MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ertrd Structured version   Visualization version   GIF version

Theorem ertrd 8545
Description: A transitivity relation for equivalences. (Contributed by Mario Carneiro, 9-Jul-2014.)
Hypotheses
Ref Expression
ersymb.1 (𝜑𝑅 Er 𝑋)
ertrd.5 (𝜑𝐴𝑅𝐵)
ertrd.6 (𝜑𝐵𝑅𝐶)
Assertion
Ref Expression
ertrd (𝜑𝐴𝑅𝐶)

Proof of Theorem ertrd
StepHypRef Expression
1 ertrd.5 . 2 (𝜑𝐴𝑅𝐵)
2 ertrd.6 . 2 (𝜑𝐵𝑅𝐶)
3 ersymb.1 . . 3 (𝜑𝑅 Er 𝑋)
43ertr 8544 . 2 (𝜑 → ((𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐴𝑅𝐶))
51, 2, 4mp2and 697 1 (𝜑𝐴𝑅𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   class class class wbr 5081   Er wer 8526
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-ral 3063  df-rex 3072  df-rab 3306  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-br 5082  df-opab 5144  df-xp 5606  df-rel 5607  df-co 5609  df-er 8529
This theorem is referenced by:  ertr2d  8546  ertr3d  8547  ertr4d  8548  erinxp  8611  nqereq  10741  adderpq  10762  mulerpq  10763  efgred2  19408  efgcpbllemb  19410  efgcpbl2  19412  pcophtb  24241  pi1xfr  24267  pi1xfrcnvlem  24268  erbr3b  31006  prjspner1  40658
  Copyright terms: Public domain W3C validator