MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ertrd Structured version   Visualization version   GIF version

Theorem ertrd 8762
Description: A transitivity relation for equivalences. (Contributed by Mario Carneiro, 9-Jul-2014.)
Hypotheses
Ref Expression
ersymb.1 (𝜑𝑅 Er 𝑋)
ertrd.5 (𝜑𝐴𝑅𝐵)
ertrd.6 (𝜑𝐵𝑅𝐶)
Assertion
Ref Expression
ertrd (𝜑𝐴𝑅𝐶)

Proof of Theorem ertrd
StepHypRef Expression
1 ertrd.5 . 2 (𝜑𝐴𝑅𝐵)
2 ertrd.6 . 2 (𝜑𝐵𝑅𝐶)
3 ersymb.1 . . 3 (𝜑𝑅 Er 𝑋)
43ertr 8761 . 2 (𝜑 → ((𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐴𝑅𝐶))
51, 2, 4mp2and 699 1 (𝜑𝐴𝑅𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   class class class wbr 5142   Er wer 8743
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-br 5143  df-opab 5205  df-xp 5690  df-rel 5691  df-co 5693  df-er 8746
This theorem is referenced by:  ertr2d  8763  ertr3d  8764  ertr4d  8765  erinxp  8832  nqereq  10976  adderpq  10997  mulerpq  10998  efgred2  19772  efgcpbllemb  19774  efgcpbl2  19776  pcophtb  25063  pi1xfr  25089  pi1xfrcnvlem  25090  erbr3b  32630  prjspner1  42641
  Copyright terms: Public domain W3C validator