑔]( ≃ph𝐽)⟩))
9897rneqd 5951 . . 3 (𝜑 → ran (( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [(𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩) ∘ (𝑔 𝐵 ↦ (𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹)))) = ran (𝑔 𝐵 ↦ ⟨[(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽), [𝑔]( ≃ph𝐽)⟩))
997, 98eqtr4d 2777 . 2 (𝜑𝐺 = ran (( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [(𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩) ∘ (𝑔 𝐵 ↦ (𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹)))))
100 rncoss 5988 . . 3 ran (( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [(𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩) ∘ (𝑔 𝐵 ↦ (𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹)))) ⊆ ran ( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [(𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩)
101 pi1xfrcnv.h . . 3 𝐻 = ran ( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [(𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩)
102100, 101sseqtrri 4032 . 2 ran (( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [(𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩) ∘ (𝑔 𝐵 ↦ (𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹)))) ⊆ 𝐻
10399, 102eqsstrdi 4049 1 (𝜑𝐺𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1536  wcel 2105  Vcvv 3477  wss 3962  ifcif 4530  {csn 4630  cop 4636   cuni 4911   class class class wbr 5147  cmpt 5230   × cxp 5686  ccnv 5687  ran crn 5689  ccom 5692  wf 6558  cfv 6562  (class class class)co 7430   Er wer 8740  [cec 8741  0cc0 11152  1c1 11153   + caddc 11155   · cmul 11157  cle 11293  cmin 11489   / cdiv 11917  2c2 12318  4c4 12320  [,]cicc 13386  Basecbs 17244  TopOnctopon 22931   Cn ccn 23247  IIcii 24914  phcphtpc 25014  *𝑝cpco 25046   π1 cpi1 25049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230  ax-addf 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-iin 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-of 7696  df-om 7887  df-1st 8012  df-2nd 8013  df-supp 8184  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-er 8743  df-ec 8745  df-qs 8749  df-map 8866  df-ixp 8936  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fsupp 9399  df-fi 9448  df-sup 9479  df-inf 9480  df-oi 9547  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-z 12611  df-dec 12731  df-uz 12876  df-q 12988  df-rp 13032  df-xneg 13151  df-xadd 13152  df-xmul 13153  df-ioo 13387  df-icc 13390  df-fz 13544  df-fzo 13691  df-seq 14039  df-exp 14099  df-hash 14366  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17468  df-topn 17469  df-0g 17487  df-gsum 17488  df-topgen 17489  df-pt 17490  df-prds 17493  df-xrs 17548  df-qtop 17553  df-imas 17554  df-qus 17555  df-xps 17556  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-submnd 18809  df-mulg 19098  df-cntz 19347  df-cmn 19814  df-psmet 21373  df-xmet 21374  df-met 21375  df-bl 21376  df-mopn 21377  df-cnfld 21382  df-top 22915  df-topon 22932  df-topsp 22954  df-bases 22968  df-cld 23042  df-cn 23250  df-cnp 23251  df-tx 23585  df-hmeo 23778  df-xms 24345  df-ms 24346  df-tms 24347  df-ii 24916  df-htpy 25015  df-phtpy 25016  df-phtpc 25037  df-pco 25051  df-om1 25052  df-pi1 25054
This theorem is referenced by:  pi1xfrcnv  25103
  Copyright terms: Public domain W3C validator