MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pi1xfrcnvlem Structured version   Visualization version   GIF version

Theorem pi1xfrcnvlem 24219
Description: Given a path 𝐹 between two basepoints, there is an induced group homomorphism on the fundamental groups. (Contributed by Mario Carneiro, 12-Feb-2015.) (Proof shortened by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
pi1xfr.p 𝑃 = (𝐽 π1 (𝐹‘0))
pi1xfr.q 𝑄 = (𝐽 π1 (𝐹‘1))
pi1xfr.b 𝐵 = (Base‘𝑃)
pi1xfr.g 𝐺 = ran (𝑔 𝐵 ↦ ⟨[𝑔]( ≃ph𝐽), [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽)⟩)
pi1xfr.j (𝜑𝐽 ∈ (TopOn‘𝑋))
pi1xfr.f (𝜑𝐹 ∈ (II Cn 𝐽))
pi1xfr.i 𝐼 = (𝑥 ∈ (0[,]1) ↦ (𝐹‘(1 − 𝑥)))
pi1xfrcnv.h 𝐻 = ran ( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [(𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩)
Assertion
Ref Expression
pi1xfrcnvlem (𝜑𝐺𝐻)
Distinct variable groups:   𝑔,,𝑥,𝐵   𝑔,𝐹,,𝑥   𝑔,𝐼,,𝑥   ,𝐺   𝜑,𝑔,,𝑥   𝑔,𝐽,,𝑥   𝑃,𝑔,,𝑥   𝑄,𝑔,,𝑥
Allowed substitution hints:   𝐺(𝑥,𝑔)   𝐻(𝑥,𝑔,)   𝑋(𝑥,𝑔,)

Proof of Theorem pi1xfrcnvlem
StepHypRef Expression
1 pi1xfr.g . . . 4 𝐺 = ran (𝑔 𝐵 ↦ ⟨[𝑔]( ≃ph𝐽), [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽)⟩)
2 fvex 6787 . . . . 5 ( ≃ph𝐽) ∈ V
3 ecexg 8502 . . . . 5 (( ≃ph𝐽) ∈ V → [𝑔]( ≃ph𝐽) ∈ V)
42, 3mp1i 13 . . . 4 ((𝜑𝑔 𝐵) → [𝑔]( ≃ph𝐽) ∈ V)
5 ecexg 8502 . . . . 5 (( ≃ph𝐽) ∈ V → [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽) ∈ V)
62, 5mp1i 13 . . . 4 ((𝜑𝑔 𝐵) → [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽) ∈ V)
71, 4, 6fliftcnv 7182 . . 3 (𝜑𝐺 = ran (𝑔 𝐵 ↦ ⟨[(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽), [𝑔]( ≃ph𝐽)⟩))
8 pi1xfr.f . . . . . . . . . . 11 (𝜑𝐹 ∈ (II Cn 𝐽))
9 pi1xfr.i . . . . . . . . . . . 12 𝐼 = (𝑥 ∈ (0[,]1) ↦ (𝐹‘(1 − 𝑥)))
109pcorevcl 24188 . . . . . . . . . . 11 (𝐹 ∈ (II Cn 𝐽) → (𝐼 ∈ (II Cn 𝐽) ∧ (𝐼‘0) = (𝐹‘1) ∧ (𝐼‘1) = (𝐹‘0)))
118, 10syl 17 . . . . . . . . . 10 (𝜑 → (𝐼 ∈ (II Cn 𝐽) ∧ (𝐼‘0) = (𝐹‘1) ∧ (𝐼‘1) = (𝐹‘0)))
1211simp1d 1141 . . . . . . . . 9 (𝜑𝐼 ∈ (II Cn 𝐽))
1312adantr 481 . . . . . . . 8 ((𝜑𝑔 𝐵) → 𝐼 ∈ (II Cn 𝐽))
14 pi1xfr.p . . . . . . . . . . . 12 𝑃 = (𝐽 π1 (𝐹‘0))
15 pi1xfr.j . . . . . . . . . . . 12 (𝜑𝐽 ∈ (TopOn‘𝑋))
16 iitopon 24042 . . . . . . . . . . . . . 14 II ∈ (TopOn‘(0[,]1))
17 cnf2 22400 . . . . . . . . . . . . . 14 ((II ∈ (TopOn‘(0[,]1)) ∧ 𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (II Cn 𝐽)) → 𝐹:(0[,]1)⟶𝑋)
1816, 15, 8, 17mp3an2i 1465 . . . . . . . . . . . . 13 (𝜑𝐹:(0[,]1)⟶𝑋)
19 0elunit 13201 . . . . . . . . . . . . 13 0 ∈ (0[,]1)
20 ffvelrn 6959 . . . . . . . . . . . . 13 ((𝐹:(0[,]1)⟶𝑋 ∧ 0 ∈ (0[,]1)) → (𝐹‘0) ∈ 𝑋)
2118, 19, 20sylancl 586 . . . . . . . . . . . 12 (𝜑 → (𝐹‘0) ∈ 𝑋)
22 pi1xfr.b . . . . . . . . . . . . 13 𝐵 = (Base‘𝑃)
2322a1i 11 . . . . . . . . . . . 12 (𝜑𝐵 = (Base‘𝑃))
2414, 15, 21, 23pi1eluni 24205 . . . . . . . . . . 11 (𝜑 → (𝑔 𝐵 ↔ (𝑔 ∈ (II Cn 𝐽) ∧ (𝑔‘0) = (𝐹‘0) ∧ (𝑔‘1) = (𝐹‘0))))
2524biimpa 477 . . . . . . . . . 10 ((𝜑𝑔 𝐵) → (𝑔 ∈ (II Cn 𝐽) ∧ (𝑔‘0) = (𝐹‘0) ∧ (𝑔‘1) = (𝐹‘0)))
2625simp1d 1141 . . . . . . . . 9 ((𝜑𝑔 𝐵) → 𝑔 ∈ (II Cn 𝐽))
278adantr 481 . . . . . . . . 9 ((𝜑𝑔 𝐵) → 𝐹 ∈ (II Cn 𝐽))
2825simp3d 1143 . . . . . . . . 9 ((𝜑𝑔 𝐵) → (𝑔‘1) = (𝐹‘0))
2926, 27, 28pcocn 24180 . . . . . . . 8 ((𝜑𝑔 𝐵) → (𝑔(*𝑝𝐽)𝐹) ∈ (II Cn 𝐽))
3011simp3d 1143 . . . . . . . . . . 11 (𝜑 → (𝐼‘1) = (𝐹‘0))
3130adantr 481 . . . . . . . . . 10 ((𝜑𝑔 𝐵) → (𝐼‘1) = (𝐹‘0))
3225simp2d 1142 . . . . . . . . . 10 ((𝜑𝑔 𝐵) → (𝑔‘0) = (𝐹‘0))
3331, 32eqtr4d 2781 . . . . . . . . 9 ((𝜑𝑔 𝐵) → (𝐼‘1) = (𝑔‘0))
3426, 27pco0 24177 . . . . . . . . 9 ((𝜑𝑔 𝐵) → ((𝑔(*𝑝𝐽)𝐹)‘0) = (𝑔‘0))
3533, 34eqtr4d 2781 . . . . . . . 8 ((𝜑𝑔 𝐵) → (𝐼‘1) = ((𝑔(*𝑝𝐽)𝐹)‘0))
3613, 29, 35pcocn 24180 . . . . . . 7 ((𝜑𝑔 𝐵) → (𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹)) ∈ (II Cn 𝐽))
3713, 29pco0 24177 . . . . . . . 8 ((𝜑𝑔 𝐵) → ((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))‘0) = (𝐼‘0))
3811simp2d 1142 . . . . . . . . 9 (𝜑 → (𝐼‘0) = (𝐹‘1))
3938adantr 481 . . . . . . . 8 ((𝜑𝑔 𝐵) → (𝐼‘0) = (𝐹‘1))
4037, 39eqtrd 2778 . . . . . . 7 ((𝜑𝑔 𝐵) → ((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))‘0) = (𝐹‘1))
4113, 29pco1 24178 . . . . . . . 8 ((𝜑𝑔 𝐵) → ((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))‘1) = ((𝑔(*𝑝𝐽)𝐹)‘1))
4226, 27pco1 24178 . . . . . . . 8 ((𝜑𝑔 𝐵) → ((𝑔(*𝑝𝐽)𝐹)‘1) = (𝐹‘1))
4341, 42eqtrd 2778 . . . . . . 7 ((𝜑𝑔 𝐵) → ((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))‘1) = (𝐹‘1))
44 pi1xfr.q . . . . . . . . 9 𝑄 = (𝐽 π1 (𝐹‘1))
45 1elunit 13202 . . . . . . . . . 10 1 ∈ (0[,]1)
46 ffvelrn 6959 . . . . . . . . . 10 ((𝐹:(0[,]1)⟶𝑋 ∧ 1 ∈ (0[,]1)) → (𝐹‘1) ∈ 𝑋)
4718, 45, 46sylancl 586 . . . . . . . . 9 (𝜑 → (𝐹‘1) ∈ 𝑋)
48 eqidd 2739 . . . . . . . . 9 (𝜑 → (Base‘𝑄) = (Base‘𝑄))
4944, 15, 47, 48pi1eluni 24205 . . . . . . . 8 (𝜑 → ((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹)) ∈ (Base‘𝑄) ↔ ((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹)) ∈ (II Cn 𝐽) ∧ ((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))‘0) = (𝐹‘1) ∧ ((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))‘1) = (𝐹‘1))))
5049adantr 481 . . . . . . 7 ((𝜑𝑔 𝐵) → ((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹)) ∈ (Base‘𝑄) ↔ ((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹)) ∈ (II Cn 𝐽) ∧ ((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))‘0) = (𝐹‘1) ∧ ((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))‘1) = (𝐹‘1))))
5136, 40, 43, 50mpbir3and 1341 . . . . . 6 ((𝜑𝑔 𝐵) → (𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹)) ∈ (Base‘𝑄))
52 eqidd 2739 . . . . . 6 (𝜑 → (𝑔 𝐵 ↦ (𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))) = (𝑔 𝐵 ↦ (𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))))
53 eqidd 2739 . . . . . 6 (𝜑 → ( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [(𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩) = ( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [(𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩))
54 eceq1 8536 . . . . . . 7 ( = (𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹)) → []( ≃ph𝐽) = [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽))
55 oveq1 7282 . . . . . . . . 9 ( = (𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹)) → ((*𝑝𝐽)𝐼) = ((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))(*𝑝𝐽)𝐼))
5655oveq2d 7291 . . . . . . . 8 ( = (𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹)) → (𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼)) = (𝐹(*𝑝𝐽)((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))(*𝑝𝐽)𝐼)))
5756eceq1d 8537 . . . . . . 7 ( = (𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹)) → [(𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽) = [(𝐹(*𝑝𝐽)((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))(*𝑝𝐽)𝐼))]( ≃ph𝐽))
5854, 57opeq12d 4812 . . . . . 6 ( = (𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹)) → ⟨[]( ≃ph𝐽), [(𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩ = ⟨[(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽), [(𝐹(*𝑝𝐽)((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))(*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩)
5951, 52, 53, 58fmptco 7001 . . . . 5 (𝜑 → (( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [(𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩) ∘ (𝑔 𝐵 ↦ (𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹)))) = (𝑔 𝐵 ↦ ⟨[(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽), [(𝐹(*𝑝𝐽)((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))(*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩))
60 phtpcer 24158 . . . . . . . . 9 ( ≃ph𝐽) Er (II Cn 𝐽)
6160a1i 11 . . . . . . . 8 ((𝜑𝑔 𝐵) → ( ≃ph𝐽) Er (II Cn 𝐽))
6213, 26pco0 24177 . . . . . . . . . . 11 ((𝜑𝑔 𝐵) → ((𝐼(*𝑝𝐽)𝑔)‘0) = (𝐼‘0))
6362, 39eqtr2d 2779 . . . . . . . . . 10 ((𝜑𝑔 𝐵) → (𝐹‘1) = ((𝐼(*𝑝𝐽)𝑔)‘0))
6461, 27erref 8518 . . . . . . . . . 10 ((𝜑𝑔 𝐵) → 𝐹( ≃ph𝐽)𝐹)
6561, 13erref 8518 . . . . . . . . . . . 12 ((𝜑𝑔 𝐵) → 𝐼( ≃ph𝐽)𝐼)
66 eqid 2738 . . . . . . . . . . . . . . 15 ((0[,]1) × {(𝐹‘0)}) = ((0[,]1) × {(𝐹‘0)})
6766pcopt2 24186 . . . . . . . . . . . . . 14 ((𝑔 ∈ (II Cn 𝐽) ∧ (𝑔‘1) = (𝐹‘0)) → (𝑔(*𝑝𝐽)((0[,]1) × {(𝐹‘0)}))( ≃ph𝐽)𝑔)
6826, 28, 67syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑔 𝐵) → (𝑔(*𝑝𝐽)((0[,]1) × {(𝐹‘0)}))( ≃ph𝐽)𝑔)
6939eqcomd 2744 . . . . . . . . . . . . . . 15 ((𝜑𝑔 𝐵) → (𝐹‘1) = (𝐼‘0))
70 eqid 2738 . . . . . . . . . . . . . . 15 (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2)))) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2))))
7126, 27, 13, 28, 69, 70pcoass 24187 . . . . . . . . . . . . . 14 ((𝜑𝑔 𝐵) → ((𝑔(*𝑝𝐽)𝐹)(*𝑝𝐽)𝐼)( ≃ph𝐽)(𝑔(*𝑝𝐽)(𝐹(*𝑝𝐽)𝐼)))
7227, 13pco0 24177 . . . . . . . . . . . . . . . 16 ((𝜑𝑔 𝐵) → ((𝐹(*𝑝𝐽)𝐼)‘0) = (𝐹‘0))
7328, 72eqtr4d 2781 . . . . . . . . . . . . . . 15 ((𝜑𝑔 𝐵) → (𝑔‘1) = ((𝐹(*𝑝𝐽)𝐼)‘0))
7461, 26erref 8518 . . . . . . . . . . . . . . 15 ((𝜑𝑔 𝐵) → 𝑔( ≃ph𝐽)𝑔)
759, 66pcorev2 24191 . . . . . . . . . . . . . . . 16 (𝐹 ∈ (II Cn 𝐽) → (𝐹(*𝑝𝐽)𝐼)( ≃ph𝐽)((0[,]1) × {(𝐹‘0)}))
7627, 75syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑔 𝐵) → (𝐹(*𝑝𝐽)𝐼)( ≃ph𝐽)((0[,]1) × {(𝐹‘0)}))
7773, 74, 76pcohtpy 24183 . . . . . . . . . . . . . 14 ((𝜑𝑔 𝐵) → (𝑔(*𝑝𝐽)(𝐹(*𝑝𝐽)𝐼))( ≃ph𝐽)(𝑔(*𝑝𝐽)((0[,]1) × {(𝐹‘0)})))
7861, 71, 77ertr2d 8515 . . . . . . . . . . . . 13 ((𝜑𝑔 𝐵) → (𝑔(*𝑝𝐽)((0[,]1) × {(𝐹‘0)}))( ≃ph𝐽)((𝑔(*𝑝𝐽)𝐹)(*𝑝𝐽)𝐼))
7961, 68, 78ertr3d 8516 . . . . . . . . . . . 12 ((𝜑𝑔 𝐵) → 𝑔( ≃ph𝐽)((𝑔(*𝑝𝐽)𝐹)(*𝑝𝐽)𝐼))
8033, 65, 79pcohtpy 24183 . . . . . . . . . . 11 ((𝜑𝑔 𝐵) → (𝐼(*𝑝𝐽)𝑔)( ≃ph𝐽)(𝐼(*𝑝𝐽)((𝑔(*𝑝𝐽)𝐹)(*𝑝𝐽)𝐼)))
8142, 39eqtr4d 2781 . . . . . . . . . . . 12 ((𝜑𝑔 𝐵) → ((𝑔(*𝑝𝐽)𝐹)‘1) = (𝐼‘0))
8213, 29, 13, 35, 81, 70pcoass 24187 . . . . . . . . . . 11 ((𝜑𝑔 𝐵) → ((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))(*𝑝𝐽)𝐼)( ≃ph𝐽)(𝐼(*𝑝𝐽)((𝑔(*𝑝𝐽)𝐹)(*𝑝𝐽)𝐼)))
8361, 80, 82ertr4d 8517 . . . . . . . . . 10 ((𝜑𝑔 𝐵) → (𝐼(*𝑝𝐽)𝑔)( ≃ph𝐽)((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))(*𝑝𝐽)𝐼))
8463, 64, 83pcohtpy 24183 . . . . . . . . 9 ((𝜑𝑔 𝐵) → (𝐹(*𝑝𝐽)(𝐼(*𝑝𝐽)𝑔))( ≃ph𝐽)(𝐹(*𝑝𝐽)((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))(*𝑝𝐽)𝐼)))
8527, 13, 26, 69, 33, 70pcoass 24187 . . . . . . . . . 10 ((𝜑𝑔 𝐵) → ((𝐹(*𝑝𝐽)𝐼)(*𝑝𝐽)𝑔)( ≃ph𝐽)(𝐹(*𝑝𝐽)(𝐼(*𝑝𝐽)𝑔)))
8627, 13pco1 24178 . . . . . . . . . . . . 13 ((𝜑𝑔 𝐵) → ((𝐹(*𝑝𝐽)𝐼)‘1) = (𝐼‘1))
8786, 33eqtrd 2778 . . . . . . . . . . . 12 ((𝜑𝑔 𝐵) → ((𝐹(*𝑝𝐽)𝐼)‘1) = (𝑔‘0))
8887, 76, 74pcohtpy 24183 . . . . . . . . . . 11 ((𝜑𝑔 𝐵) → ((𝐹(*𝑝𝐽)𝐼)(*𝑝𝐽)𝑔)( ≃ph𝐽)(((0[,]1) × {(𝐹‘0)})(*𝑝𝐽)𝑔))
8966pcopt 24185 . . . . . . . . . . . 12 ((𝑔 ∈ (II Cn 𝐽) ∧ (𝑔‘0) = (𝐹‘0)) → (((0[,]1) × {(𝐹‘0)})(*𝑝𝐽)𝑔)( ≃ph𝐽)𝑔)
9026, 32, 89syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑔 𝐵) → (((0[,]1) × {(𝐹‘0)})(*𝑝𝐽)𝑔)( ≃ph𝐽)𝑔)
9161, 88, 90ertrd 8514 . . . . . . . . . 10 ((𝜑𝑔 𝐵) → ((𝐹(*𝑝𝐽)𝐼)(*𝑝𝐽)𝑔)( ≃ph𝐽)𝑔)
9261, 85, 91ertr3d 8516 . . . . . . . . 9 ((𝜑𝑔 𝐵) → (𝐹(*𝑝𝐽)(𝐼(*𝑝𝐽)𝑔))( ≃ph𝐽)𝑔)
9361, 84, 92ertr3d 8516 . . . . . . . 8 ((𝜑𝑔 𝐵) → (𝐹(*𝑝𝐽)((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))(*𝑝𝐽)𝐼))( ≃ph𝐽)𝑔)
9461, 93erthi 8549 . . . . . . 7 ((𝜑𝑔 𝐵) → [(𝐹(*𝑝𝐽)((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))(*𝑝𝐽)𝐼))]( ≃ph𝐽) = [𝑔]( ≃ph𝐽))
9594opeq2d 4811 . . . . . 6 ((𝜑𝑔 𝐵) → ⟨[(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽), [(𝐹(*𝑝𝐽)((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))(*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩ = ⟨[(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽), [𝑔]( ≃ph𝐽)⟩)
9695mpteq2dva 5174 . . . . 5 (𝜑 → (𝑔 𝐵 ↦ ⟨[(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽), [(𝐹(*𝑝𝐽)((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))(*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩) = (𝑔 𝐵 ↦ ⟨[(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽), [𝑔]( ≃ph𝐽)⟩))
9759, 96eqtrd 2778 . . . 4 (𝜑 → (( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [(𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩) ∘ (𝑔 𝐵 ↦ (𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹)))) = (𝑔 𝐵 ↦ ⟨[(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽), [𝑔]( ≃ph𝐽)⟩))
9897rneqd 5847 . . 3 (𝜑 → ran (( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [(𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩) ∘ (𝑔 𝐵 ↦ (𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹)))) = ran (𝑔 𝐵 ↦ ⟨[(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽), [𝑔]( ≃ph𝐽)⟩))
997, 98eqtr4d 2781 . 2 (𝜑𝐺 = ran (( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [(𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩) ∘ (𝑔 𝐵 ↦ (𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹)))))
100 rncoss 5881 . . 3 ran (( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [(𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩) ∘ (𝑔 𝐵 ↦ (𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹)))) ⊆ ran ( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [(𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩)
101 pi1xfrcnv.h . . 3 𝐻 = ran ( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [(𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩)
102100, 101sseqtrri 3958 . 2 ran (( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [(𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩) ∘ (𝑔 𝐵 ↦ (𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹)))) ⊆ 𝐻
10399, 102eqsstrdi 3975 1 (𝜑𝐺𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  Vcvv 3432  wss 3887  ifcif 4459  {csn 4561  cop 4567   cuni 4839   class class class wbr 5074  cmpt 5157   × cxp 5587  ccnv 5588  ran crn 5590  ccom 5593  wf 6429  cfv 6433  (class class class)co 7275   Er wer 8495  [cec 8496  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876  cle 11010  cmin 11205   / cdiv 11632  2c2 12028  4c4 12030  [,]cicc 13082  Basecbs 16912  TopOnctopon 22059   Cn ccn 22375  IIcii 24038  phcphtpc 24132  *𝑝cpco 24163   π1 cpi1 24166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-ec 8500  df-qs 8504  df-map 8617  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-icc 13086  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-qus 17220  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-mulg 18701  df-cntz 18923  df-cmn 19388  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-cn 22378  df-cnp 22379  df-tx 22713  df-hmeo 22906  df-xms 23473  df-ms 23474  df-tms 23475  df-ii 24040  df-htpy 24133  df-phtpy 24134  df-phtpc 24155  df-pco 24168  df-om1 24169  df-pi1 24171
This theorem is referenced by:  pi1xfrcnv  24220
  Copyright terms: Public domain W3C validator