MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pi1xfrcnvlem Structured version   Visualization version   GIF version

Theorem pi1xfrcnvlem 23587
Description: Given a path 𝐹 between two basepoints, there is an induced group homomorphism on the fundamental groups. (Contributed by Mario Carneiro, 12-Feb-2015.) (Proof shortened by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
pi1xfr.p 𝑃 = (𝐽 π1 (𝐹‘0))
pi1xfr.q 𝑄 = (𝐽 π1 (𝐹‘1))
pi1xfr.b 𝐵 = (Base‘𝑃)
pi1xfr.g 𝐺 = ran (𝑔 𝐵 ↦ ⟨[𝑔]( ≃ph𝐽), [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽)⟩)
pi1xfr.j (𝜑𝐽 ∈ (TopOn‘𝑋))
pi1xfr.f (𝜑𝐹 ∈ (II Cn 𝐽))
pi1xfr.i 𝐼 = (𝑥 ∈ (0[,]1) ↦ (𝐹‘(1 − 𝑥)))
pi1xfrcnv.h 𝐻 = ran ( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [(𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩)
Assertion
Ref Expression
pi1xfrcnvlem (𝜑𝐺𝐻)
Distinct variable groups:   𝑔,,𝑥,𝐵   𝑔,𝐹,,𝑥   𝑔,𝐼,,𝑥   ,𝐺   𝜑,𝑔,,𝑥   𝑔,𝐽,,𝑥   𝑃,𝑔,,𝑥   𝑄,𝑔,,𝑥
Allowed substitution hints:   𝐺(𝑥,𝑔)   𝐻(𝑥,𝑔,)   𝑋(𝑥,𝑔,)

Proof of Theorem pi1xfrcnvlem
StepHypRef Expression
1 pi1xfr.g . . . 4 𝐺 = ran (𝑔 𝐵 ↦ ⟨[𝑔]( ≃ph𝐽), [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽)⟩)
2 fvex 6676 . . . . 5 ( ≃ph𝐽) ∈ V
3 ecexg 8282 . . . . 5 (( ≃ph𝐽) ∈ V → [𝑔]( ≃ph𝐽) ∈ V)
42, 3mp1i 13 . . . 4 ((𝜑𝑔 𝐵) → [𝑔]( ≃ph𝐽) ∈ V)
5 ecexg 8282 . . . . 5 (( ≃ph𝐽) ∈ V → [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽) ∈ V)
62, 5mp1i 13 . . . 4 ((𝜑𝑔 𝐵) → [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽) ∈ V)
71, 4, 6fliftcnv 7053 . . 3 (𝜑𝐺 = ran (𝑔 𝐵 ↦ ⟨[(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽), [𝑔]( ≃ph𝐽)⟩))
8 pi1xfr.f . . . . . . . . . . 11 (𝜑𝐹 ∈ (II Cn 𝐽))
9 pi1xfr.i . . . . . . . . . . . 12 𝐼 = (𝑥 ∈ (0[,]1) ↦ (𝐹‘(1 − 𝑥)))
109pcorevcl 23556 . . . . . . . . . . 11 (𝐹 ∈ (II Cn 𝐽) → (𝐼 ∈ (II Cn 𝐽) ∧ (𝐼‘0) = (𝐹‘1) ∧ (𝐼‘1) = (𝐹‘0)))
118, 10syl 17 . . . . . . . . . 10 (𝜑 → (𝐼 ∈ (II Cn 𝐽) ∧ (𝐼‘0) = (𝐹‘1) ∧ (𝐼‘1) = (𝐹‘0)))
1211simp1d 1134 . . . . . . . . 9 (𝜑𝐼 ∈ (II Cn 𝐽))
1312adantr 481 . . . . . . . 8 ((𝜑𝑔 𝐵) → 𝐼 ∈ (II Cn 𝐽))
14 pi1xfr.p . . . . . . . . . . . 12 𝑃 = (𝐽 π1 (𝐹‘0))
15 pi1xfr.j . . . . . . . . . . . 12 (𝜑𝐽 ∈ (TopOn‘𝑋))
16 iitopon 23414 . . . . . . . . . . . . . 14 II ∈ (TopOn‘(0[,]1))
17 cnf2 21785 . . . . . . . . . . . . . 14 ((II ∈ (TopOn‘(0[,]1)) ∧ 𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (II Cn 𝐽)) → 𝐹:(0[,]1)⟶𝑋)
1816, 15, 8, 17mp3an2i 1457 . . . . . . . . . . . . 13 (𝜑𝐹:(0[,]1)⟶𝑋)
19 0elunit 12843 . . . . . . . . . . . . 13 0 ∈ (0[,]1)
20 ffvelrn 6841 . . . . . . . . . . . . 13 ((𝐹:(0[,]1)⟶𝑋 ∧ 0 ∈ (0[,]1)) → (𝐹‘0) ∈ 𝑋)
2118, 19, 20sylancl 586 . . . . . . . . . . . 12 (𝜑 → (𝐹‘0) ∈ 𝑋)
22 pi1xfr.b . . . . . . . . . . . . 13 𝐵 = (Base‘𝑃)
2322a1i 11 . . . . . . . . . . . 12 (𝜑𝐵 = (Base‘𝑃))
2414, 15, 21, 23pi1eluni 23573 . . . . . . . . . . 11 (𝜑 → (𝑔 𝐵 ↔ (𝑔 ∈ (II Cn 𝐽) ∧ (𝑔‘0) = (𝐹‘0) ∧ (𝑔‘1) = (𝐹‘0))))
2524biimpa 477 . . . . . . . . . 10 ((𝜑𝑔 𝐵) → (𝑔 ∈ (II Cn 𝐽) ∧ (𝑔‘0) = (𝐹‘0) ∧ (𝑔‘1) = (𝐹‘0)))
2625simp1d 1134 . . . . . . . . 9 ((𝜑𝑔 𝐵) → 𝑔 ∈ (II Cn 𝐽))
278adantr 481 . . . . . . . . 9 ((𝜑𝑔 𝐵) → 𝐹 ∈ (II Cn 𝐽))
2825simp3d 1136 . . . . . . . . 9 ((𝜑𝑔 𝐵) → (𝑔‘1) = (𝐹‘0))
2926, 27, 28pcocn 23548 . . . . . . . 8 ((𝜑𝑔 𝐵) → (𝑔(*𝑝𝐽)𝐹) ∈ (II Cn 𝐽))
3011simp3d 1136 . . . . . . . . . . 11 (𝜑 → (𝐼‘1) = (𝐹‘0))
3130adantr 481 . . . . . . . . . 10 ((𝜑𝑔 𝐵) → (𝐼‘1) = (𝐹‘0))
3225simp2d 1135 . . . . . . . . . 10 ((𝜑𝑔 𝐵) → (𝑔‘0) = (𝐹‘0))
3331, 32eqtr4d 2856 . . . . . . . . 9 ((𝜑𝑔 𝐵) → (𝐼‘1) = (𝑔‘0))
3426, 27pco0 23545 . . . . . . . . 9 ((𝜑𝑔 𝐵) → ((𝑔(*𝑝𝐽)𝐹)‘0) = (𝑔‘0))
3533, 34eqtr4d 2856 . . . . . . . 8 ((𝜑𝑔 𝐵) → (𝐼‘1) = ((𝑔(*𝑝𝐽)𝐹)‘0))
3613, 29, 35pcocn 23548 . . . . . . 7 ((𝜑𝑔 𝐵) → (𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹)) ∈ (II Cn 𝐽))
3713, 29pco0 23545 . . . . . . . 8 ((𝜑𝑔 𝐵) → ((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))‘0) = (𝐼‘0))
3811simp2d 1135 . . . . . . . . 9 (𝜑 → (𝐼‘0) = (𝐹‘1))
3938adantr 481 . . . . . . . 8 ((𝜑𝑔 𝐵) → (𝐼‘0) = (𝐹‘1))
4037, 39eqtrd 2853 . . . . . . 7 ((𝜑𝑔 𝐵) → ((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))‘0) = (𝐹‘1))
4113, 29pco1 23546 . . . . . . . 8 ((𝜑𝑔 𝐵) → ((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))‘1) = ((𝑔(*𝑝𝐽)𝐹)‘1))
4226, 27pco1 23546 . . . . . . . 8 ((𝜑𝑔 𝐵) → ((𝑔(*𝑝𝐽)𝐹)‘1) = (𝐹‘1))
4341, 42eqtrd 2853 . . . . . . 7 ((𝜑𝑔 𝐵) → ((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))‘1) = (𝐹‘1))
44 pi1xfr.q . . . . . . . . 9 𝑄 = (𝐽 π1 (𝐹‘1))
45 1elunit 12844 . . . . . . . . . 10 1 ∈ (0[,]1)
46 ffvelrn 6841 . . . . . . . . . 10 ((𝐹:(0[,]1)⟶𝑋 ∧ 1 ∈ (0[,]1)) → (𝐹‘1) ∈ 𝑋)
4718, 45, 46sylancl 586 . . . . . . . . 9 (𝜑 → (𝐹‘1) ∈ 𝑋)
48 eqidd 2819 . . . . . . . . 9 (𝜑 → (Base‘𝑄) = (Base‘𝑄))
4944, 15, 47, 48pi1eluni 23573 . . . . . . . 8 (𝜑 → ((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹)) ∈ (Base‘𝑄) ↔ ((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹)) ∈ (II Cn 𝐽) ∧ ((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))‘0) = (𝐹‘1) ∧ ((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))‘1) = (𝐹‘1))))
5049adantr 481 . . . . . . 7 ((𝜑𝑔 𝐵) → ((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹)) ∈ (Base‘𝑄) ↔ ((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹)) ∈ (II Cn 𝐽) ∧ ((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))‘0) = (𝐹‘1) ∧ ((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))‘1) = (𝐹‘1))))
5136, 40, 43, 50mpbir3and 1334 . . . . . 6 ((𝜑𝑔 𝐵) → (𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹)) ∈ (Base‘𝑄))
52 eqidd 2819 . . . . . 6 (𝜑 → (𝑔 𝐵 ↦ (𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))) = (𝑔 𝐵 ↦ (𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))))
53 eqidd 2819 . . . . . 6 (𝜑 → ( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [(𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩) = ( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [(𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩))
54 eceq1 8316 . . . . . . 7 ( = (𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹)) → []( ≃ph𝐽) = [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽))
55 oveq1 7152 . . . . . . . . 9 ( = (𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹)) → ((*𝑝𝐽)𝐼) = ((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))(*𝑝𝐽)𝐼))
5655oveq2d 7161 . . . . . . . 8 ( = (𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹)) → (𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼)) = (𝐹(*𝑝𝐽)((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))(*𝑝𝐽)𝐼)))
5756eceq1d 8317 . . . . . . 7 ( = (𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹)) → [(𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽) = [(𝐹(*𝑝𝐽)((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))(*𝑝𝐽)𝐼))]( ≃ph𝐽))
5854, 57opeq12d 4803 . . . . . 6 ( = (𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹)) → ⟨[]( ≃ph𝐽), [(𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩ = ⟨[(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽), [(𝐹(*𝑝𝐽)((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))(*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩)
5951, 52, 53, 58fmptco 6883 . . . . 5 (𝜑 → (( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [(𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩) ∘ (𝑔 𝐵 ↦ (𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹)))) = (𝑔 𝐵 ↦ ⟨[(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽), [(𝐹(*𝑝𝐽)((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))(*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩))
60 phtpcer 23526 . . . . . . . . 9 ( ≃ph𝐽) Er (II Cn 𝐽)
6160a1i 11 . . . . . . . 8 ((𝜑𝑔 𝐵) → ( ≃ph𝐽) Er (II Cn 𝐽))
6213, 26pco0 23545 . . . . . . . . . . 11 ((𝜑𝑔 𝐵) → ((𝐼(*𝑝𝐽)𝑔)‘0) = (𝐼‘0))
6362, 39eqtr2d 2854 . . . . . . . . . 10 ((𝜑𝑔 𝐵) → (𝐹‘1) = ((𝐼(*𝑝𝐽)𝑔)‘0))
6461, 27erref 8298 . . . . . . . . . 10 ((𝜑𝑔 𝐵) → 𝐹( ≃ph𝐽)𝐹)
6561, 13erref 8298 . . . . . . . . . . . 12 ((𝜑𝑔 𝐵) → 𝐼( ≃ph𝐽)𝐼)
66 eqid 2818 . . . . . . . . . . . . . . 15 ((0[,]1) × {(𝐹‘0)}) = ((0[,]1) × {(𝐹‘0)})
6766pcopt2 23554 . . . . . . . . . . . . . 14 ((𝑔 ∈ (II Cn 𝐽) ∧ (𝑔‘1) = (𝐹‘0)) → (𝑔(*𝑝𝐽)((0[,]1) × {(𝐹‘0)}))( ≃ph𝐽)𝑔)
6826, 28, 67syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑔 𝐵) → (𝑔(*𝑝𝐽)((0[,]1) × {(𝐹‘0)}))( ≃ph𝐽)𝑔)
6939eqcomd 2824 . . . . . . . . . . . . . . 15 ((𝜑𝑔 𝐵) → (𝐹‘1) = (𝐼‘0))
70 eqid 2818 . . . . . . . . . . . . . . 15 (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2)))) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2))))
7126, 27, 13, 28, 69, 70pcoass 23555 . . . . . . . . . . . . . 14 ((𝜑𝑔 𝐵) → ((𝑔(*𝑝𝐽)𝐹)(*𝑝𝐽)𝐼)( ≃ph𝐽)(𝑔(*𝑝𝐽)(𝐹(*𝑝𝐽)𝐼)))
7227, 13pco0 23545 . . . . . . . . . . . . . . . 16 ((𝜑𝑔 𝐵) → ((𝐹(*𝑝𝐽)𝐼)‘0) = (𝐹‘0))
7328, 72eqtr4d 2856 . . . . . . . . . . . . . . 15 ((𝜑𝑔 𝐵) → (𝑔‘1) = ((𝐹(*𝑝𝐽)𝐼)‘0))
7461, 26erref 8298 . . . . . . . . . . . . . . 15 ((𝜑𝑔 𝐵) → 𝑔( ≃ph𝐽)𝑔)
759, 66pcorev2 23559 . . . . . . . . . . . . . . . 16 (𝐹 ∈ (II Cn 𝐽) → (𝐹(*𝑝𝐽)𝐼)( ≃ph𝐽)((0[,]1) × {(𝐹‘0)}))
7627, 75syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑔 𝐵) → (𝐹(*𝑝𝐽)𝐼)( ≃ph𝐽)((0[,]1) × {(𝐹‘0)}))
7773, 74, 76pcohtpy 23551 . . . . . . . . . . . . . 14 ((𝜑𝑔 𝐵) → (𝑔(*𝑝𝐽)(𝐹(*𝑝𝐽)𝐼))( ≃ph𝐽)(𝑔(*𝑝𝐽)((0[,]1) × {(𝐹‘0)})))
7861, 71, 77ertr2d 8295 . . . . . . . . . . . . 13 ((𝜑𝑔 𝐵) → (𝑔(*𝑝𝐽)((0[,]1) × {(𝐹‘0)}))( ≃ph𝐽)((𝑔(*𝑝𝐽)𝐹)(*𝑝𝐽)𝐼))
7961, 68, 78ertr3d 8296 . . . . . . . . . . . 12 ((𝜑𝑔 𝐵) → 𝑔( ≃ph𝐽)((𝑔(*𝑝𝐽)𝐹)(*𝑝𝐽)𝐼))
8033, 65, 79pcohtpy 23551 . . . . . . . . . . 11 ((𝜑𝑔 𝐵) → (𝐼(*𝑝𝐽)𝑔)( ≃ph𝐽)(𝐼(*𝑝𝐽)((𝑔(*𝑝𝐽)𝐹)(*𝑝𝐽)𝐼)))
8142, 39eqtr4d 2856 . . . . . . . . . . . 12 ((𝜑𝑔 𝐵) → ((𝑔(*𝑝𝐽)𝐹)‘1) = (𝐼‘0))
8213, 29, 13, 35, 81, 70pcoass 23555 . . . . . . . . . . 11 ((𝜑𝑔 𝐵) → ((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))(*𝑝𝐽)𝐼)( ≃ph𝐽)(𝐼(*𝑝𝐽)((𝑔(*𝑝𝐽)𝐹)(*𝑝𝐽)𝐼)))
8361, 80, 82ertr4d 8297 . . . . . . . . . 10 ((𝜑𝑔 𝐵) → (𝐼(*𝑝𝐽)𝑔)( ≃ph𝐽)((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))(*𝑝𝐽)𝐼))
8463, 64, 83pcohtpy 23551 . . . . . . . . 9 ((𝜑𝑔 𝐵) → (𝐹(*𝑝𝐽)(𝐼(*𝑝𝐽)𝑔))( ≃ph𝐽)(𝐹(*𝑝𝐽)((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))(*𝑝𝐽)𝐼)))
8527, 13, 26, 69, 33, 70pcoass 23555 . . . . . . . . . 10 ((𝜑𝑔 𝐵) → ((𝐹(*𝑝𝐽)𝐼)(*𝑝𝐽)𝑔)( ≃ph𝐽)(𝐹(*𝑝𝐽)(𝐼(*𝑝𝐽)𝑔)))
8627, 13pco1 23546 . . . . . . . . . . . . 13 ((𝜑𝑔 𝐵) → ((𝐹(*𝑝𝐽)𝐼)‘1) = (𝐼‘1))
8786, 33eqtrd 2853 . . . . . . . . . . . 12 ((𝜑𝑔 𝐵) → ((𝐹(*𝑝𝐽)𝐼)‘1) = (𝑔‘0))
8887, 76, 74pcohtpy 23551 . . . . . . . . . . 11 ((𝜑𝑔 𝐵) → ((𝐹(*𝑝𝐽)𝐼)(*𝑝𝐽)𝑔)( ≃ph𝐽)(((0[,]1) × {(𝐹‘0)})(*𝑝𝐽)𝑔))
8966pcopt 23553 . . . . . . . . . . . 12 ((𝑔 ∈ (II Cn 𝐽) ∧ (𝑔‘0) = (𝐹‘0)) → (((0[,]1) × {(𝐹‘0)})(*𝑝𝐽)𝑔)( ≃ph𝐽)𝑔)
9026, 32, 89syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑔 𝐵) → (((0[,]1) × {(𝐹‘0)})(*𝑝𝐽)𝑔)( ≃ph𝐽)𝑔)
9161, 88, 90ertrd 8294 . . . . . . . . . 10 ((𝜑𝑔 𝐵) → ((𝐹(*𝑝𝐽)𝐼)(*𝑝𝐽)𝑔)( ≃ph𝐽)𝑔)
9261, 85, 91ertr3d 8296 . . . . . . . . 9 ((𝜑𝑔 𝐵) → (𝐹(*𝑝𝐽)(𝐼(*𝑝𝐽)𝑔))( ≃ph𝐽)𝑔)
9361, 84, 92ertr3d 8296 . . . . . . . 8 ((𝜑𝑔 𝐵) → (𝐹(*𝑝𝐽)((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))(*𝑝𝐽)𝐼))( ≃ph𝐽)𝑔)
9461, 93erthi 8329 . . . . . . 7 ((𝜑𝑔 𝐵) → [(𝐹(*𝑝𝐽)((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))(*𝑝𝐽)𝐼))]( ≃ph𝐽) = [𝑔]( ≃ph𝐽))
9594opeq2d 4802 . . . . . 6 ((𝜑𝑔 𝐵) → ⟨[(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽), [(𝐹(*𝑝𝐽)((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))(*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩ = ⟨[(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽), [𝑔]( ≃ph𝐽)⟩)
9695mpteq2dva 5152 . . . . 5 (𝜑 → (𝑔 𝐵 ↦ ⟨[(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽), [(𝐹(*𝑝𝐽)((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))(*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩) = (𝑔 𝐵 ↦ ⟨[(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽), [𝑔]( ≃ph𝐽)⟩))
9759, 96eqtrd 2853 . . . 4 (𝜑 → (( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [(𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩) ∘ (𝑔 𝐵 ↦ (𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹)))) = (𝑔 𝐵 ↦ ⟨[(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽), [𝑔]( ≃ph𝐽)⟩))
9897rneqd 5801 . . 3 (𝜑 → ran (( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [(𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩) ∘ (𝑔 𝐵 ↦ (𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹)))) = ran (𝑔 𝐵 ↦ ⟨[(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽), [𝑔]( ≃ph𝐽)⟩))
997, 98eqtr4d 2856 . 2 (𝜑𝐺 = ran (( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [(𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩) ∘ (𝑔 𝐵 ↦ (𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹)))))
100 rncoss 5836 . . 3 ran (( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [(𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩) ∘ (𝑔 𝐵 ↦ (𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹)))) ⊆ ran ( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [(𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩)
101 pi1xfrcnv.h . . 3 𝐻 = ran ( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [(𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩)
102100, 101sseqtrri 4001 . 2 ran (( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [(𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩) ∘ (𝑔 𝐵 ↦ (𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹)))) ⊆ 𝐻
10399, 102eqsstrdi 4018 1 (𝜑𝐺𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wcel 2105  Vcvv 3492  wss 3933  ifcif 4463  {csn 4557  cop 4563   cuni 4830   class class class wbr 5057  cmpt 5137   × cxp 5546  ccnv 5547  ran crn 5549  ccom 5552  wf 6344  cfv 6348  (class class class)co 7145   Er wer 8275  [cec 8276  0cc0 10525  1c1 10526   + caddc 10528   · cmul 10530  cle 10664  cmin 10858   / cdiv 11285  2c2 11680  4c4 11682  [,]cicc 12729  Basecbs 16471  TopOnctopon 21446   Cn ccn 21760  IIcii 23410  phcphtpc 23500  *𝑝cpco 23531   π1 cpi1 23534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603  ax-addf 10604  ax-mulf 10605
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7398  df-om 7570  df-1st 7678  df-2nd 7679  df-supp 7820  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-2o 8092  df-oadd 8095  df-er 8278  df-ec 8280  df-qs 8284  df-map 8397  df-ixp 8450  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-fsupp 8822  df-fi 8863  df-sup 8894  df-inf 8895  df-oi 8962  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-icc 12733  df-fz 12881  df-fzo 13022  df-seq 13358  df-exp 13418  df-hash 13679  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-struct 16473  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-ress 16479  df-plusg 16566  df-mulr 16567  df-starv 16568  df-sca 16569  df-vsca 16570  df-ip 16571  df-tset 16572  df-ple 16573  df-ds 16575  df-unif 16576  df-hom 16577  df-cco 16578  df-rest 16684  df-topn 16685  df-0g 16703  df-gsum 16704  df-topgen 16705  df-pt 16706  df-prds 16709  df-xrs 16763  df-qtop 16768  df-imas 16769  df-qus 16770  df-xps 16771  df-mre 16845  df-mrc 16846  df-acs 16848  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-submnd 17945  df-mulg 18163  df-cntz 18385  df-cmn 18837  df-psmet 20465  df-xmet 20466  df-met 20467  df-bl 20468  df-mopn 20469  df-cnfld 20474  df-top 21430  df-topon 21447  df-topsp 21469  df-bases 21482  df-cld 21555  df-cn 21763  df-cnp 21764  df-tx 22098  df-hmeo 22291  df-xms 22857  df-ms 22858  df-tms 22859  df-ii 23412  df-htpy 23501  df-phtpy 23502  df-phtpc 23523  df-pco 23536  df-om1 23537  df-pi1 23539
This theorem is referenced by:  pi1xfrcnv  23588
  Copyright terms: Public domain W3C validator