| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ertrd | Structured version Visualization version GIF version | ||
| Description: A transitivity relation for equivalences. (Contributed by Mario Carneiro, 9-Jul-2014.) |
| Ref | Expression |
|---|---|
| ersymb.1 | ⊢ (𝜑 → 𝑅 Er 𝑋) |
| ertrd.5 | ⊢ (𝜑 → 𝐴𝑅𝐵) |
| ertrd.6 | ⊢ (𝜑 → 𝐵𝑅𝐶) |
| Ref | Expression |
|---|---|
| ertrd | ⊢ (𝜑 → 𝐴𝑅𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ertrd.5 | . 2 ⊢ (𝜑 → 𝐴𝑅𝐵) | |
| 2 | ertrd.6 | . 2 ⊢ (𝜑 → 𝐵𝑅𝐶) | |
| 3 | ersymb.1 | . . 3 ⊢ (𝜑 → 𝑅 Er 𝑋) | |
| 4 | 3 | ertr 8637 | . 2 ⊢ (𝜑 → ((𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶) → 𝐴𝑅𝐶)) |
| 5 | 1, 2, 4 | mp2and 699 | 1 ⊢ (𝜑 → 𝐴𝑅𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 class class class wbr 5089 Er wer 8619 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-xp 5620 df-rel 5621 df-co 5623 df-er 8622 |
| This theorem is referenced by: ertr2d 8639 ertr3d 8640 ertr4d 8641 erinxp 8715 nqereq 10826 adderpq 10847 mulerpq 10848 efgred2 19665 efgcpbllemb 19667 efgcpbl2 19669 pcophtb 24956 pi1xfr 24982 pi1xfrcnvlem 24983 erbr3b 32600 prjspner1 42729 chnerlem1 46990 |
| Copyright terms: Public domain | W3C validator |