MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ertrd Structured version   Visualization version   GIF version

Theorem ertrd 8641
Description: A transitivity relation for equivalences. (Contributed by Mario Carneiro, 9-Jul-2014.)
Hypotheses
Ref Expression
ersymb.1 (𝜑𝑅 Er 𝑋)
ertrd.5 (𝜑𝐴𝑅𝐵)
ertrd.6 (𝜑𝐵𝑅𝐶)
Assertion
Ref Expression
ertrd (𝜑𝐴𝑅𝐶)

Proof of Theorem ertrd
StepHypRef Expression
1 ertrd.5 . 2 (𝜑𝐴𝑅𝐵)
2 ertrd.6 . 2 (𝜑𝐵𝑅𝐶)
3 ersymb.1 . . 3 (𝜑𝑅 Er 𝑋)
43ertr 8640 . 2 (𝜑 → ((𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐴𝑅𝐶))
51, 2, 4mp2and 699 1 (𝜑𝐴𝑅𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   class class class wbr 5092   Er wer 8622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5093  df-opab 5155  df-xp 5625  df-rel 5626  df-co 5628  df-er 8625
This theorem is referenced by:  ertr2d  8642  ertr3d  8643  ertr4d  8644  erinxp  8718  nqereq  10829  adderpq  10850  mulerpq  10851  efgred2  19632  efgcpbllemb  19634  efgcpbl2  19636  pcophtb  24927  pi1xfr  24953  pi1xfrcnvlem  24954  erbr3b  32562  prjspner1  42603
  Copyright terms: Public domain W3C validator