MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pi1xfrcnvlem Structured version   Visualization version   GIF version

Theorem pi1xfrcnvlem 25005
Description: Given a path 𝐹 between two basepoints, there is an induced group homomorphism on the fundamental groups. (Contributed by Mario Carneiro, 12-Feb-2015.) (Proof shortened by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
pi1xfr.p 𝑃 = (𝐽 π1 (𝐹‘0))
pi1xfr.q 𝑄 = (𝐽 π1 (𝐹‘1))
pi1xfr.b 𝐵 = (Base‘𝑃)
pi1xfr.g 𝐺 = ran (𝑔 𝐵 ↦ ⟨[𝑔]( ≃ph𝐽), [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽)⟩)
pi1xfr.j (𝜑𝐽 ∈ (TopOn‘𝑋))
pi1xfr.f (𝜑𝐹 ∈ (II Cn 𝐽))
pi1xfr.i 𝐼 = (𝑥 ∈ (0[,]1) ↦ (𝐹‘(1 − 𝑥)))
pi1xfrcnv.h 𝐻 = ran ( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [(𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩)
Assertion
Ref Expression
pi1xfrcnvlem (𝜑𝐺𝐻)
Distinct variable groups:   𝑔,,𝑥,𝐵   𝑔,𝐹,,𝑥   𝑔,𝐼,,𝑥   ,𝐺   𝜑,𝑔,,𝑥   𝑔,𝐽,,𝑥   𝑃,𝑔,,𝑥   𝑄,𝑔,,𝑥
Allowed substitution hints:   𝐺(𝑥,𝑔)   𝐻(𝑥,𝑔,)   𝑋(𝑥,𝑔,)

Proof of Theorem pi1xfrcnvlem
StepHypRef Expression
1 pi1xfr.g . . . 4 𝐺 = ran (𝑔 𝐵 ↦ ⟨[𝑔]( ≃ph𝐽), [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽)⟩)
2 fvex 6888 . . . . 5 ( ≃ph𝐽) ∈ V
3 ecexg 8721 . . . . 5 (( ≃ph𝐽) ∈ V → [𝑔]( ≃ph𝐽) ∈ V)
42, 3mp1i 13 . . . 4 ((𝜑𝑔 𝐵) → [𝑔]( ≃ph𝐽) ∈ V)
5 ecexg 8721 . . . . 5 (( ≃ph𝐽) ∈ V → [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽) ∈ V)
62, 5mp1i 13 . . . 4 ((𝜑𝑔 𝐵) → [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽) ∈ V)
71, 4, 6fliftcnv 7303 . . 3 (𝜑𝐺 = ran (𝑔 𝐵 ↦ ⟨[(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽), [𝑔]( ≃ph𝐽)⟩))
8 pi1xfr.f . . . . . . . . . . 11 (𝜑𝐹 ∈ (II Cn 𝐽))
9 pi1xfr.i . . . . . . . . . . . 12 𝐼 = (𝑥 ∈ (0[,]1) ↦ (𝐹‘(1 − 𝑥)))
109pcorevcl 24974 . . . . . . . . . . 11 (𝐹 ∈ (II Cn 𝐽) → (𝐼 ∈ (II Cn 𝐽) ∧ (𝐼‘0) = (𝐹‘1) ∧ (𝐼‘1) = (𝐹‘0)))
118, 10syl 17 . . . . . . . . . 10 (𝜑 → (𝐼 ∈ (II Cn 𝐽) ∧ (𝐼‘0) = (𝐹‘1) ∧ (𝐼‘1) = (𝐹‘0)))
1211simp1d 1142 . . . . . . . . 9 (𝜑𝐼 ∈ (II Cn 𝐽))
1312adantr 480 . . . . . . . 8 ((𝜑𝑔 𝐵) → 𝐼 ∈ (II Cn 𝐽))
14 pi1xfr.p . . . . . . . . . . . 12 𝑃 = (𝐽 π1 (𝐹‘0))
15 pi1xfr.j . . . . . . . . . . . 12 (𝜑𝐽 ∈ (TopOn‘𝑋))
16 iitopon 24821 . . . . . . . . . . . . . 14 II ∈ (TopOn‘(0[,]1))
17 cnf2 23185 . . . . . . . . . . . . . 14 ((II ∈ (TopOn‘(0[,]1)) ∧ 𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (II Cn 𝐽)) → 𝐹:(0[,]1)⟶𝑋)
1816, 15, 8, 17mp3an2i 1468 . . . . . . . . . . . . 13 (𝜑𝐹:(0[,]1)⟶𝑋)
19 0elunit 13484 . . . . . . . . . . . . 13 0 ∈ (0[,]1)
20 ffvelcdm 7070 . . . . . . . . . . . . 13 ((𝐹:(0[,]1)⟶𝑋 ∧ 0 ∈ (0[,]1)) → (𝐹‘0) ∈ 𝑋)
2118, 19, 20sylancl 586 . . . . . . . . . . . 12 (𝜑 → (𝐹‘0) ∈ 𝑋)
22 pi1xfr.b . . . . . . . . . . . . 13 𝐵 = (Base‘𝑃)
2322a1i 11 . . . . . . . . . . . 12 (𝜑𝐵 = (Base‘𝑃))
2414, 15, 21, 23pi1eluni 24991 . . . . . . . . . . 11 (𝜑 → (𝑔 𝐵 ↔ (𝑔 ∈ (II Cn 𝐽) ∧ (𝑔‘0) = (𝐹‘0) ∧ (𝑔‘1) = (𝐹‘0))))
2524biimpa 476 . . . . . . . . . 10 ((𝜑𝑔 𝐵) → (𝑔 ∈ (II Cn 𝐽) ∧ (𝑔‘0) = (𝐹‘0) ∧ (𝑔‘1) = (𝐹‘0)))
2625simp1d 1142 . . . . . . . . 9 ((𝜑𝑔 𝐵) → 𝑔 ∈ (II Cn 𝐽))
278adantr 480 . . . . . . . . 9 ((𝜑𝑔 𝐵) → 𝐹 ∈ (II Cn 𝐽))
2825simp3d 1144 . . . . . . . . 9 ((𝜑𝑔 𝐵) → (𝑔‘1) = (𝐹‘0))
2926, 27, 28pcocn 24966 . . . . . . . 8 ((𝜑𝑔 𝐵) → (𝑔(*𝑝𝐽)𝐹) ∈ (II Cn 𝐽))
3011simp3d 1144 . . . . . . . . . . 11 (𝜑 → (𝐼‘1) = (𝐹‘0))
3130adantr 480 . . . . . . . . . 10 ((𝜑𝑔 𝐵) → (𝐼‘1) = (𝐹‘0))
3225simp2d 1143 . . . . . . . . . 10 ((𝜑𝑔 𝐵) → (𝑔‘0) = (𝐹‘0))
3331, 32eqtr4d 2773 . . . . . . . . 9 ((𝜑𝑔 𝐵) → (𝐼‘1) = (𝑔‘0))
3426, 27pco0 24963 . . . . . . . . 9 ((𝜑𝑔 𝐵) → ((𝑔(*𝑝𝐽)𝐹)‘0) = (𝑔‘0))
3533, 34eqtr4d 2773 . . . . . . . 8 ((𝜑𝑔 𝐵) → (𝐼‘1) = ((𝑔(*𝑝𝐽)𝐹)‘0))
3613, 29, 35pcocn 24966 . . . . . . 7 ((𝜑𝑔 𝐵) → (𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹)) ∈ (II Cn 𝐽))
3713, 29pco0 24963 . . . . . . . 8 ((𝜑𝑔 𝐵) → ((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))‘0) = (𝐼‘0))
3811simp2d 1143 . . . . . . . . 9 (𝜑 → (𝐼‘0) = (𝐹‘1))
3938adantr 480 . . . . . . . 8 ((𝜑𝑔 𝐵) → (𝐼‘0) = (𝐹‘1))
4037, 39eqtrd 2770 . . . . . . 7 ((𝜑𝑔 𝐵) → ((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))‘0) = (𝐹‘1))
4113, 29pco1 24964 . . . . . . . 8 ((𝜑𝑔 𝐵) → ((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))‘1) = ((𝑔(*𝑝𝐽)𝐹)‘1))
4226, 27pco1 24964 . . . . . . . 8 ((𝜑𝑔 𝐵) → ((𝑔(*𝑝𝐽)𝐹)‘1) = (𝐹‘1))
4341, 42eqtrd 2770 . . . . . . 7 ((𝜑𝑔 𝐵) → ((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))‘1) = (𝐹‘1))
44 pi1xfr.q . . . . . . . . 9 𝑄 = (𝐽 π1 (𝐹‘1))
45 1elunit 13485 . . . . . . . . . 10 1 ∈ (0[,]1)
46 ffvelcdm 7070 . . . . . . . . . 10 ((𝐹:(0[,]1)⟶𝑋 ∧ 1 ∈ (0[,]1)) → (𝐹‘1) ∈ 𝑋)
4718, 45, 46sylancl 586 . . . . . . . . 9 (𝜑 → (𝐹‘1) ∈ 𝑋)
48 eqidd 2736 . . . . . . . . 9 (𝜑 → (Base‘𝑄) = (Base‘𝑄))
4944, 15, 47, 48pi1eluni 24991 . . . . . . . 8 (𝜑 → ((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹)) ∈ (Base‘𝑄) ↔ ((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹)) ∈ (II Cn 𝐽) ∧ ((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))‘0) = (𝐹‘1) ∧ ((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))‘1) = (𝐹‘1))))
5049adantr 480 . . . . . . 7 ((𝜑𝑔 𝐵) → ((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹)) ∈ (Base‘𝑄) ↔ ((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹)) ∈ (II Cn 𝐽) ∧ ((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))‘0) = (𝐹‘1) ∧ ((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))‘1) = (𝐹‘1))))
5136, 40, 43, 50mpbir3and 1343 . . . . . 6 ((𝜑𝑔 𝐵) → (𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹)) ∈ (Base‘𝑄))
52 eqidd 2736 . . . . . 6 (𝜑 → (𝑔 𝐵 ↦ (𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))) = (𝑔 𝐵 ↦ (𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))))
53 eqidd 2736 . . . . . 6 (𝜑 → ( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [(𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩) = ( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [(𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩))
54 eceq1 8756 . . . . . . 7 ( = (𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹)) → []( ≃ph𝐽) = [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽))
55 oveq1 7410 . . . . . . . . 9 ( = (𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹)) → ((*𝑝𝐽)𝐼) = ((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))(*𝑝𝐽)𝐼))
5655oveq2d 7419 . . . . . . . 8 ( = (𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹)) → (𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼)) = (𝐹(*𝑝𝐽)((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))(*𝑝𝐽)𝐼)))
5756eceq1d 8757 . . . . . . 7 ( = (𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹)) → [(𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽) = [(𝐹(*𝑝𝐽)((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))(*𝑝𝐽)𝐼))]( ≃ph𝐽))
5854, 57opeq12d 4857 . . . . . 6 ( = (𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹)) → ⟨[]( ≃ph𝐽), [(𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩ = ⟨[(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽), [(𝐹(*𝑝𝐽)((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))(*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩)
5951, 52, 53, 58fmptco 7118 . . . . 5 (𝜑 → (( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [(𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩) ∘ (𝑔 𝐵 ↦ (𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹)))) = (𝑔 𝐵 ↦ ⟨[(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽), [(𝐹(*𝑝𝐽)((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))(*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩))
60 phtpcer 24943 . . . . . . . . 9 ( ≃ph𝐽) Er (II Cn 𝐽)
6160a1i 11 . . . . . . . 8 ((𝜑𝑔 𝐵) → ( ≃ph𝐽) Er (II Cn 𝐽))
6213, 26pco0 24963 . . . . . . . . . . 11 ((𝜑𝑔 𝐵) → ((𝐼(*𝑝𝐽)𝑔)‘0) = (𝐼‘0))
6362, 39eqtr2d 2771 . . . . . . . . . 10 ((𝜑𝑔 𝐵) → (𝐹‘1) = ((𝐼(*𝑝𝐽)𝑔)‘0))
6461, 27erref 8737 . . . . . . . . . 10 ((𝜑𝑔 𝐵) → 𝐹( ≃ph𝐽)𝐹)
6561, 13erref 8737 . . . . . . . . . . . 12 ((𝜑𝑔 𝐵) → 𝐼( ≃ph𝐽)𝐼)
66 eqid 2735 . . . . . . . . . . . . . . 15 ((0[,]1) × {(𝐹‘0)}) = ((0[,]1) × {(𝐹‘0)})
6766pcopt2 24972 . . . . . . . . . . . . . 14 ((𝑔 ∈ (II Cn 𝐽) ∧ (𝑔‘1) = (𝐹‘0)) → (𝑔(*𝑝𝐽)((0[,]1) × {(𝐹‘0)}))( ≃ph𝐽)𝑔)
6826, 28, 67syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑔 𝐵) → (𝑔(*𝑝𝐽)((0[,]1) × {(𝐹‘0)}))( ≃ph𝐽)𝑔)
6939eqcomd 2741 . . . . . . . . . . . . . . 15 ((𝜑𝑔 𝐵) → (𝐹‘1) = (𝐼‘0))
70 eqid 2735 . . . . . . . . . . . . . . 15 (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2)))) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2))))
7126, 27, 13, 28, 69, 70pcoass 24973 . . . . . . . . . . . . . 14 ((𝜑𝑔 𝐵) → ((𝑔(*𝑝𝐽)𝐹)(*𝑝𝐽)𝐼)( ≃ph𝐽)(𝑔(*𝑝𝐽)(𝐹(*𝑝𝐽)𝐼)))
7227, 13pco0 24963 . . . . . . . . . . . . . . . 16 ((𝜑𝑔 𝐵) → ((𝐹(*𝑝𝐽)𝐼)‘0) = (𝐹‘0))
7328, 72eqtr4d 2773 . . . . . . . . . . . . . . 15 ((𝜑𝑔 𝐵) → (𝑔‘1) = ((𝐹(*𝑝𝐽)𝐼)‘0))
7461, 26erref 8737 . . . . . . . . . . . . . . 15 ((𝜑𝑔 𝐵) → 𝑔( ≃ph𝐽)𝑔)
759, 66pcorev2 24977 . . . . . . . . . . . . . . . 16 (𝐹 ∈ (II Cn 𝐽) → (𝐹(*𝑝𝐽)𝐼)( ≃ph𝐽)((0[,]1) × {(𝐹‘0)}))
7627, 75syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑔 𝐵) → (𝐹(*𝑝𝐽)𝐼)( ≃ph𝐽)((0[,]1) × {(𝐹‘0)}))
7773, 74, 76pcohtpy 24969 . . . . . . . . . . . . . 14 ((𝜑𝑔 𝐵) → (𝑔(*𝑝𝐽)(𝐹(*𝑝𝐽)𝐼))( ≃ph𝐽)(𝑔(*𝑝𝐽)((0[,]1) × {(𝐹‘0)})))
7861, 71, 77ertr2d 8734 . . . . . . . . . . . . 13 ((𝜑𝑔 𝐵) → (𝑔(*𝑝𝐽)((0[,]1) × {(𝐹‘0)}))( ≃ph𝐽)((𝑔(*𝑝𝐽)𝐹)(*𝑝𝐽)𝐼))
7961, 68, 78ertr3d 8735 . . . . . . . . . . . 12 ((𝜑𝑔 𝐵) → 𝑔( ≃ph𝐽)((𝑔(*𝑝𝐽)𝐹)(*𝑝𝐽)𝐼))
8033, 65, 79pcohtpy 24969 . . . . . . . . . . 11 ((𝜑𝑔 𝐵) → (𝐼(*𝑝𝐽)𝑔)( ≃ph𝐽)(𝐼(*𝑝𝐽)((𝑔(*𝑝𝐽)𝐹)(*𝑝𝐽)𝐼)))
8142, 39eqtr4d 2773 . . . . . . . . . . . 12 ((𝜑𝑔 𝐵) → ((𝑔(*𝑝𝐽)𝐹)‘1) = (𝐼‘0))
8213, 29, 13, 35, 81, 70pcoass 24973 . . . . . . . . . . 11 ((𝜑𝑔 𝐵) → ((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))(*𝑝𝐽)𝐼)( ≃ph𝐽)(𝐼(*𝑝𝐽)((𝑔(*𝑝𝐽)𝐹)(*𝑝𝐽)𝐼)))
8361, 80, 82ertr4d 8736 . . . . . . . . . 10 ((𝜑𝑔 𝐵) → (𝐼(*𝑝𝐽)𝑔)( ≃ph𝐽)((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))(*𝑝𝐽)𝐼))
8463, 64, 83pcohtpy 24969 . . . . . . . . 9 ((𝜑𝑔 𝐵) → (𝐹(*𝑝𝐽)(𝐼(*𝑝𝐽)𝑔))( ≃ph𝐽)(𝐹(*𝑝𝐽)((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))(*𝑝𝐽)𝐼)))
8527, 13, 26, 69, 33, 70pcoass 24973 . . . . . . . . . 10 ((𝜑𝑔 𝐵) → ((𝐹(*𝑝𝐽)𝐼)(*𝑝𝐽)𝑔)( ≃ph𝐽)(𝐹(*𝑝𝐽)(𝐼(*𝑝𝐽)𝑔)))
8627, 13pco1 24964 . . . . . . . . . . . . 13 ((𝜑𝑔 𝐵) → ((𝐹(*𝑝𝐽)𝐼)‘1) = (𝐼‘1))
8786, 33eqtrd 2770 . . . . . . . . . . . 12 ((𝜑𝑔 𝐵) → ((𝐹(*𝑝𝐽)𝐼)‘1) = (𝑔‘0))
8887, 76, 74pcohtpy 24969 . . . . . . . . . . 11 ((𝜑𝑔 𝐵) → ((𝐹(*𝑝𝐽)𝐼)(*𝑝𝐽)𝑔)( ≃ph𝐽)(((0[,]1) × {(𝐹‘0)})(*𝑝𝐽)𝑔))
8966pcopt 24971 . . . . . . . . . . . 12 ((𝑔 ∈ (II Cn 𝐽) ∧ (𝑔‘0) = (𝐹‘0)) → (((0[,]1) × {(𝐹‘0)})(*𝑝𝐽)𝑔)( ≃ph𝐽)𝑔)
9026, 32, 89syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑔 𝐵) → (((0[,]1) × {(𝐹‘0)})(*𝑝𝐽)𝑔)( ≃ph𝐽)𝑔)
9161, 88, 90ertrd 8733 . . . . . . . . . 10 ((𝜑𝑔 𝐵) → ((𝐹(*𝑝𝐽)𝐼)(*𝑝𝐽)𝑔)( ≃ph𝐽)𝑔)
9261, 85, 91ertr3d 8735 . . . . . . . . 9 ((𝜑𝑔 𝐵) → (𝐹(*𝑝𝐽)(𝐼(*𝑝𝐽)𝑔))( ≃ph𝐽)𝑔)
9361, 84, 92ertr3d 8735 . . . . . . . 8 ((𝜑𝑔 𝐵) → (𝐹(*𝑝𝐽)((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))(*𝑝𝐽)𝐼))( ≃ph𝐽)𝑔)
9461, 93erthi 8770 . . . . . . 7 ((𝜑𝑔 𝐵) → [(𝐹(*𝑝𝐽)((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))(*𝑝𝐽)𝐼))]( ≃ph𝐽) = [𝑔]( ≃ph𝐽))
9594opeq2d 4856 . . . . . 6 ((𝜑𝑔 𝐵) → ⟨[(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽), [(𝐹(*𝑝𝐽)((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))(*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩ = ⟨[(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽), [𝑔]( ≃ph𝐽)⟩)
9695mpteq2dva 5214 . . . . 5 (𝜑 → (𝑔 𝐵 ↦ ⟨[(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽), [(𝐹(*𝑝𝐽)((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))(*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩) = (𝑔 𝐵 ↦ ⟨[(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽), [𝑔]( ≃ph𝐽)⟩))
9759, 96eqtrd 2770 . . . 4 (𝜑 → (( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [(𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩) ∘ (𝑔 𝐵 ↦ (𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹)))) = (𝑔 𝐵 ↦ ⟨[(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽), [𝑔]( ≃ph𝐽)⟩))
9897rneqd 5918 . . 3 (𝜑 → ran (( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [(𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩) ∘ (𝑔 𝐵 ↦ (𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹)))) = ran (𝑔 𝐵 ↦ ⟨[(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽), [𝑔]( ≃ph𝐽)⟩))
997, 98eqtr4d 2773 . 2 (𝜑𝐺 = ran (( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [(𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩) ∘ (𝑔 𝐵 ↦ (𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹)))))
100 rncoss 5955 . . 3 ran (( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [(𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩) ∘ (𝑔 𝐵 ↦ (𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹)))) ⊆ ran ( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [(𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩)
101 pi1xfrcnv.h . . 3 𝐻 = ran ( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [(𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩)
102100, 101sseqtrri 4008 . 2 ran (( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [(𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩) ∘ (𝑔 𝐵 ↦ (𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹)))) ⊆ 𝐻
10399, 102eqsstrdi 4003 1 (𝜑𝐺𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  Vcvv 3459  wss 3926  ifcif 4500  {csn 4601  cop 4607   cuni 4883   class class class wbr 5119  cmpt 5201   × cxp 5652  ccnv 5653  ran crn 5655  ccom 5658  wf 6526  cfv 6530  (class class class)co 7403   Er wer 8714  [cec 8715  0cc0 11127  1c1 11128   + caddc 11130   · cmul 11132  cle 11268  cmin 11464   / cdiv 11892  2c2 12293  4c4 12295  [,]cicc 13363  Basecbs 17226  TopOnctopon 22846   Cn ccn 23160  IIcii 24817  phcphtpc 24917  *𝑝cpco 24949   π1 cpi1 24952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205  ax-addf 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-isom 6539  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-of 7669  df-om 7860  df-1st 7986  df-2nd 7987  df-supp 8158  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-er 8717  df-ec 8719  df-qs 8723  df-map 8840  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fsupp 9372  df-fi 9421  df-sup 9452  df-inf 9453  df-oi 9522  df-card 9951  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-nn 12239  df-2 12301  df-3 12302  df-4 12303  df-5 12304  df-6 12305  df-7 12306  df-8 12307  df-9 12308  df-n0 12500  df-z 12587  df-dec 12707  df-uz 12851  df-q 12963  df-rp 13007  df-xneg 13126  df-xadd 13127  df-xmul 13128  df-ioo 13364  df-icc 13367  df-fz 13523  df-fzo 13670  df-seq 14018  df-exp 14078  df-hash 14347  df-cj 15116  df-re 15117  df-im 15118  df-sqrt 15252  df-abs 15253  df-struct 17164  df-sets 17181  df-slot 17199  df-ndx 17211  df-base 17227  df-ress 17250  df-plusg 17282  df-mulr 17283  df-starv 17284  df-sca 17285  df-vsca 17286  df-ip 17287  df-tset 17288  df-ple 17289  df-ds 17291  df-unif 17292  df-hom 17293  df-cco 17294  df-rest 17434  df-topn 17435  df-0g 17453  df-gsum 17454  df-topgen 17455  df-pt 17456  df-prds 17459  df-xrs 17514  df-qtop 17519  df-imas 17520  df-qus 17521  df-xps 17522  df-mre 17596  df-mrc 17597  df-acs 17599  df-mgm 18616  df-sgrp 18695  df-mnd 18711  df-submnd 18760  df-mulg 19049  df-cntz 19298  df-cmn 19761  df-psmet 21305  df-xmet 21306  df-met 21307  df-bl 21308  df-mopn 21309  df-cnfld 21314  df-top 22830  df-topon 22847  df-topsp 22869  df-bases 22882  df-cld 22955  df-cn 23163  df-cnp 23164  df-tx 23498  df-hmeo 23691  df-xms 24257  df-ms 24258  df-tms 24259  df-ii 24819  df-htpy 24918  df-phtpy 24919  df-phtpc 24940  df-pco 24954  df-om1 24955  df-pi1 24957
This theorem is referenced by:  pi1xfrcnv  25006
  Copyright terms: Public domain W3C validator