Proof of Theorem pi1xfrcnvlem
Step | Hyp | Ref
| Expression |
1 | | pi1xfr.g |
. . . 4
⊢ 𝐺 = ran (𝑔 ∈ ∪ 𝐵 ↦ 〈[𝑔](
≃ph‘𝐽), [(𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)𝐹))]( ≃ph‘𝐽)〉) |
2 | | fvex 6787 |
. . . . 5
⊢ (
≃ph‘𝐽) ∈ V |
3 | | ecexg 8502 |
. . . . 5
⊢ ((
≃ph‘𝐽) ∈ V → [𝑔]( ≃ph‘𝐽) ∈ V) |
4 | 2, 3 | mp1i 13 |
. . . 4
⊢ ((𝜑 ∧ 𝑔 ∈ ∪ 𝐵) → [𝑔]( ≃ph‘𝐽) ∈ V) |
5 | | ecexg 8502 |
. . . . 5
⊢ ((
≃ph‘𝐽) ∈ V → [(𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)𝐹))]( ≃ph‘𝐽) ∈ V) |
6 | 2, 5 | mp1i 13 |
. . . 4
⊢ ((𝜑 ∧ 𝑔 ∈ ∪ 𝐵) → [(𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)𝐹))]( ≃ph‘𝐽) ∈ V) |
7 | 1, 4, 6 | fliftcnv 7182 |
. . 3
⊢ (𝜑 → ◡𝐺 = ran (𝑔 ∈ ∪ 𝐵 ↦ 〈[(𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)𝐹))]( ≃ph‘𝐽), [𝑔]( ≃ph‘𝐽)〉)) |
8 | | pi1xfr.f |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) |
9 | | pi1xfr.i |
. . . . . . . . . . . 12
⊢ 𝐼 = (𝑥 ∈ (0[,]1) ↦ (𝐹‘(1 − 𝑥))) |
10 | 9 | pcorevcl 24188 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ (II Cn 𝐽) → (𝐼 ∈ (II Cn 𝐽) ∧ (𝐼‘0) = (𝐹‘1) ∧ (𝐼‘1) = (𝐹‘0))) |
11 | 8, 10 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐼 ∈ (II Cn 𝐽) ∧ (𝐼‘0) = (𝐹‘1) ∧ (𝐼‘1) = (𝐹‘0))) |
12 | 11 | simp1d 1141 |
. . . . . . . . 9
⊢ (𝜑 → 𝐼 ∈ (II Cn 𝐽)) |
13 | 12 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑔 ∈ ∪ 𝐵) → 𝐼 ∈ (II Cn 𝐽)) |
14 | | pi1xfr.p |
. . . . . . . . . . . 12
⊢ 𝑃 = (𝐽 π1 (𝐹‘0)) |
15 | | pi1xfr.j |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
16 | | iitopon 24042 |
. . . . . . . . . . . . . 14
⊢ II ∈
(TopOn‘(0[,]1)) |
17 | | cnf2 22400 |
. . . . . . . . . . . . . 14
⊢ ((II
∈ (TopOn‘(0[,]1)) ∧ 𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (II Cn 𝐽)) → 𝐹:(0[,]1)⟶𝑋) |
18 | 16, 15, 8, 17 | mp3an2i 1465 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐹:(0[,]1)⟶𝑋) |
19 | | 0elunit 13201 |
. . . . . . . . . . . . 13
⊢ 0 ∈
(0[,]1) |
20 | | ffvelrn 6959 |
. . . . . . . . . . . . 13
⊢ ((𝐹:(0[,]1)⟶𝑋 ∧ 0 ∈ (0[,]1)) →
(𝐹‘0) ∈ 𝑋) |
21 | 18, 19, 20 | sylancl 586 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐹‘0) ∈ 𝑋) |
22 | | pi1xfr.b |
. . . . . . . . . . . . 13
⊢ 𝐵 = (Base‘𝑃) |
23 | 22 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐵 = (Base‘𝑃)) |
24 | 14, 15, 21, 23 | pi1eluni 24205 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑔 ∈ ∪ 𝐵 ↔ (𝑔 ∈ (II Cn 𝐽) ∧ (𝑔‘0) = (𝐹‘0) ∧ (𝑔‘1) = (𝐹‘0)))) |
25 | 24 | biimpa 477 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑔 ∈ ∪ 𝐵) → (𝑔 ∈ (II Cn 𝐽) ∧ (𝑔‘0) = (𝐹‘0) ∧ (𝑔‘1) = (𝐹‘0))) |
26 | 25 | simp1d 1141 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑔 ∈ ∪ 𝐵) → 𝑔 ∈ (II Cn 𝐽)) |
27 | 8 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑔 ∈ ∪ 𝐵) → 𝐹 ∈ (II Cn 𝐽)) |
28 | 25 | simp3d 1143 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑔 ∈ ∪ 𝐵) → (𝑔‘1) = (𝐹‘0)) |
29 | 26, 27, 28 | pcocn 24180 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑔 ∈ ∪ 𝐵) → (𝑔(*𝑝‘𝐽)𝐹) ∈ (II Cn 𝐽)) |
30 | 11 | simp3d 1143 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐼‘1) = (𝐹‘0)) |
31 | 30 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑔 ∈ ∪ 𝐵) → (𝐼‘1) = (𝐹‘0)) |
32 | 25 | simp2d 1142 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑔 ∈ ∪ 𝐵) → (𝑔‘0) = (𝐹‘0)) |
33 | 31, 32 | eqtr4d 2781 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑔 ∈ ∪ 𝐵) → (𝐼‘1) = (𝑔‘0)) |
34 | 26, 27 | pco0 24177 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑔 ∈ ∪ 𝐵) → ((𝑔(*𝑝‘𝐽)𝐹)‘0) = (𝑔‘0)) |
35 | 33, 34 | eqtr4d 2781 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑔 ∈ ∪ 𝐵) → (𝐼‘1) = ((𝑔(*𝑝‘𝐽)𝐹)‘0)) |
36 | 13, 29, 35 | pcocn 24180 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑔 ∈ ∪ 𝐵) → (𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)𝐹)) ∈ (II Cn 𝐽)) |
37 | 13, 29 | pco0 24177 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑔 ∈ ∪ 𝐵) → ((𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)𝐹))‘0) = (𝐼‘0)) |
38 | 11 | simp2d 1142 |
. . . . . . . . 9
⊢ (𝜑 → (𝐼‘0) = (𝐹‘1)) |
39 | 38 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑔 ∈ ∪ 𝐵) → (𝐼‘0) = (𝐹‘1)) |
40 | 37, 39 | eqtrd 2778 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑔 ∈ ∪ 𝐵) → ((𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)𝐹))‘0) = (𝐹‘1)) |
41 | 13, 29 | pco1 24178 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑔 ∈ ∪ 𝐵) → ((𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)𝐹))‘1) = ((𝑔(*𝑝‘𝐽)𝐹)‘1)) |
42 | 26, 27 | pco1 24178 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑔 ∈ ∪ 𝐵) → ((𝑔(*𝑝‘𝐽)𝐹)‘1) = (𝐹‘1)) |
43 | 41, 42 | eqtrd 2778 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑔 ∈ ∪ 𝐵) → ((𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)𝐹))‘1) = (𝐹‘1)) |
44 | | pi1xfr.q |
. . . . . . . . 9
⊢ 𝑄 = (𝐽 π1 (𝐹‘1)) |
45 | | 1elunit 13202 |
. . . . . . . . . 10
⊢ 1 ∈
(0[,]1) |
46 | | ffvelrn 6959 |
. . . . . . . . . 10
⊢ ((𝐹:(0[,]1)⟶𝑋 ∧ 1 ∈ (0[,]1)) →
(𝐹‘1) ∈ 𝑋) |
47 | 18, 45, 46 | sylancl 586 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹‘1) ∈ 𝑋) |
48 | | eqidd 2739 |
. . . . . . . . 9
⊢ (𝜑 → (Base‘𝑄) = (Base‘𝑄)) |
49 | 44, 15, 47, 48 | pi1eluni 24205 |
. . . . . . . 8
⊢ (𝜑 → ((𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)𝐹)) ∈ ∪
(Base‘𝑄) ↔
((𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)𝐹)) ∈ (II Cn 𝐽) ∧ ((𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)𝐹))‘0) = (𝐹‘1) ∧ ((𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)𝐹))‘1) = (𝐹‘1)))) |
50 | 49 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑔 ∈ ∪ 𝐵) → ((𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)𝐹)) ∈ ∪
(Base‘𝑄) ↔
((𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)𝐹)) ∈ (II Cn 𝐽) ∧ ((𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)𝐹))‘0) = (𝐹‘1) ∧ ((𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)𝐹))‘1) = (𝐹‘1)))) |
51 | 36, 40, 43, 50 | mpbir3and 1341 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑔 ∈ ∪ 𝐵) → (𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)𝐹)) ∈ ∪
(Base‘𝑄)) |
52 | | eqidd 2739 |
. . . . . 6
⊢ (𝜑 → (𝑔 ∈ ∪ 𝐵 ↦ (𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)𝐹))) = (𝑔 ∈ ∪ 𝐵 ↦ (𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)𝐹)))) |
53 | | eqidd 2739 |
. . . . . 6
⊢ (𝜑 → (ℎ ∈ ∪
(Base‘𝑄) ↦
〈[ℎ](
≃ph‘𝐽), [(𝐹(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝐼))]( ≃ph‘𝐽)〉) = (ℎ ∈ ∪
(Base‘𝑄) ↦
〈[ℎ](
≃ph‘𝐽), [(𝐹(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝐼))]( ≃ph‘𝐽)〉)) |
54 | | eceq1 8536 |
. . . . . . 7
⊢ (ℎ = (𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)𝐹)) → [ℎ]( ≃ph‘𝐽) = [(𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)𝐹))]( ≃ph‘𝐽)) |
55 | | oveq1 7282 |
. . . . . . . . 9
⊢ (ℎ = (𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)𝐹)) → (ℎ(*𝑝‘𝐽)𝐼) = ((𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)𝐹))(*𝑝‘𝐽)𝐼)) |
56 | 55 | oveq2d 7291 |
. . . . . . . 8
⊢ (ℎ = (𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)𝐹)) → (𝐹(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝐼)) = (𝐹(*𝑝‘𝐽)((𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)𝐹))(*𝑝‘𝐽)𝐼))) |
57 | 56 | eceq1d 8537 |
. . . . . . 7
⊢ (ℎ = (𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)𝐹)) → [(𝐹(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝐼))]( ≃ph‘𝐽) = [(𝐹(*𝑝‘𝐽)((𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)𝐹))(*𝑝‘𝐽)𝐼))]( ≃ph‘𝐽)) |
58 | 54, 57 | opeq12d 4812 |
. . . . . 6
⊢ (ℎ = (𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)𝐹)) → 〈[ℎ]( ≃ph‘𝐽), [(𝐹(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝐼))]( ≃ph‘𝐽)〉 = 〈[(𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)𝐹))]( ≃ph‘𝐽), [(𝐹(*𝑝‘𝐽)((𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)𝐹))(*𝑝‘𝐽)𝐼))]( ≃ph‘𝐽)〉) |
59 | 51, 52, 53, 58 | fmptco 7001 |
. . . . 5
⊢ (𝜑 → ((ℎ ∈ ∪
(Base‘𝑄) ↦
〈[ℎ](
≃ph‘𝐽), [(𝐹(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝐼))]( ≃ph‘𝐽)〉) ∘ (𝑔 ∈ ∪ 𝐵
↦ (𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)𝐹)))) = (𝑔 ∈ ∪ 𝐵 ↦ 〈[(𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)𝐹))]( ≃ph‘𝐽), [(𝐹(*𝑝‘𝐽)((𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)𝐹))(*𝑝‘𝐽)𝐼))]( ≃ph‘𝐽)〉)) |
60 | | phtpcer 24158 |
. . . . . . . . 9
⊢ (
≃ph‘𝐽) Er (II Cn 𝐽) |
61 | 60 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑔 ∈ ∪ 𝐵) → (
≃ph‘𝐽) Er (II Cn 𝐽)) |
62 | 13, 26 | pco0 24177 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑔 ∈ ∪ 𝐵) → ((𝐼(*𝑝‘𝐽)𝑔)‘0) = (𝐼‘0)) |
63 | 62, 39 | eqtr2d 2779 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑔 ∈ ∪ 𝐵) → (𝐹‘1) = ((𝐼(*𝑝‘𝐽)𝑔)‘0)) |
64 | 61, 27 | erref 8518 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑔 ∈ ∪ 𝐵) → 𝐹( ≃ph‘𝐽)𝐹) |
65 | 61, 13 | erref 8518 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑔 ∈ ∪ 𝐵) → 𝐼( ≃ph‘𝐽)𝐼) |
66 | | eqid 2738 |
. . . . . . . . . . . . . . 15
⊢ ((0[,]1)
× {(𝐹‘0)}) =
((0[,]1) × {(𝐹‘0)}) |
67 | 66 | pcopt2 24186 |
. . . . . . . . . . . . . 14
⊢ ((𝑔 ∈ (II Cn 𝐽) ∧ (𝑔‘1) = (𝐹‘0)) → (𝑔(*𝑝‘𝐽)((0[,]1) × {(𝐹‘0)}))(
≃ph‘𝐽)𝑔) |
68 | 26, 28, 67 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑔 ∈ ∪ 𝐵) → (𝑔(*𝑝‘𝐽)((0[,]1) × {(𝐹‘0)}))(
≃ph‘𝐽)𝑔) |
69 | 39 | eqcomd 2744 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑔 ∈ ∪ 𝐵) → (𝐹‘1) = (𝐼‘0)) |
70 | | eqid 2738 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2)))) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2)))) |
71 | 26, 27, 13, 28, 69, 70 | pcoass 24187 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑔 ∈ ∪ 𝐵) → ((𝑔(*𝑝‘𝐽)𝐹)(*𝑝‘𝐽)𝐼)( ≃ph‘𝐽)(𝑔(*𝑝‘𝐽)(𝐹(*𝑝‘𝐽)𝐼))) |
72 | 27, 13 | pco0 24177 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑔 ∈ ∪ 𝐵) → ((𝐹(*𝑝‘𝐽)𝐼)‘0) = (𝐹‘0)) |
73 | 28, 72 | eqtr4d 2781 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑔 ∈ ∪ 𝐵) → (𝑔‘1) = ((𝐹(*𝑝‘𝐽)𝐼)‘0)) |
74 | 61, 26 | erref 8518 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑔 ∈ ∪ 𝐵) → 𝑔( ≃ph‘𝐽)𝑔) |
75 | 9, 66 | pcorev2 24191 |
. . . . . . . . . . . . . . . 16
⊢ (𝐹 ∈ (II Cn 𝐽) → (𝐹(*𝑝‘𝐽)𝐼)( ≃ph‘𝐽)((0[,]1) × {(𝐹‘0)})) |
76 | 27, 75 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑔 ∈ ∪ 𝐵) → (𝐹(*𝑝‘𝐽)𝐼)( ≃ph‘𝐽)((0[,]1) × {(𝐹‘0)})) |
77 | 73, 74, 76 | pcohtpy 24183 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑔 ∈ ∪ 𝐵) → (𝑔(*𝑝‘𝐽)(𝐹(*𝑝‘𝐽)𝐼))( ≃ph‘𝐽)(𝑔(*𝑝‘𝐽)((0[,]1) × {(𝐹‘0)}))) |
78 | 61, 71, 77 | ertr2d 8515 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑔 ∈ ∪ 𝐵) → (𝑔(*𝑝‘𝐽)((0[,]1) × {(𝐹‘0)}))(
≃ph‘𝐽)((𝑔(*𝑝‘𝐽)𝐹)(*𝑝‘𝐽)𝐼)) |
79 | 61, 68, 78 | ertr3d 8516 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑔 ∈ ∪ 𝐵) → 𝑔( ≃ph‘𝐽)((𝑔(*𝑝‘𝐽)𝐹)(*𝑝‘𝐽)𝐼)) |
80 | 33, 65, 79 | pcohtpy 24183 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑔 ∈ ∪ 𝐵) → (𝐼(*𝑝‘𝐽)𝑔)( ≃ph‘𝐽)(𝐼(*𝑝‘𝐽)((𝑔(*𝑝‘𝐽)𝐹)(*𝑝‘𝐽)𝐼))) |
81 | 42, 39 | eqtr4d 2781 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑔 ∈ ∪ 𝐵) → ((𝑔(*𝑝‘𝐽)𝐹)‘1) = (𝐼‘0)) |
82 | 13, 29, 13, 35, 81, 70 | pcoass 24187 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑔 ∈ ∪ 𝐵) → ((𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)𝐹))(*𝑝‘𝐽)𝐼)( ≃ph‘𝐽)(𝐼(*𝑝‘𝐽)((𝑔(*𝑝‘𝐽)𝐹)(*𝑝‘𝐽)𝐼))) |
83 | 61, 80, 82 | ertr4d 8517 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑔 ∈ ∪ 𝐵) → (𝐼(*𝑝‘𝐽)𝑔)( ≃ph‘𝐽)((𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)𝐹))(*𝑝‘𝐽)𝐼)) |
84 | 63, 64, 83 | pcohtpy 24183 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑔 ∈ ∪ 𝐵) → (𝐹(*𝑝‘𝐽)(𝐼(*𝑝‘𝐽)𝑔))( ≃ph‘𝐽)(𝐹(*𝑝‘𝐽)((𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)𝐹))(*𝑝‘𝐽)𝐼))) |
85 | 27, 13, 26, 69, 33, 70 | pcoass 24187 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑔 ∈ ∪ 𝐵) → ((𝐹(*𝑝‘𝐽)𝐼)(*𝑝‘𝐽)𝑔)( ≃ph‘𝐽)(𝐹(*𝑝‘𝐽)(𝐼(*𝑝‘𝐽)𝑔))) |
86 | 27, 13 | pco1 24178 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑔 ∈ ∪ 𝐵) → ((𝐹(*𝑝‘𝐽)𝐼)‘1) = (𝐼‘1)) |
87 | 86, 33 | eqtrd 2778 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑔 ∈ ∪ 𝐵) → ((𝐹(*𝑝‘𝐽)𝐼)‘1) = (𝑔‘0)) |
88 | 87, 76, 74 | pcohtpy 24183 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑔 ∈ ∪ 𝐵) → ((𝐹(*𝑝‘𝐽)𝐼)(*𝑝‘𝐽)𝑔)( ≃ph‘𝐽)(((0[,]1) × {(𝐹‘0)})(*𝑝‘𝐽)𝑔)) |
89 | 66 | pcopt 24185 |
. . . . . . . . . . . 12
⊢ ((𝑔 ∈ (II Cn 𝐽) ∧ (𝑔‘0) = (𝐹‘0)) → (((0[,]1) × {(𝐹‘0)})(*𝑝‘𝐽)𝑔)( ≃ph‘𝐽)𝑔) |
90 | 26, 32, 89 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑔 ∈ ∪ 𝐵) → (((0[,]1) ×
{(𝐹‘0)})(*𝑝‘𝐽)𝑔)( ≃ph‘𝐽)𝑔) |
91 | 61, 88, 90 | ertrd 8514 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑔 ∈ ∪ 𝐵) → ((𝐹(*𝑝‘𝐽)𝐼)(*𝑝‘𝐽)𝑔)( ≃ph‘𝐽)𝑔) |
92 | 61, 85, 91 | ertr3d 8516 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑔 ∈ ∪ 𝐵) → (𝐹(*𝑝‘𝐽)(𝐼(*𝑝‘𝐽)𝑔))( ≃ph‘𝐽)𝑔) |
93 | 61, 84, 92 | ertr3d 8516 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑔 ∈ ∪ 𝐵) → (𝐹(*𝑝‘𝐽)((𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)𝐹))(*𝑝‘𝐽)𝐼))( ≃ph‘𝐽)𝑔) |
94 | 61, 93 | erthi 8549 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑔 ∈ ∪ 𝐵) → [(𝐹(*𝑝‘𝐽)((𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)𝐹))(*𝑝‘𝐽)𝐼))]( ≃ph‘𝐽) = [𝑔]( ≃ph‘𝐽)) |
95 | 94 | opeq2d 4811 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑔 ∈ ∪ 𝐵) → 〈[(𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)𝐹))]( ≃ph‘𝐽), [(𝐹(*𝑝‘𝐽)((𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)𝐹))(*𝑝‘𝐽)𝐼))]( ≃ph‘𝐽)〉 = 〈[(𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)𝐹))]( ≃ph‘𝐽), [𝑔]( ≃ph‘𝐽)〉) |
96 | 95 | mpteq2dva 5174 |
. . . . 5
⊢ (𝜑 → (𝑔 ∈ ∪ 𝐵 ↦ 〈[(𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)𝐹))]( ≃ph‘𝐽), [(𝐹(*𝑝‘𝐽)((𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)𝐹))(*𝑝‘𝐽)𝐼))]( ≃ph‘𝐽)〉) = (𝑔 ∈ ∪ 𝐵 ↦ 〈[(𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)𝐹))]( ≃ph‘𝐽), [𝑔]( ≃ph‘𝐽)〉)) |
97 | 59, 96 | eqtrd 2778 |
. . . 4
⊢ (𝜑 → ((ℎ ∈ ∪
(Base‘𝑄) ↦
〈[ℎ](
≃ph‘𝐽), [(𝐹(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝐼))]( ≃ph‘𝐽)〉) ∘ (𝑔 ∈ ∪ 𝐵
↦ (𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)𝐹)))) = (𝑔 ∈ ∪ 𝐵 ↦ 〈[(𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)𝐹))]( ≃ph‘𝐽), [𝑔]( ≃ph‘𝐽)〉)) |
98 | 97 | rneqd 5847 |
. . 3
⊢ (𝜑 → ran ((ℎ ∈ ∪
(Base‘𝑄) ↦
〈[ℎ](
≃ph‘𝐽), [(𝐹(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝐼))]( ≃ph‘𝐽)〉) ∘ (𝑔 ∈ ∪ 𝐵
↦ (𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)𝐹)))) = ran (𝑔 ∈ ∪ 𝐵 ↦ 〈[(𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)𝐹))]( ≃ph‘𝐽), [𝑔]( ≃ph‘𝐽)〉)) |
99 | 7, 98 | eqtr4d 2781 |
. 2
⊢ (𝜑 → ◡𝐺 = ran ((ℎ ∈ ∪
(Base‘𝑄) ↦
〈[ℎ](
≃ph‘𝐽), [(𝐹(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝐼))]( ≃ph‘𝐽)〉) ∘ (𝑔 ∈ ∪ 𝐵
↦ (𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)𝐹))))) |
100 | | rncoss 5881 |
. . 3
⊢ ran
((ℎ ∈ ∪ (Base‘𝑄) ↦ 〈[ℎ]( ≃ph‘𝐽), [(𝐹(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝐼))]( ≃ph‘𝐽)〉) ∘ (𝑔 ∈ ∪ 𝐵
↦ (𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)𝐹)))) ⊆ ran (ℎ ∈ ∪
(Base‘𝑄) ↦
〈[ℎ](
≃ph‘𝐽), [(𝐹(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝐼))]( ≃ph‘𝐽)〉) |
101 | | pi1xfrcnv.h |
. . 3
⊢ 𝐻 = ran (ℎ ∈ ∪
(Base‘𝑄) ↦
〈[ℎ](
≃ph‘𝐽), [(𝐹(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝐼))]( ≃ph‘𝐽)〉) |
102 | 100, 101 | sseqtrri 3958 |
. 2
⊢ ran
((ℎ ∈ ∪ (Base‘𝑄) ↦ 〈[ℎ]( ≃ph‘𝐽), [(𝐹(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝐼))]( ≃ph‘𝐽)〉) ∘ (𝑔 ∈ ∪ 𝐵
↦ (𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)𝐹)))) ⊆ 𝐻 |
103 | 99, 102 | eqsstrdi 3975 |
1
⊢ (𝜑 → ◡𝐺 ⊆ 𝐻) |