| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ertrd | Structured version Visualization version GIF version | ||
| Description: A transitivity relation for equivalences. (Contributed by Mario Carneiro, 9-Jul-2014.) |
| Ref | Expression |
|---|---|
| ersymb.1 | ⊢ (𝜑 → 𝑅 Er 𝑋) |
| ertrd.5 | ⊢ (𝜑 → 𝐴𝑅𝐵) |
| ertrd.6 | ⊢ (𝜑 → 𝐵𝑅𝐶) |
| Ref | Expression |
|---|---|
| ertrd | ⊢ (𝜑 → 𝐴𝑅𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ertrd.5 | . 2 ⊢ (𝜑 → 𝐴𝑅𝐵) | |
| 2 | ertrd.6 | . 2 ⊢ (𝜑 → 𝐵𝑅𝐶) | |
| 3 | ersymb.1 | . . 3 ⊢ (𝜑 → 𝑅 Er 𝑋) | |
| 4 | 3 | ertr 8663 | . 2 ⊢ (𝜑 → ((𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶) → 𝐴𝑅𝐶)) |
| 5 | 1, 2, 4 | mp2and 699 | 1 ⊢ (𝜑 → 𝐴𝑅𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 class class class wbr 5102 Er wer 8645 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-xp 5637 df-rel 5638 df-co 5640 df-er 8648 |
| This theorem is referenced by: ertr2d 8665 ertr3d 8666 ertr4d 8667 erinxp 8741 nqereq 10864 adderpq 10885 mulerpq 10886 efgred2 19659 efgcpbllemb 19661 efgcpbl2 19663 pcophtb 24905 pi1xfr 24931 pi1xfrcnvlem 24932 erbr3b 32518 prjspner1 42587 |
| Copyright terms: Public domain | W3C validator |