MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ertrd Structured version   Visualization version   GIF version

Theorem ertrd 8407
Description: A transitivity relation for equivalences. (Contributed by Mario Carneiro, 9-Jul-2014.)
Hypotheses
Ref Expression
ersymb.1 (𝜑𝑅 Er 𝑋)
ertrd.5 (𝜑𝐴𝑅𝐵)
ertrd.6 (𝜑𝐵𝑅𝐶)
Assertion
Ref Expression
ertrd (𝜑𝐴𝑅𝐶)

Proof of Theorem ertrd
StepHypRef Expression
1 ertrd.5 . 2 (𝜑𝐴𝑅𝐵)
2 ertrd.6 . 2 (𝜑𝐵𝑅𝐶)
3 ersymb.1 . . 3 (𝜑𝑅 Er 𝑋)
43ertr 8406 . 2 (𝜑 → ((𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐴𝑅𝐶))
51, 2, 4mp2and 699 1 (𝜑𝐴𝑅𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   class class class wbr 5053   Er wer 8388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pr 5322
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-br 5054  df-opab 5116  df-xp 5557  df-rel 5558  df-co 5560  df-er 8391
This theorem is referenced by:  ertr2d  8408  ertr3d  8409  ertr4d  8410  erinxp  8473  nqereq  10549  adderpq  10570  mulerpq  10571  efgred2  19143  efgcpbllemb  19145  efgcpbl2  19147  pcophtb  23926  pi1xfr  23952  pi1xfrcnvlem  23953  erbr3b  30676  prjspner1  40171
  Copyright terms: Public domain W3C validator