Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ertrd | Structured version Visualization version GIF version |
Description: A transitivity relation for equivalences. (Contributed by Mario Carneiro, 9-Jul-2014.) |
Ref | Expression |
---|---|
ersymb.1 | ⊢ (𝜑 → 𝑅 Er 𝑋) |
ertrd.5 | ⊢ (𝜑 → 𝐴𝑅𝐵) |
ertrd.6 | ⊢ (𝜑 → 𝐵𝑅𝐶) |
Ref | Expression |
---|---|
ertrd | ⊢ (𝜑 → 𝐴𝑅𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ertrd.5 | . 2 ⊢ (𝜑 → 𝐴𝑅𝐵) | |
2 | ertrd.6 | . 2 ⊢ (𝜑 → 𝐵𝑅𝐶) | |
3 | ersymb.1 | . . 3 ⊢ (𝜑 → 𝑅 Er 𝑋) | |
4 | 3 | ertr 8544 | . 2 ⊢ (𝜑 → ((𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶) → 𝐴𝑅𝐶)) |
5 | 1, 2, 4 | mp2and 697 | 1 ⊢ (𝜑 → 𝐴𝑅𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 class class class wbr 5081 Er wer 8526 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3063 df-rex 3072 df-rab 3306 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-br 5082 df-opab 5144 df-xp 5606 df-rel 5607 df-co 5609 df-er 8529 |
This theorem is referenced by: ertr2d 8546 ertr3d 8547 ertr4d 8548 erinxp 8611 nqereq 10741 adderpq 10762 mulerpq 10763 efgred2 19408 efgcpbllemb 19410 efgcpbl2 19412 pcophtb 24241 pi1xfr 24267 pi1xfrcnvlem 24268 erbr3b 31006 prjspner1 40658 |
Copyright terms: Public domain | W3C validator |